Using homological residue fields, we define supports for big objects in tensor-triangulated categories and prove a tensor-product formula.
À l’aide des corps résiduels homologiques, nous définissons le support des grands objets dans les catégories triangulées tensorielles et prouvons une formule pour le support du produit tensoriel.
Accepted:
Published online:
Keywords: Tensor-triangular geometry, homological residue field, big support
Mot clés : Géométrie triangulée-tensorielle, corps résiduels homologiques, support
Paul Balmer 1
@article{JEP_2020__7__1069_0, author = {Paul Balmer}, title = {Homological support of big objects in~tensor-triangulated categories}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1069--1088}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.135}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.135/} }
TY - JOUR AU - Paul Balmer TI - Homological support of big objects in tensor-triangulated categories JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 1069 EP - 1088 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.135/ DO - 10.5802/jep.135 LA - en ID - JEP_2020__7__1069_0 ER -
%0 Journal Article %A Paul Balmer %T Homological support of big objects in tensor-triangulated categories %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 1069-1088 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.135/ %R 10.5802/jep.135 %G en %F JEP_2020__7__1069_0
Paul Balmer. Homological support of big objects in tensor-triangulated categories. Journal de l’École polytechnique — Mathématiques, Volume 7 (2020), pp. 1069-1088. doi : 10.5802/jep.135. https://jep.centre-mersenne.org/articles/10.5802/jep.135/
[Bal05] - “The spectrum of prime ideals in tensor triangulated categories”, J. reine angew. Math. 588 (2005), p. 149-168 | DOI | MR | Zbl
[Bal18] - “On the surjectivity of the map of spectra associated to a tensor-triangulated functor”, Bull. London Math. Soc. 50 (2018) no. 3, p. 487-495 | DOI | MR | Zbl
[Bal19] - “A guide to tensor-triangular classification”, in Handbook of homotopy theory (H. Miller, ed.), Chapman and Hall/CRC, 2019, Available on the author’s web page
[Bal20] - “Nilpotence theorems via homological residue fields”, Tunis. J. Math. 2 (2020) no. 2, p. 359-378 | DOI | MR | Zbl
[BC20] - “Computing homological residue fields in algebra and topology”, 2020 | arXiv
[BDS16] - “Grothendieck-Neeman duality and the Wirthmüller isomorphism”, Compositio Math. 152 (2016) no. 8, p. 1740-1776 | DOI | Zbl
[BF11] - “Generalized tensor idempotents and the telescope conjecture”, Proc. London Math. Soc. (3) 102 (2011) no. 6, p. 1161-1185 | DOI | MR | Zbl
[BIK08] - “Local cohomology and support for triangulated categories”, Ann. Sci. École Norm. Sup. (4) 41 (2008) no. 4, p. 573-619 | DOI | Numdam | MR | Zbl
[BIK11a] - “Stratifying modular representations of finite groups”, Ann. of Math. (2) 174 (2011) no. 3, p. 1643-1684 | DOI | MR | Zbl
[BIK11b] - “Stratifying triangulated categories”, J. Topology 4 (2011) no. 3, p. 641-666 | DOI | MR | Zbl
[BIK12a] - “Colocalizing subcategories and cosupport”, J. reine angew. Math. 673 (2012), p. 161-207 | DOI | MR | Zbl
[BIK12b] - Representations of finite groups: local cohomology and support, Oberwolfach Seminars, vol. 43, Birkhäuser/Springer, Basel, 2012 | DOI | MR | Zbl
[BIK13] - “Module categories for group algebras over commutative rings”, J. K-Theory 11 (2013) no. 2, p. 297-329, With an appendix by Greg Stevenson | DOI | MR | Zbl
[BKS19] - “Tensor-triangular fields: ruminations”, Selecta Math. (N.S.) 25 (2019) no. 1, article ID 13, 36 pages | DOI | MR | Zbl
[BKS20] - “The frame of smashing tensor-ideals”, Math. Proc. Cambridge Philos. Soc. 168 (2020) no. 2, p. 323-343 | DOI | MR | Zbl
[DP08] - “The Bousfield lattice for truncated polynomial algebras”, Homology Homotopy Appl. 10 (2008) no. 1, p. 413-436 | DOI | MR | Zbl
[HPS97] - Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., vol. 128, no. 610, American Mathematical Society, Providence, RI, 1997 | DOI | Zbl
[HS99] - Morava -theories and localisation, Mem. Amer. Math. Soc., vol. 139, no. 666, American Mathematical Society, Providence, RI, 1999 | DOI | Zbl
[Kra00] - “Smashing subcategories and the telescope conjecture—an algebraic approach”, Invent. Math. 139 (2000) no. 1, p. 99-133 | DOI | MR | Zbl
[Lur17] - “Higher algebra” (2017), Online at http://www.math.ias.edu/~lurie/ | Zbl
[Nee96] - “The Grothendieck duality theorem via Bousfield’s techniques and Brown representability”, J. Amer. Math. Soc. 9 (1996) no. 1, p. 205-236 | DOI | MR | Zbl
[Nee00] - “Oddball Bousfield classes”, Topology 39 (2000) no. 5, p. 931-935 | DOI | MR | Zbl
[Nee01] - Triangulated categories, Annals of Math. Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001 | DOI | MR | Zbl
[Ste13] - “Support theory via actions of tensor triangulated categories”, J. reine angew. Math. 681 (2013), p. 219-254 | DOI | MR | Zbl
Cited by Sources: