[Nouveaux contre-exemples aux estimations de Strichartz pour l’équation des ondes dans un domaine convexe modèle bidimensionnel]
Nous démontrons que le domaine de validité des estimations de Strichartz sur un domaine convexe modèle bidimensionnel peut être encore restreint par rapport aux contre-exemples déjà connus [3, 4]. Notre nouvelle famille de contre-exemples s’appuie sur la construction de parametrix élaborée dans [7] et revisitée dans [8]. Cette construction est en sus optimale dans certaines régions de l’espace des phases.
We prove that the range of Strichartz estimates on a model 2D convex domain may be further restricted compared to the known counterexamples from [3, 4]. Our new family of counterexamples is built on the parametrix construction from [7] and revisited in [8]. Interestingly enough, it is sharp in at least some regions of phase space.
Accepté le :
Publié le :
Keywords: Dispersive estimates, wave equation, Dirichlet boundary condition
Mot clés : Équation des ondes, estimations de Strichartz, domaines à bord
Oana Ivanovici 1 ; Gilles Lebeau 2 ; Fabrice Planchon 3
@article{JEP_2021__8__1133_0, author = {Oana Ivanovici and Gilles Lebeau and Fabrice Planchon}, title = {New counterexamples to {Strichartz} estimates for the wave equation on a $2${D} model convex domain}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1133--1157}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.168}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.168/} }
TY - JOUR AU - Oana Ivanovici AU - Gilles Lebeau AU - Fabrice Planchon TI - New counterexamples to Strichartz estimates for the wave equation on a $2$D model convex domain JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 1133 EP - 1157 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.168/ DO - 10.5802/jep.168 LA - en ID - JEP_2021__8__1133_0 ER -
%0 Journal Article %A Oana Ivanovici %A Gilles Lebeau %A Fabrice Planchon %T New counterexamples to Strichartz estimates for the wave equation on a $2$D model convex domain %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 1133-1157 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.168/ %R 10.5802/jep.168 %G en %F JEP_2021__8__1133_0
Oana Ivanovici; Gilles Lebeau; Fabrice Planchon. New counterexamples to Strichartz estimates for the wave equation on a $2$D model convex domain. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1133-1157. doi : 10.5802/jep.168. https://jep.centre-mersenne.org/articles/10.5802/jep.168/
[1] - “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) no. 5, p. 1817-1829 | DOI | Numdam | MR | Zbl
[2] - “The global Cauchy problem for the nonlinear Klein-Gordon equation”, Math. Z. 189 (1985) no. 4, p. 487-505 | DOI | MR | Zbl
[3] - “Counterexamples to Strichartz estimates for the wave equation in domains”, Math. Ann. 347 (2010) no. 3, p. 627-673 | DOI | MR | Zbl
[4] - “Counterexamples to the Strichartz inequalities for the wave equation in general domains with boundary”, J. Eur. Math. Soc. (JEMS) 14 (2012) no. 5, p. 1357-1388 | DOI | MR | Zbl
[5] - “Dispersion for the wave equation inside strictly convex domains II: the general case”, 2020 | arXiv
[6] - “Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples”, Comptes Rendus Mathématique 355 (2017) no. 7, p. 774-779 | DOI | Zbl
[7] - “Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case”, Ann. of Math. (2) 180 (2014) no. 1, p. 323-380 | DOI | MR | Zbl
[8] - “Strichartz estimates for the wave equation inside strictly convex 2D model domain”, 2020 | arXiv
[9] - “Estimates for norms in Besov and Lizorkin-Triebel spaces for solutions of second-order linear hyperbolic equations”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 171 (1989) no. 20, p. 106-162, 185–186 | DOI
[10] - “Local smoothing of Fourier integral operators and Carleson-Sjölin estimates”, J. Amer. Math. Soc. 6 (1993) no. 1, p. 65-130 | DOI | Zbl
[11] - “Nonlinear small data scattering for the wave and Klein-Gordon equation”, Math. Z. 185 (1984) no. 2, p. 261-270 | DOI | MR | Zbl
[12] - “On the critical semilinear wave equation outside convex obstacles”, J. Amer. Math. Soc. 8 (1995) no. 4, p. 879-916 | DOI | MR | Zbl
[13] - “On the norm of spectral clusters for compact manifolds with boundary”, Acta Math. 198 (2007) no. 1, p. 107-153 | DOI | MR | Zbl
[14] - “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J. 44 (1977) no. 3, p. 705-714 | MR | Zbl
[15] - “Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III”, J. Amer. Math. Soc. 15 (2002) no. 2, p. 419-442 | DOI | MR | Zbl
[16] - Airy functions and applications to physics, Imperial College Press, London, 2004 | DOI | Zbl
Cité par Sources :