We describe the extremal positive harmonic functions for finitely supported measures on the discrete Heisenberg group: they are proportional either to characters or to translates of induced from characters.
Nous décrivons les fonctions harmoniques positives extrémales pour les mesures à support fini sur le groupe de Heisenberg discret : elles sont proportionnelles à des caractères ou à des translatées d’induites de caractères.
Accepted:
Published online:
Keywords: Harmonic function, Martin boundary, random walk, nilpotent group
Mot clés : Fonction harmonique, marche aléatoire, frontière de Martin, groupe nilpotent
Yves Benoist 1
@article{JEP_2021__8__973_0, author = {Yves Benoist}, title = {Positive harmonic functions on {the~Heisenberg} group {II}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {973--1003}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.163}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.163/} }
TY - JOUR AU - Yves Benoist TI - Positive harmonic functions on the Heisenberg group II JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 973 EP - 1003 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.163/ DO - 10.5802/jep.163 LA - en ID - JEP_2021__8__973_0 ER -
%0 Journal Article %A Yves Benoist %T Positive harmonic functions on the Heisenberg group II %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 973-1003 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.163/ %R 10.5802/jep.163 %G en %F JEP_2021__8__973_0
Yves Benoist. Positive harmonic functions on the Heisenberg group II. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 973-1003. doi : 10.5802/jep.163. https://jep.centre-mersenne.org/articles/10.5802/jep.163/
[1] - “Théorie du potentiel sur les graphes et les variétés”, in École d’été de Probabilités de Saint-Flour XVIII—1988, Lect. Notes in Math., vol. 1427, Springer, Berlin, 1990, p. 1-112 | DOI | Zbl
[2] - “Positive harmonic functions on the Heisenberg group I”, 2019 | arXiv
[3] - “Local limit theorems and equidistribution of random walks on the Heisenberg group”, Geom. Funct. Anal. 15 (2005) no. 1, p. 35-82 | DOI | MR | Zbl
[4] - “Equidistribution of dense subgroups on nilpotent Lie groups”, Ergodic Theory Dynam. Systems 30 (2010) no. 1, p. 131-150 | DOI | MR | Zbl
[5] - “Sur l’équation de convolution ”, C. R. Acad. Sci. Paris 250 (1960), p. 799-801 | Zbl
[6] - “Random walk on unipotent matrix groups”, 2015 | arXiv
[7] - “Random walk on groups with a finite number of generators”, Dokl. Akad. Nauk SSSR 137 (1961), p. 1042-1045 | MR
[8] - “A Wiener lemma for the discrete Heisenberg group”, Monatsh. Math. 180 (2016) no. 3, p. 485-525 | DOI | MR
[9] - “Martin boundary of random walks with unbounded jumps in hyperbolic groups”, Ann. Probab. 43 (2015) no. 5, p. 2374-2404 | DOI | MR | Zbl
[10] - “Groupes nilpotents et probabilité”, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), p. A997-A998 | Zbl
[11] - “A survey of algebraic actions of the discrete Heisenberg group”, Uspekhi Mat. Nauk 70 (2015) no. 4(424), p. 77-142 | DOI | MR
[12] - “Positive harmonic functions on nilpotent groups”, Soviet Math. Dokl. 7 (1966), p. 241-244 | MR | Zbl
[13] - “Martin boundaries and random walks”, in Harmonic functions on trees and buildings (New York, 1995), Contemp. Math., vol. 206, American Mathematical Society, Providence, RI, 1997, p. 17-44 | DOI | MR | Zbl
[14] - “Asymptotics of the number of geodesics in the discrete Heisenberg group”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 468 (2018) no. XXIX, p. 39-52
[15] - Random walks on infinite graphs and groups, Cambridge Tracts in Math., vol. 138, Cambridge University Press, Cambridge, 2000 | DOI | MR | Zbl
Cited by Sources: