Soit un domaine borné fortement -pseudoconvexe () et une mesure de Borel positive de masse finie sur . Nous démontrons que l’équation hessienne complexe sur admet une solution Hölder continue sur pour une donnée au bord Hölder continue si (et seulement si) elle admet une sous-solution Hölder continue sur . L’étape principale dans la résolution du problème consiste à établir une nouvelle estimation capacitaire, qui montre que la mesure -hessienne complexe d’une fonction -sous-harmonique Hölder continue sur avec valeur au bord nulle est dominée par la capacité -hessienne par rapport à avec un exposant explicite .
Let be a bounded strongly -pseudoconvex domain () and a positive Borel measure with finite mass on . We solve the Hölder continuous subsolution problem for the complex Hessian equation on . Namely, we show that this equation admits a unique Hölder continuous solution on with given Hölder continuous boundary values if it admits a Hölder continuous subsolution on . The main step in solving the problem is to establish a new capacity estimate showing that the -Hessian measure of a Hölder continuous -subharmonic function on with zero boundary values is dominated by the -Hessian capacity with respect to with an (explicit) exponent .
Accepté le :
Publié le :
Keywords: Complex Monge-Ampère equations, complex Hessian equations, Dirichlet problem, obstacle problems, maximal subextension, capacity.
Mot clés : Équations de Monge-Ampère complexes, équations hessienne complexes, problème de Dirichlet, problèmes d’obstacle, sous-extension maximale, capacités hessiennes
Amel Benali 1 ; Ahmed Zeriahi 2
@article{JEP_2020__7__981_0, author = {Amel Benali and Ahmed Zeriahi}, title = {The {H\"older} continuous subsolution theorem for complex {Hessian} equations}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {981--1007}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.133}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.133/} }
TY - JOUR AU - Amel Benali AU - Ahmed Zeriahi TI - The Hölder continuous subsolution theorem for complex Hessian equations JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 981 EP - 1007 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.133/ DO - 10.5802/jep.133 LA - en ID - JEP_2020__7__981_0 ER -
%0 Journal Article %A Amel Benali %A Ahmed Zeriahi %T The Hölder continuous subsolution theorem for complex Hessian equations %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 981-1007 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.133/ %R 10.5802/jep.133 %G en %F JEP_2020__7__981_0
Amel Benali; Ahmed Zeriahi. The Hölder continuous subsolution theorem for complex Hessian equations. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 981-1007. doi : 10.5802/jep.133. https://jep.centre-mersenne.org/articles/10.5802/jep.133/
[AV10] - “Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds”, Israel J. Math. 176 (2010), p. 109-138 | DOI | Zbl
[BD12] - “Regularity of plurisubharmonic upper envelopes in big cohomology classes”, in Perspectives in analysis, geometry, and topology, Progress in Math., vol. 296, Birkhäuser/Springer, New York, 2012, p. 39-66 | DOI | Zbl
[Ber19] - “From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit”, Math. Z. 291 (2019) no. 1-2, p. 365-394 | DOI | Zbl
[Bre59] - “On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries”, Trans. Amer. Math. Soc. 91 (1959), p. 246-276 | DOI | Zbl
[BT76] - “The Dirichlet problem for a complex Monge-Ampère equation”, Invent. Math. 37 (1976) no. 1, p. 1-44 | DOI | Zbl
[BT82] - “A new capacity for plurisubharmonic functions”, Acta Math. 149 (1982) no. 1-2, p. 1-40 | DOI | Zbl
[Bło05] - “Weak solutions to the complex Hessian equation”, Ann. Inst. Fourier (Grenoble) 55 (2005) no. 5, p. 1735-1756 | DOI | Numdam | Zbl
[Ceg04] - “The general definition of the complex Monge-Ampère operator”, Ann. Inst. Fourier (Grenoble) 54 (2004) no. 1, p. 159-179 | DOI | Numdam | Zbl
[Cha16a] - Le problème de Dirichlet pour l’équation de Monge-Ampère complexe, Ph. D. Thesis, Université de Toulouse 3, 2016 | theses.fr
[Cha16b] - “Modulus of continuity of solutions to complex Hessian equations”, Internat. J. Math. 27 (2016) no. 1, article ID 1650003, 24 pages | DOI | Zbl
[CIL92] - “User’s guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc. (N.S.) 27 (1992) no. 1, p. 1-67 | DOI | Zbl
[CZ19] - “Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds”, Sci. China Math. 62 (2019) no. 2, p. 371-380 | DOI | Zbl
[DDG + 14] - “Hölder continuous solutions to Monge-Ampère equations”, J. Eur. Math. Soc. (JEMS) 16 (2014) no. 4, p. 619-647 | DOI | Zbl
[DGZ16] - “Open problems in pluripotential theory”, Complex Var. Elliptic Equ. 61 (2016) no. 7, p. 902-930 | DOI | Zbl
[DK14] - “A priori estimates for complex Hessian equations”, Anal. PDE 7 (2014) no. 1, p. 227-244 | DOI | Zbl
[EGZ09] - “Singular Kähler-Einstein metrics”, J. Amer. Math. Soc. 22 (2009) no. 3, p. 607-639 | DOI | Zbl
[EGZ11] - “Viscosity solutions to degenerate complex Monge-Ampère equations”, Comm. Pure Appl. Math. 64 (2011) no. 8, p. 1059-1094 | DOI | Zbl
[GKZ08] - “Hölder continuous solutions to Monge-Ampère equations”, Bull. London Math. Soc. 40 (2008) no. 6, p. 1070-1080 | DOI | Zbl
[GLZ19] - “Plurisubharmonic envelopes and supersolutions”, J. Differential Geom. 113 (2019) no. 2, p. 273-313 | DOI | Zbl
[GZ17] - Degenerate complex Monge-Ampère equations, EMS Tracts in Math., vol. 26, European Mathematical Society, Zürich, 2017 | DOI | Zbl
[KN20a] - “An inequality between complex hessian measures of Hölder continuous -subharmonic functions and capacity”, in Geometric analysis, Progress in Math., vol. 333, Birkhäuser, Cham, 2020, p. 157-166 | DOI | Zbl
[KN20b] - “A remark on the continuous subsolution problem for the complex Monge-Ampère equation”, Acta Math. Vietnam. 45 (2020) no. 1, p. 83-91 | DOI | Zbl
[Koł96] - “Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator”, Ann. Polon. Math. 65 (1996) no. 1, p. 11-21 | DOI | Zbl
[Koł05] - The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., vol. 178, no. 840, American Mathematical Society, Providence, RI, 2005 | DOI | Zbl
[Li04] - “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, Asian J. Math. 8 (2004) no. 1, p. 87-106 | DOI | Zbl
[LPT20] - “Stability and Hölder continuity of solutions to complex Monge-Ampère equations on compact hermitian manifolds”, 2020 | arXiv
[Lu12] - Équations hessiennes complexes, Ph. D. Thesis, Université de Toulouse 3, 2012 | theses.fr
[Lu13] - “Viscosity solutions to complex Hessian equations”, J. Funct. Anal. 264 (2013) no. 6, p. 1355-1379 | DOI | Zbl
[Lu15] - “A variational approach to complex Hessian equations in ”, J. Math. Anal. Appl. 431 (2015) no. 1, p. 228-259 | DOI | Zbl
[Ngu12] - “Subsolution theorem for the complex Hessian equation”, Univ. Iagel. Acta Math. 50 (2012), p. 69-88 | Zbl
[Ngu14] - “Hölder continuous solutions to complex Hessian equations”, Potential Anal. 41 (2014) no. 3, p. 887-902 | DOI | Zbl
[Ngu18] - “On the Hölder continuous subsolution problem for the complex Monge-Ampère equation”, Calc. Var. Partial Differential Equations 57 (2018) no. 1, article ID 8, 15 pages | DOI | Zbl
[Ngu20] - “On the Hölder continuous subsolution problem for the complex Monge-Ampère equation, II”, Anal. PDE 13 (2020) no. 2, p. 435-453 | DOI | Zbl
[Pli14] - “The smoothing of -subharmonic functions”, 2014 | arXiv
[SA13] - “Capacities and Hessians in the class of -subharmonic functions”, Dokl. Akad. Nauk 448 (2013) no. 5, p. 515-517 | DOI | Zbl
[Sic81] - “Extremal plurisubharmonic functions in ”, Ann. Polon. Math. 39 (1981), p. 175-211 | DOI | Zbl
[SW08] - “On the convergence and singularities of the -flow with applications to the Mabuchi energy”, Comm. Pure Appl. Math. 61 (2008) no. 2, p. 210-229 | DOI | Zbl
[Tos18] - “Regularity of envelopes in Kähler classes”, Math. Res. Lett. 25 (2018) no. 1, p. 281-289 | DOI | Zbl
[Wal69] - “Continuity of envelopes of plurisubharmonic functions”, J. Math. Mech. 18 (1968/1969), p. 143-148 | DOI | Zbl
[Zer20] - “Remarks on the modulus of continuity of subharmonic functions” (2020), Preprint available at http://www.math.univ-toulouse.fr/~zeriahi
[ÅCK + 09] - “Partial pluricomplex energy and integrability exponents of plurisubharmonic functions”, Adv. Math. 222 (2009) no. 6, p. 2036-2058 | DOI | Zbl
Cité par Sources :