[Le complexe tangent de la K-théorie]
Dans cet article, nous prouvons que le complexe tangent de la K-théorie, en termes de problèmes de déformations formels et sur un corps de caractéristique nulle, n’est autre que l’homologie cyclique sur . Cette équivalence est de plus compatible aux -opérations. Nous démontrons également que le morphisme tangent du morphisme canonique est homotope au morphisme de trace généralisée de Loday-Quillen et Tsygan. La démonstration s’appuie sur des résultats de Goodwillie, à l’aide du théorème d’excision pour l’homologie cyclique de Wodzicki et de la théorie des déformations formelles à la Lurie-Pridham.
We prove that the tangent complex of K-theory, in terms of (abelian) deformation problems over a characteristic field , is the cyclic homology (over ). This equivalence is compatible with -operations. In particular, the relative algebraic K-theory functor fully determines the absolute cyclic homology over any field of characteristic . We also show that the Loday-Quillen-Tsygan generalized trace comes as the tangent morphism of the canonical map . The proof builds on results of Goodwillie, using Wodzicki’s excision for cyclic homology and formal deformation theory à la Lurie-Pridham.
Accepté le :
Publié le :
Keywords: K-theory, cyclic homology, formal moduli problem
Mot clés : K-théorie, homologie cyclique, espace de module formel
Benjamin Hennion 1
@article{JEP_2021__8__895_0, author = {Benjamin Hennion}, title = {The tangent complex of {K-theory}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {895--932}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.161}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.161/} }
TY - JOUR AU - Benjamin Hennion TI - The tangent complex of K-theory JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 895 EP - 932 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.161/ DO - 10.5802/jep.161 LA - en ID - JEP_2021__8__895_0 ER -
Benjamin Hennion. The tangent complex of K-theory. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 895-932. doi : 10.5802/jep.161. https://jep.centre-mersenne.org/articles/10.5802/jep.161/
[Bei87] - “On the derived category of perverse sheaves”, in -theory, arithmetic and geometry (Moscow, 1984–1986), Lect. Notes in Math., vol. 1289, Springer, Berlin, 1987, p. 27-41 | DOI | MR | Zbl
[Bei14] - “Relative continuous -theory and cyclic homology”, Münster J. Math. 7 (2014) no. 1, p. 51-81 | MR | Zbl
[BKP18] - “Generators in formal deformations of categories”, Compositio Math. 154 (2018) no. 10, p. 2055-2089 | DOI | MR | Zbl
[Blo73] - “On the tangent space to Quillen -theory”, in Algebraic -theory, I: Higher -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lect. Notes in Math., vol. 341, Springer, 1973, p. 205-210 | MR | Zbl
[Bur86] - “Cyclic homology and the algebraic -theory of spaces. I”, in Applications of algebraic -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, American Mathematical Society, Providence, RI, 1986, p. 89-115 | DOI | MR | Zbl
[Cat91] - “-structures in algebraic -theory and cyclic homology”, -Theory 4 (1990/91) no. 6, p. 591-606 | DOI | MR
[CHW09] - “Infinitesimal cohomology and the Chern character to negative cyclic homology”, Math. Ann. 344 (2009) no. 4, p. 891-922 | DOI | MR
[CW09] - “Relative Chern characters for nilpotent ideals”, in Algebraic topology, Abel Symp., vol. 4, Springer, Berlin, 2009, p. 61-82 | DOI | MR
[DL14] - “The excision theorems in Hochschild and cyclic homologies”, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) no. 2, p. 305-317 | DOI | MR
[FHK19] - “Higher Kac-Moody algebras and moduli spaces of -bundles”, Adv. Math. 346 (2019), p. 389-466 | DOI | MR
[FT87] - “Additive -theory”, in -theory, arithmetic and geometry (Moscow, 1984–1986), Lect. Notes in Math., vol. 1289, Springer, Berlin, 1987, p. 67-209 | DOI | MR
[GG96] - “The theorem of excision for Hochschild and cyclic homology”, J. Pure Appl. Algebra 106 (1996) no. 1, p. 57-60 | DOI | MR
[Goo86] - “Relative algebraic -theory and cyclic homology”, Ann. of Math. (2) 124 (1986) no. 2, p. 347-402 | DOI | MR | Zbl
[Lod92] - Cyclic homology, Grundlehren Math. Wiss., vol. 301, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[LQ83] - “Homologie cyclique et homologie de l’algèbre de Lie des matrices”, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) no. 6, p. 295-297 | Zbl
[Lur09] - Higher topos theory, Annals of Math. Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009 | DOI | MR
[Lur11] - “Derived algebraic geometry X: Formal moduli problems” (2011), available at https://www.math.ias.edu/~lurie/papers/DAG-X.pdf
[Lur16] - “Higher algebra” (2016), available at https://www.math.ias.edu/~lurie/papers/HA.pdf
[Mal49] - “Nilpotent torsion-free groups”, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), p. 201-212 | MR
[Pri10] - “Unifying derived deformation theories”, Adv. Math. 224 (2010) no. 3, p. 772-826, Corrigendum: Ibid. 228 (2011), no. 4, p. 2554–2556 | DOI | MR
[Pri16] - “Smooth functions on algebraic K-theory”, 2016 | arXiv
[SS03] - “Equivalences of monoidal model categories”, Algebraic Geom. Topol. 3 (2003), p. 287-334 | DOI | MR
[Sus81] - “On the equivalence of -theories”, Comm. Algebra 9 (1981) no. 15, p. 1559-1566 | DOI | MR
[SW92] - “Excision in algebraic -theory”, Ann. of Math. (2) 136 (1992) no. 1, p. 51-122 | DOI | MR
[Tam18] - “Excision in algebraic -theory revisited”, Compositio Math. 154 (2018) no. 9, p. 1801-1814 | DOI | MR | Zbl
[Tsy83] - “Homology of matrix Lie algebras over rings and the Hochschild homology”, Uspehi Mat. Nauk 38 (1983) no. 2(230), p. 217-218 | MR | Zbl
[TV08] - Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc., vol. 193, no. 902, American Mathematical Society, Providence, RI, 2008 | DOI
[Vol71] - “Algebraic -theory as an extraordinary homology theory on the category of associative rings with a unit”, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), p. 844-873
[Wal85] - “Algebraic -theory of spaces”, in Algebraic and geometric topology (New Brunswick, N.J., 1983), Lect. Notes in Math., vol. 1126, Springer, Berlin, 1985, p. 318-419 | DOI | MR
[Wei97] - “The Hodge filtration and cyclic homology”, -Theory 12 (1997) no. 2, p. 145-164 | DOI | MR
[Wod89] - “Excision in cyclic homology and in rational algebraic -theory”, Ann. of Math. (2) 129 (1989) no. 3, p. 591-639 | DOI | MR | Zbl
Cité par Sources :