The tangent complex of K-theory
Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 895-932.

We prove that the tangent complex of K-theory, in terms of (abelian) deformation problems over a characteristic 0 field k, is the cyclic homology (over k). This equivalence is compatible with λ-operations. In particular, the relative algebraic K-theory functor fully determines the absolute cyclic homology over any field k of characteristic 0. We also show that the Loday-Quillen-Tsygan generalized trace comes as the tangent morphism of the canonical map BGL K. The proof builds on results of Goodwillie, using Wodzicki’s excision for cyclic homology and formal deformation theory à la Lurie-Pridham.

Dans cet article, nous prouvons que le complexe tangent de la K-théorie, en termes de problèmes de déformations formels et sur un corps k de caractéristique nulle, n’est autre que l’homologie cyclique sur k. Cette équivalence est de plus compatible aux λ-opérations. Nous démontrons également que le morphisme tangent du morphisme canonique BGL K est homotope au morphisme de trace généralisée de Loday-Quillen et Tsygan. La démonstration s’appuie sur des résultats de Goodwillie, à l’aide du théorème d’excision pour l’homologie cyclique de Wodzicki et de la théorie des déformations formelles à la Lurie-Pridham.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.161
Classification: 19E20
Keywords: K-theory, cyclic homology, formal moduli problem
Mot clés : K-théorie, homologie cyclique, espace de module formel

Benjamin Hennion 1

1 IMO - Université Paris-Saclay F-91405 Orsay Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2021__8__895_0,
     author = {Benjamin Hennion},
     title = {The tangent complex of {K-theory}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {895--932},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.161},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.161/}
}
TY  - JOUR
AU  - Benjamin Hennion
TI  - The tangent complex of K-theory
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 895
EP  - 932
VL  - 8
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.161/
DO  - 10.5802/jep.161
LA  - en
ID  - JEP_2021__8__895_0
ER  - 
%0 Journal Article
%A Benjamin Hennion
%T The tangent complex of K-theory
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 895-932
%V 8
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.161/
%R 10.5802/jep.161
%G en
%F JEP_2021__8__895_0
Benjamin Hennion. The tangent complex of K-theory. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 895-932. doi : 10.5802/jep.161. https://jep.centre-mersenne.org/articles/10.5802/jep.161/

[Bei87] A. A. Beilinson - “On the derived category of perverse sheaves”, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lect. Notes in Math., vol. 1289, Springer, Berlin, 1987, p. 27-41 | DOI | MR | Zbl

[Bei14] A. A. Beilinson - “Relative continuous K-theory and cyclic homology”, Münster J. Math. 7 (2014) no. 1, p. 51-81 | MR | Zbl

[BKP18] A. Blanc, L. Katzarkov & P. Pandit - “Generators in formal deformations of categories”, Compositio Math. 154 (2018) no. 10, p. 2055-2089 | DOI | MR | Zbl

[Blo73] S. Bloch - “On the tangent space to Quillen K-theory”, in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lect. Notes in Math., vol. 341, Springer, 1973, p. 205-210 | MR | Zbl

[Bur86] D. Burghelea - “Cyclic homology and the algebraic K-theory of spaces. I”, in Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, American Mathematical Society, Providence, RI, 1986, p. 89-115 | DOI | MR | Zbl

[Cat91] J.-L. Cathelineau - “λ-structures in algebraic K-theory and cyclic homology”, K-Theory 4 (1990/91) no. 6, p. 591-606 | DOI | MR

[CHW09] G. Cortiñas, C. Haesemeyer & C. A. Weibel - “Infinitesimal cohomology and the Chern character to negative cyclic homology”, Math. Ann. 344 (2009) no. 4, p. 891-922 | DOI | MR

[CW09] G. Cortiñas & C. A. Weibel - “Relative Chern characters for nilpotent ideals”, in Algebraic topology, Abel Symp., vol. 4, Springer, Berlin, 2009, p. 61-82 | DOI | MR

