Homological support of big objects in tensor-triangulated categories
Journal de l’École polytechnique — Mathématiques, Volume 7 (2020), pp. 1069-1088.

Using homological residue fields, we define supports for big objects in tensor-triangulated categories and prove a tensor-product formula.

À l’aide des corps résiduels homologiques, nous définissons le support des grands objets dans les catégories triangulées tensorielles et prouvons une formule pour le support du produit tensoriel.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.135
Classification: 18D99, 20J05, 55U35
Keywords: Tensor-triangular geometry, homological residue field, big support
Mot clés : Géométrie triangulée-tensorielle, corps résiduels homologiques, support

Paul Balmer 1

1 Mathematics Department, UCLA, Los Angeles, CA 90095-1555, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2020__7__1069_0,
     author = {Paul Balmer},
     title = {Homological support of big objects in~tensor-triangulated categories},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1069--1088},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     doi = {10.5802/jep.135},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.135/}
}
TY  - JOUR
AU  - Paul Balmer
TI  - Homological support of big objects in tensor-triangulated categories
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2020
SP  - 1069
EP  - 1088
VL  - 7
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.135/
DO  - 10.5802/jep.135
LA  - en
ID  - JEP_2020__7__1069_0
ER  - 
%0 Journal Article
%A Paul Balmer
%T Homological support of big objects in tensor-triangulated categories
%J Journal de l’École polytechnique — Mathématiques
%D 2020
%P 1069-1088
%V 7
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.135/
%R 10.5802/jep.135
%G en
%F JEP_2020__7__1069_0
Paul Balmer. Homological support of big objects in tensor-triangulated categories. Journal de l’École polytechnique — Mathématiques, Volume 7 (2020), pp. 1069-1088. doi : 10.5802/jep.135. https://jep.centre-mersenne.org/articles/10.5802/jep.135/

[Bal05] P. Balmer - “The spectrum of prime ideals in tensor triangulated categories”, J. reine angew. Math. 588 (2005), p. 149-168 | DOI | MR | Zbl

[Bal18] P. Balmer - “On the surjectivity of the map of spectra associated to a tensor-triangulated functor”, Bull. London Math. Soc. 50 (2018) no. 3, p. 487-495 | DOI | MR | Zbl

[Bal19] P. Balmer - “A guide to tensor-triangular classification”, in Handbook of homotopy theory (H. Miller, ed.), Chapman and Hall/CRC, 2019, Available on the author’s web page

[Bal20] P. Balmer - “Nilpotence theorems via homological residue fields”, Tunis. J. Math. 2 (2020) no. 2, p. 359-378 | DOI | MR | Zbl

[BC20] P. Balmer & J. Cameron - “Computing homological residue fields in algebra and topology”, 2020 | arXiv

[BDS16] P. Balmer, I. Dell’Ambrogio & B. Sanders - “Grothendieck-Neeman duality and the Wirthmüller isomorphism”, Compositio Math. 152 (2016) no. 8, p. 1740-1776 | DOI | Zbl

[BF11] P. Balmer & G. Favi - “Generalized tensor idempotents and the telescope conjecture”, Proc. London Math. Soc. (3) 102 (2011) no. 6, p. 1161-1185 | DOI | MR | Zbl

[BIK08] D. J. Benson, S. B. Iyengar & H. Krause - “Local cohomology and support for triangulated categories”, Ann. Sci. École Norm. Sup. (4) 41 (2008) no. 4, p. 573-619 | DOI | Numdam | MR | Zbl

[BIK11a] D. J. Benson, S. B. Iyengar & H. Krause - “Stratifying modular representations of finite groups”, Ann. of Math. (2) 174 (2011) no. 3, p. 1643-1684 | DOI | MR | Zbl

[BIK11b] D. J. Benson, S. B. Iyengar & H. Krause - “Stratifying triangulated categories”, J. Topology 4 (2011) no. 3, p. 641-666 | DOI | MR | Zbl

[BIK12a] D. J. Benson, S. B. Iyengar & H. Krause - “Colocalizing subcategories and cosupport”, J. reine angew. Math. 673 (2012), p. 161-207 | DOI | MR | Zbl

[BIK12b] D. J. Benson, S. B. Iyengar & H. Krause - Representations of finite groups: local cohomology and support, Oberwolfach Seminars, vol. 43, Birkhäuser/Springer, Basel, 2012 | DOI | MR | Zbl

[BIK13] D. J. Benson, S. B. Iyengar & H. Krause - “Module categories for group algebras over commutative rings”, J. K-Theory 11 (2013) no. 2, p. 297-329, With an appendix by Greg Stevenson | DOI | MR | Zbl

[BKS19] P. Balmer, H. Krause & G. Stevenson - “Tensor-triangular fields: ruminations”, Selecta Math. (N.S.) 25 (2019) no. 1, article ID 13, 36 pages | DOI | MR | Zbl

[BKS20] P. Balmer, H. Krause & G. Stevenson - “The frame of smashing tensor-ideals”, Math. Proc. Cambridge Philos. Soc. 168 (2020) no. 2, p. 323-343 | DOI | MR | Zbl

[DP08] W. G. Dwyer & J. H. Palmieri - “The Bousfield lattice for truncated polynomial algebras”, Homology Homotopy Appl. 10 (2008) no. 1, p. 413-436 | DOI | MR | Zbl

[HPS97] M. Hovey, J. H. Palmieri & N. P. Strickland - Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., vol. 128, no. 610, American Mathematical Society, Providence, RI, 1997 | DOI | Zbl

[HS99] M. Hovey & N. P. Strickland - Morava K-theories and localisation, Mem. Amer. Math. Soc., vol. 139, no. 666, American Mathematical Society, Providence, RI, 1999 | DOI | Zbl

[Kra00] H. Krause - “Smashing subcategories and the telescope conjecture—an algebraic approach”, Invent. Math. 139 (2000) no. 1, p. 99-133 | DOI | MR | Zbl

[Lur17] J. Lurie - “Higher algebra” (2017), Online at http://www.math.ias.edu/~lurie/ | Zbl

[Nee96] A. Neeman - “The Grothendieck duality theorem via Bousfield’s techniques and Brown representability”, J. Amer. Math. Soc. 9 (1996) no. 1, p. 205-236 | DOI | MR | Zbl

[Nee00] A. Neeman - “Oddball Bousfield classes”, Topology 39 (2000) no. 5, p. 931-935 | DOI | MR | Zbl

[Nee01] A. Neeman - Triangulated categories, Annals of Math. Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001 | DOI | MR | Zbl

[Ste13] G. Stevenson - “Support theory via actions of tensor triangulated categories”, J. reine angew. Math. 681 (2013), p. 219-254 | DOI | MR | Zbl

Cited by Sources: