Positive harmonic functions on the Heisenberg group II
[Fonctions harmoniques positives sur le groupe de Heisenberg II]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 973-1003.

Nous décrivons les fonctions harmoniques positives extrémales pour les mesures à support fini sur le groupe de Heisenberg discret : elles sont proportionnelles à des caractères ou à des translatées d’induites de caractères.

We describe the extremal positive harmonic functions for finitely supported measures on the discrete Heisenberg group: they are proportional either to characters or to translates of induced from characters.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.163
Classification : 31C35,  60B15,  60G50,  60J50
Mots clés : Fonction harmonique, marche aléatoire, frontière de Martin, groupe nilpotent
@article{JEP_2021__8__973_0,
     author = {Yves Benoist},
     title = {Positive harmonic functions on the~Heisenberg group II},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {973--1003},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.163},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.163/}
}
Yves Benoist. Positive harmonic functions on the Heisenberg group II. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 973-1003. doi : 10.5802/jep.163. https://jep.centre-mersenne.org/articles/10.5802/jep.163/

[1] A. Ancona - “Théorie du potentiel sur les graphes et les variétés”, in École d’été de Probabilités de Saint-Flour XVIII—1988, Lect. Notes in Math., vol. 1427, Springer, Berlin, 1990, p. 1-112 | Article | Zbl 0719.60074

[2] Y. Benoist - “Positive harmonic functions on the Heisenberg group I”, 2019 | arXiv:1907.05041

[3] E. Breuillard - “Local limit theorems and equidistribution of random walks on the Heisenberg group”, Geom. Funct. Anal. 15 (2005) no. 1, p. 35-82 | Article | MR 2140628 | Zbl 1083.60008

[4] E. Breuillard - “Equidistribution of dense subgroups on nilpotent Lie groups”, Ergodic Theory Dynam. Systems 30 (2010) no. 1, p. 131-150 | Article | MR 2586348 | Zbl 1194.22012

[5] G. Choquet & J. Deny - “Sur l’équation de convolution μ=μ*σ, C. R. Acad. Sci. Paris 250 (1960), p. 799-801 | Zbl 0093.12802

[6] P. Diaconis & B. Hough - “Random walk on unipotent matrix groups”, 2015 | arXiv:1512.06304

[7] E. B. Dynkin & M. B. Maljutov - “Random walk on groups with a finite number of generators”, Dokl. Akad. Nauk SSSR 137 (1961), p. 1042-1045 | MR 131904

[8] M. Göll, K. Schmidt & E. Verbitskiy - “A Wiener lemma for the discrete Heisenberg group”, Monatsh. Math. 180 (2016) no. 3, p. 485-525 | Article | MR 3513217

[9] S. Gouëzel - “Martin boundary of random walks with unbounded jumps in hyperbolic groups”, Ann. Probab. 43 (2015) no. 5, p. 2374-2404 | Article | MR 3395464 | Zbl 1326.31006

[10] Y. Guivarc’h - “Groupes nilpotents et probabilité”, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), p. A997-A998 | Zbl 0222.43004

[11] D. Lind & K. Shmidt - “A survey of algebraic actions of the discrete Heisenberg group”, Uspekhi Mat. Nauk 70 (2015) no. 4(424), p. 77-142 | Article | MR 3400570

[12] G. A. Margulis - “Positive harmonic functions on nilpotent groups”, Soviet Math. Dokl. 7 (1966), p. 241-244 | MR 222217 | Zbl 0187.38902

[13] S. A. Sawyer - “Martin boundaries and random walks”, in Harmonic functions on trees and buildings (New York, 1995), Contemp. Math., vol. 206, American Mathematical Society, Providence, RI, 1997, p. 17-44 | Article | MR 1463727 | Zbl 0891.60073

[14] A. M. Vershik & A. V. Malyutin - “Asymptotics of the number of geodesics in the discrete Heisenberg group”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 468 (2018) no. XXIX, p. 39-52

[15] W. Woess - Random walks on infinite graphs and groups, Cambridge Tracts in Math., vol. 138, Cambridge University Press, Cambridge, 2000 | Article | MR 1743100 | Zbl 0951.60002