Nous étudions les involutions anti-holomorphes des espaces de modules de -fibrés de Higgs sur une surface de Riemann compacte , où est un groupe de Lie semi-simple complexe. Ces involutions sont définies en fixant des involutions anti-holomorphes à la fois sur et . Nous en analysons le lieu des points fixes dans l’espace de modules et leur relation avec les représentation du groupe fondamental orbifold de muni de l’involution anti-holomorphe. Nous étudions aussi la relation avec les « branes ». Ceci généralise les travaux de Biswas–García-Prada–Hurtubise et Baraglia–Schaposnik.
We study anti-holomorphic involutions of the moduli space of -Higgs bundles over a compact Riemann surface , where is a complex semisimple Lie group. These involutions are defined by fixing anti-holomorphic involutions on both and . We analyze the fixed point locus in the moduli space and their relation with representations of the orbifold fundamental group of equipped with the anti-holomorphic involution. We also study the relation with branes. This generalizes work by Biswas–García-Prada–Hurtubise and Baraglia–Schaposnik.
Accepté le :
DOI : 10.5802/jep.16
Keywords: Higgs $G$-bundle, reality condition, branes, character variety.
Mot clés : $G$-fibré de Higgs, condition de réalité, « branes », variétés caractères.
Indranil Biswas 1 ; Oscar García-Prada 2
@article{JEP_2015__2__35_0, author = {Indranil Biswas and Oscar Garc{\'\i}a-Prada}, title = {Anti-holomorphic involutions of the~moduli~spaces of {Higgs} bundles}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {35--54}, publisher = {\'Ecole polytechnique}, volume = {2}, year = {2015}, doi = {10.5802/jep.16}, mrnumber = {3326004}, zbl = {1333.14032}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.16/} }
TY - JOUR AU - Indranil Biswas AU - Oscar García-Prada TI - Anti-holomorphic involutions of the moduli spaces of Higgs bundles JO - Journal de l’École polytechnique — Mathématiques PY - 2015 SP - 35 EP - 54 VL - 2 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.16/ DO - 10.5802/jep.16 LA - en ID - JEP_2015__2__35_0 ER -
%0 Journal Article %A Indranil Biswas %A Oscar García-Prada %T Anti-holomorphic involutions of the moduli spaces of Higgs bundles %J Journal de l’École polytechnique — Mathématiques %D 2015 %P 35-54 %V 2 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.16/ %R 10.5802/jep.16 %G en %F JEP_2015__2__35_0
Indranil Biswas; Oscar García-Prada. Anti-holomorphic involutions of the moduli spaces of Higgs bundles. Journal de l’École polytechnique — Mathématiques, Tome 2 (2015), pp. 35-54. doi : 10.5802/jep.16. https://jep.centre-mersenne.org/articles/10.5802/jep.16/
[1] - “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc. 85 (1957), p. 181-207 | DOI | MR | Zbl
[2] - “Classification of the automorphism and isometry groups of Higgs bundle moduli spaces” (2014), arXiv:1411.2228 | Zbl
[3] - “Real structures on moduli spaces of Higgs bundles”, to appear in Adv. Theo. Math. Phys. | DOI | Zbl
[4] - “Higgs bundles and -branes”, Comm. Math. Phys. 331 (2014) no. 3, p. 1271-1300 | DOI | MR | Zbl
[5] - “Higgs bundles on compact Kähler manifolds”, Ann. Inst. Fourier (Grenoble) 64 (2014), p. 2527-2562 | DOI | Numdam | Zbl
[6] - “A Torelli theorem for moduli spaces of principal bundles over a curve”, Ann. Inst. Fourier (Grenoble) 62 (2012) no. 1, p. 87-106 | DOI | Numdam | MR | Zbl
[7] - “Yang-Mills equation for stable Higgs sheaves”, Internat. J. Math. 20 (2009) no. 5, p. 541-556 | DOI | MR | Zbl
[8] - “Relative Hitchin-Kobayashi correspondences for principal pairs”, Q. J. Math. 54 (2003) no. 2, p. 171-208 | DOI | MR | Zbl
[9] - “Les groupes réels simples, finis et continus”, Ann. Sci. École Norm. Sup. 31 (1914), p. 263-355 | DOI | Numdam | Zbl
[10] - “Flat -bundles with canonical metrics”, J. Differential Geom. 28 (1988) no. 3, p. 361-382 | DOI | MR | Zbl
[11] - “Twisted harmonic maps and the self-duality equations”, Proc. London Math. Soc. (3) 55 (1987) no. 1, p. 127-131 | DOI | MR | Zbl
[12] - “Involutions of the moduli space of -Higgs bundles and real forms”, in Vector bundles and low codimensional subvarieties: state of the art and recent developments, Quad. Mat., vol. 21, Dept. Math., Seconda Univ. Napoli, Caserta, 2007, p. 219-238 | MR
[13] - “Higgs bundles and surface group representations”, in Moduli spaces and vector bundles, London Math. Soc. Lecture Note Ser., vol. 359, Cambridge Univ. Press, Cambridge, 2009, p. 265-310 | DOI | MR | Zbl
[14] - “The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations” (2009), arXiv:0909.4487
[15] - “Involutions of Higgs bundle moduli spaces”, in preparation
[16] - “The symplectic nature of fundamental groups of surfaces”, Advances in Math. 54 (1984) no. 2, p. 200-225 | DOI | MR | Zbl
[17] - “The self-duality equations on a Riemann surface”, Proc. London Math. Soc. (3) 55 (1987) no. 1, p. 59-126 | DOI | MR | Zbl
[18] - “Higgs bundles and characteristic classes” (2013), arXiv:1308.4603
[19] - “Hitchin’s equations on a nonorientable manifold” (2012), arXiv:1211.0746 | Zbl
[20] - “Electric-magnetic duality and the geometric Langlands program”, Commun. Number Theory Phys. 1 (2007) no. 1, p. 1-236 | DOI | MR | Zbl
[21] - Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987 | MR | Zbl
[22] - “Sur les groupes de Lie compacts non connexes”, Comment. Math. Helv. 31 (1956), p. 41-89 | DOI | MR | Zbl
[23] - “Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization”, J. Amer. Math. Soc. 1 (1988) no. 4, p. 867-918 | DOI | MR | Zbl
[24] - “Higgs bundles and local systems”, Publ. Math. Inst. Hautes Études Sci. (1992) no. 75, p. 5-95 | DOI | Numdam | MR | Zbl
[25] - “Moduli of representations of the fundamental group of a smooth projective variety. II”, Publ. Math. Inst. Hautes Études Sci. (1994) no. 80, p. 5-79 | DOI | Numdam | MR
Cité par Sources :