[DL14] G. Donadze & M. Ladra - “The excision theorems in Hochschild and cyclic homologies”, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) no. 2, p. 305-317 | DOI | MR

[FHK19] G. Faonte, B. Hennion & M. Kapranov - “Higher Kac-Moody algebras and moduli spaces of G-bundles”, Adv. Math. 346 (2019), p. 389-466 | DOI | MR

[FT87] B. L. Feigin & B. L. Tsygan - “Additive K-theory”, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lect. Notes in Math., vol. 1289, Springer, Berlin, 1987, p. 67-209 | DOI | MR

[GG96] J. A. Guccione & J. J. Guccione - “The theorem of excision for Hochschild and cyclic homology”, J. Pure Appl. Algebra 106 (1996) no. 1, p. 57-60 | DOI | MR

[Goo86] T. G. Goodwillie - “Relative algebraic K-theory and cyclic homology”, Ann. of Math. (2) 124 (1986) no. 2, p. 347-402 | DOI | MR | Zbl

[Lod92] J.-L. Loday - Cyclic homology, Grundlehren Math. Wiss., vol. 301, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[LQ83] J.-L. Loday & D. Quillen - “Homologie cyclique et homologie de l’algèbre de Lie des matrices”, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) no. 6, p. 295-297 | Zbl

[Lur09] J. Lurie - Higher topos theory, Annals of Math. Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009 | DOI | MR

[Lur11] J. Lurie - “Derived algebraic geometry X: Formal moduli problems” (2011), available at https://www.math.ias.edu/~lurie/papers/DAG-X.pdf

[Lur16] J. Lurie - “Higher algebra” (2016), available at https://www.math.ias.edu/~lurie/papers/HA.pdf

[Mal49] A. I. Mal’cev - “Nilpotent torsion-free groups”, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), p. 201-212 | MR

[Pri10] J. P. Pridham - “Unifying derived deformation theories”, Adv. Math. 224 (2010) no. 3, p. 772-826, Corrigendum: Ibid. 228 (2011), no. 4, p. 2554–2556 | DOI | MR

[Pri16] J. P. Pridham - “Smooth functions on algebraic K-theory”, 2016 | arXiv

[SS03] S. Schwede & B. Shipley - “Equivalences of monoidal model categories”, Algebraic Geom. Topol. 3 (2003), p. 287-334 | DOI | MR

[Sus81] A. A. Suslin - “On the equivalence of K-theories”, Comm. Algebra 9 (1981) no. 15, p. 1559-1566 | DOI | MR

[SW92] A. A. Suslin & M. Wodzicki - “Excision in algebraic K-theory”, Ann. of Math. (2) 136 (1992) no. 1, p. 51-122 | DOI | MR

[Tam18] G. Tamme - “Excision in algebraic K-theory revisited”, Compositio Math. 154 (2018) no. 9, p. 1801-1814 | DOI | MR | Zbl

[Tsy83] B. L. Tsygan - “Homology of matrix Lie algebras over rings and the Hochschild homology”, Uspehi Mat. Nauk 38 (1983) no. 2(230), p. 217-218 | MR | Zbl

[TV08] B. Toën & G. Vezzosi - Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc., vol. 193, no. 902, American Mathematical Society, Providence, RI, 2008 | DOI

[Vol71] I. A. Volodin - “Algebraic K-theory as an extraordinary homology theory on the category of associative rings with a unit”, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), p. 844-873

[Wal85] F. Waldhausen - “Algebraic K-theory of spaces”, in Algebraic and geometric topology (New Brunswick, N.J., 1983), Lect. Notes in Math., vol. 1126, Springer, Berlin, 1985, p. 318-419 | DOI | MR

[Wei97] C. A. Weibel - “The Hodge filtration and cyclic homology”, K-Theory 12 (1997) no. 2, p. 145-164 | DOI | MR

[Wod89] M. Wodzicki - “Excision in cyclic homology and in rational algebraic K-theory”, Ann. of Math. (2) 129 (1989) no. 3, p. 591-639 | DOI | MR | Zbl

Cited by Sources: