[Ensembles de temps de transfert avec petites densités]
Dans cet article, nous introduisons et discutons plusieurs notions de doublement pour des actions préservant la mesure sur un groupe abélien dénombrable
In this paper we introduce and discuss various notions of doubling for measure-preserving actions of a countable abelian group
Accepté le :
Publié le :
DOI : 10.5802/jep.147
Keywords: Return times, inverse theorems, sumsets
Mots-clés : Temps de retour, théorèmes inverses, sommes d’ensembles
Michael Björklund 1 ; Alexander Fish 2 ; Ilya D. Shkredov 3

@article{JEP_2021__8__311_0, author = {Michael Bj\"orklund and Alexander Fish and Ilya D. Shkredov}, title = {Sets of transfer times with small densities}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {311--329}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.147}, mrnumber = {4218160}, zbl = {07315958}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.147/} }
TY - JOUR AU - Michael Björklund AU - Alexander Fish AU - Ilya D. Shkredov TI - Sets of transfer times with small densities JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 311 EP - 329 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.147/ DO - 10.5802/jep.147 LA - en ID - JEP_2021__8__311_0 ER -
%0 Journal Article %A Michael Björklund %A Alexander Fish %A Ilya D. Shkredov %T Sets of transfer times with small densities %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 311-329 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.147/ %R 10.5802/jep.147 %G en %F JEP_2021__8__311_0
Michael Björklund; Alexander Fish; Ilya D. Shkredov. Sets of transfer times with small densities. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 311-329. doi : 10.5802/jep.147. https://jep.centre-mersenne.org/articles/10.5802/jep.147/
[1] - “Approximate invariance for ergodic actions of amenable groups”, Discrete Anal. (2019), article ID 6, 56 pages | DOI | MR | Zbl
[2] - “Ergodic theorems along sequences and Hardy fields”, Proc. Nat. Acad. Sci. U.S.A. 93 (1996) no. 16, p. 8205-8207 | DOI | MR | Zbl
[3] - “On the maximal ergodic theorem for certain subsets of the integers”, Israel J. Math. 61 (1988) no. 1, p. 39-72 | DOI | MR | Zbl
[4] - “Abschätzung der asymptotischen Dichte von Summenmengen”, Math. Z. 58 (1953), p. 459-484 | DOI | Zbl
[5] - “Summenmengen in lokalkompakten abelschen Gruppen”, Math. Z. 66 (1956), p. 88-110 | DOI | MR | Zbl
[6] - “Natural extensions and mixing for semi-group actions”, Publ. Inst. Rech. Math. Rennes 2 (1995), article ID 7, 10 pages | MR
- - “Direct and inverse results for popular differences in trees of positive dimension”, Ergodic Theory and Dynamical Systems 44 (2024) no. 2, p. 481-508 | DOI:10.1017/etds.2023.18 | Zbl:1535.37006
Cité par 1 document. Sources : zbMATH