Homological support of big objects in tensor-triangulated categories
[Support homologique des grands objets dans les catégories triangulées tensorielles]
Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1069-1088.

À l’aide des corps résiduels homologiques, nous définissons le support des grands objets dans les catégories triangulées tensorielles et prouvons une formule pour le support du produit tensoriel.

Using homological residue fields, we define supports for big objects in tensor-triangulated categories and prove a tensor-product formula.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.135
Classification : 18D99, 20J05, 55U35
Keywords: Tensor-triangular geometry, homological residue field, big support
Mot clés : Géométrie triangulée-tensorielle, corps résiduels homologiques, support

Paul Balmer 1

1 Mathematics Department, UCLA, Los Angeles, CA 90095-1555, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2020__7__1069_0,
     author = {Paul Balmer},
     title = {Homological support of big objects in~tensor-triangulated categories},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1069--1088},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     doi = {10.5802/jep.135},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.135/}
}
TY  - JOUR
AU  - Paul Balmer
TI  - Homological support of big objects in tensor-triangulated categories
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2020
SP  - 1069
EP  - 1088
VL  - 7
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.135/
DO  - 10.5802/jep.135
LA  - en
ID  - JEP_2020__7__1069_0
ER  - 
%0 Journal Article
%A Paul Balmer
%T Homological support of big objects in tensor-triangulated categories
%J Journal de l’École polytechnique — Mathématiques
%D 2020
%P 1069-1088
%V 7
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.135/
%R 10.5802/jep.135
%G en
%F JEP_2020__7__1069_0
Paul Balmer. Homological support of big objects in tensor-triangulated categories. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1069-1088. doi : 10.5802/jep.135. https://jep.centre-mersenne.org/articles/10.5802/jep.135/

[Bal05] P. Balmer - “The spectrum of prime ideals in tensor triangulated categories”, J. reine angew. Math. 588 (2005), p. 149-168 | DOI | MR | Zbl

[Bal18] P. Balmer - “On the surjectivity of the map of spectra associated to a tensor-triangulated functor”, Bull. London Math. Soc. 50 (2018) no. 3, p. 487-495 | DOI | MR | Zbl

[Bal19] P. Balmer - “A guide to tensor-triangular classification”, in Handbook of homotopy theory (H. Miller, ed.), Chapman and Hall/CRC, 2019, Available on the author’s web page

[Bal20] P. Balmer - “Nilpotence theorems via homological residue fields”, Tunis. J. Math. 2 (2020) no. 2, p. 359-378 | DOI | MR | Zbl

[BC20] P. Balmer & J. Cameron - “Computing homological residue fields in algebra and topology”, 2020 | arXiv

[BDS16] P. Balmer, I. Dell’Ambrogio & B. Sanders - “Grothendieck-Neeman duality and the Wirthmüller isomorphism”, Compositio Math. 152 (2016) no. 8, p. 1740-1776 | DOI | Zbl

[BF11] P. Balmer & G. Favi - “Generalized tensor idempotents and the telescope conjecture”, Proc. London Math. Soc. (3) 102 (2011) no. 6, p. 1161-1185 | DOI | MR | Zbl

[BIK08] D. J. Benson, S. B. Iyengar & H. Krause - “Local cohomology and support for triangulated categories”, Ann. Sci. École Norm. Sup. (4) 41 (2008) no. 4, p. 573-619 | DOI | Numdam | MR | Zbl

[BIK11a] D. J. Benson, S. B. Iyengar & H. Krause - “Stratifying modular representations of finite groups”, Ann. of Math. (2) 174 (2011) no. 3, p. 1643-1684 | DOI | MR | Zbl

[BIK11b] D. J. Benson, S. B. Iyengar & H. Krause - “Stratifying triangulated categories”, J. Topology 4 (2011) no. 3, p. 641-666 | DOI | MR | Zbl

[BIK12a] D. J. Benson, S. B. Iyengar & H. Krause - “Colocalizing subcategories and cosupport”, J. reine angew. Math. 673 (2012), p. 161-207 | DOI | MR | Zbl

[BIK12b] D. J. Benson, S. B. Iyengar & H. Krause - Representations of finite groups: local cohomology and support, Oberwolfach Seminars, vol. 43, Birkhäuser/Springer, Basel, 2012 | DOI | MR | Zbl

[BIK13] D. J. Benson, S. B. Iyengar & H. Krause - “Module categories for group algebras over commutative rings”, J. K-Theory 11 (2013) no. 2, p. 297-329, With an appendix by Greg Stevenson | DOI | MR | Zbl

[BKS19] P. Balmer, H. Krause & G. Stevenson - “Tensor-triangular fields: ruminations”, Selecta Math. (N.S.) 25 (2019) no. 1, article ID 13, 36 pages | DOI | MR | Zbl

[BKS20] P. Balmer, H. Krause & G. Stevenson - “The frame of smashing tensor-ideals”, Math. Proc. Cambridge Philos. Soc. 168 (2020) no. 2, p. 323-343 | DOI | MR | Zbl

[DP08] W. G. Dwyer & J. H. Palmieri - “The Bousfield lattice for truncated polynomial algebras”, Homology Homotopy Appl. 10 (2008) no. 1, p. 413-436 | DOI | MR | Zbl

[HPS97] M. Hovey, J. H. Palmieri & N. P. Strickland - Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., vol. 128, no. 610, American Mathematical Society, Providence, RI, 1997 | DOI | Zbl

[HS99] M. Hovey & N. P. Strickland - Morava K-theories and localisation, Mem. Amer. Math. Soc., vol. 139, no. 666, American Mathematical Society, Providence, RI, 1999 | DOI | Zbl

[Kra00] H. Krause - “Smashing subcategories and the telescope conjecture—an algebraic approach”, Invent. Math. 139 (2000) no. 1, p. 99-133 | DOI | MR | Zbl

[Lur17] J. Lurie - “Higher algebra” (2017), Online at http://www.math.ias.edu/~lurie/ | Zbl

[Nee96] A. Neeman - “The Grothendieck duality theorem via Bousfield’s techniques and Brown representability”, J. Amer. Math. Soc. 9 (1996) no. 1, p. 205-236 | DOI | MR | Zbl

[Nee00] A. Neeman - “Oddball Bousfield classes”, Topology 39 (2000) no. 5, p. 931-935 | DOI | MR | Zbl

[Nee01] A. Neeman - Triangulated categories, Annals of Math. Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001 | DOI | MR | Zbl

[Ste13] G. Stevenson - “Support theory via actions of tensor triangulated categories”, J. reine angew. Math. 681 (2013), p. 219-254 | DOI | MR | Zbl

Cité par Sources :