Cet article propose une nouvelle approche de l’homogénéisation des équations de transport linéaires induites par une suite uniformément bornée de champs de vecteurs et dont les solutions coïncident en avec une suite bornée de pour un certain . En supposant que la suite est compacte dans ( exposant conjugué de ) pour un champ de gradients borné dans et qu’il existe une suite uniformément bornée telle que est à divergence nulle si ou est un produit vectoriel de gradients bornés dans si , on montre que la suite converge faiblement vers une solution d’une équation de transport. Il s’avère que la compacité de remplace la condition d’ergodicité du cas périodique bidimensionnel classique et permet de traiter des champs de vecteurs non périodiques en toute dimension. Le résultat d’homogénéisation est illustré par différents exemples généraux.
The paper is devoted to a new approach of the homogenization of linear transport equations induced by a uniformly bounded sequence of vector fields , the solutions of which agree at with a bounded sequence of for some . Assuming that the sequence is compact in ( conjugate of ) for some gradient field bounded in , and that there exists a uniformly bounded sequence such that is divergence free if or is a cross product of bounded gradients in if , we prove that the sequence converges weakly to a solution to a linear transport equation. It turns out that the compactness of is a substitute to the ergodic assumption of the classical two-dimensional periodic case, and allows us to deal with non-periodic vector fields in any dimension. The homogenization result is illustrated by various and general examples.
Accepté le :
Publié le :
DOI : 10.5802/jep.122
Keywords: Homogenization, transport equation, dynamic flow, rectification
Mot clés : Homogénéisation, équation de transport, flot dynamique, redressement
Marc Briane 1
@article{JEP_2020__7__479_0, author = {Marc Briane}, title = {Homogenization of linear transport equations. {A} new approach}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {479--495}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.122}, zbl = {07179026}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.122/} }
TY - JOUR AU - Marc Briane TI - Homogenization of linear transport equations. A new approach JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 479 EP - 495 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.122/ DO - 10.5802/jep.122 LA - en ID - JEP_2020__7__479_0 ER -
%0 Journal Article %A Marc Briane %T Homogenization of linear transport equations. A new approach %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 479-495 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.122/ %R 10.5802/jep.122 %G en %F JEP_2020__7__479_0
Marc Briane. Homogenization of linear transport equations. A new approach. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 479-495. doi : 10.5802/jep.122. https://jep.centre-mersenne.org/articles/10.5802/jep.122/
[1] - “Homogénéisation d’équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux”, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) no. 5, p. 397-417 | DOI | Zbl
[2] - “Homogénéisation par décomposition en fréquences d’une équation de transport dans ”, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) no. 1, p. 37-40
[3] - “Homogenisation of parametrised families of hyperbolic problems”, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) no. 3-4, p. 199-221 | DOI | MR | Zbl
[4] - “Remarks on some linear hyperbolic equations with oscillatory coefficients”, in Third International Conference on Hyperbolic Problems, Vol. I, II (Uppsala, 1990), Studentlitteratur, Lund, 1991, p. 119-130 | Zbl
[5] - “Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a non-ergodic approach”, SIAM J. Appl. Dyn. Syst. 18 (2019) no. 4, p. 1846-1866 | DOI | MR | Zbl
[6] - “Sugli elementi uniti delle trasformazioni funzionali: Un teorema di esistenza e di unicità ed alcune sue applicazioni”, Rend. Sem. Mat. Univ. Padova 3 (1932), p. 1-15 | Numdam | Zbl
[7] - Direct methods in the calculus of variations, Applied Math. Sci., vol. 78, Springer, New York, 2008 | MR | Zbl
[8] - “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. math. 98 (1989) no. 3, p. 511-547 | DOI | MR | Zbl
[9] - “A mathematical theory of planar particle channeling in crystals”, Phys. D 146 (2000) no. 1-4, p. 341-366 | DOI | MR | Zbl
[10] - “The averaging method for perturbations of mixing flows”, Ergodic Theory Dynam. Systems 17 (1997) no. 6, p. 1339-1358 | DOI | MR | Zbl
[11] - “Multiphase averaging for generalized flows on manifolds”, Ergodic Theory Dynam. Systems 14 (1994) no. 1, p. 53-67 | DOI | MR | Zbl
[12] - “Moyennisation des champs de vecteurs et EDP”, in Journées “Équations aux Dérivées Partielles” (Saint Jean de Monts, 1990), École Polytechnique, Palaiseau, 1990, Exp. no. XVI | Numdam | Zbl
[13] - “Perturbations de systèmes dynamiques et moyennisation en vitesse des EDP”, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) no. 2, p. 115-120 | MR | Zbl
[14] - Differential equations, dynamical systems, and an introduction to chaos, Elsevier/Academic Press, Amsterdam, 2013 | DOI | Zbl
[15] - “Homogenization of linear transport equations with oscillatory vector fields”, SIAM J. Appl. Math. 52 (1992) no. 1, p. 34-45 | DOI | MR | Zbl
[16] - “A surprising higher integrability property of mappings with positive determinant”, Bull. Amer. Math. Soc. (N.S.) 21 (1989) no. 2, p. 245-248 | DOI | MR | Zbl
[17] - “Compacité par compensation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978) no. 3, p. 489-507 | Numdam | Zbl
[18] - “Applications holomorphes injectives à jacobien constant de deux variables”, J. Math. Kyoto Univ. 26 (1986) no. 4, p. 697-709 | DOI | MR | Zbl
[19] - Methods of modern mathematical physics, I. Functional analysis, Academic Press, Inc., New York, 1980 | Zbl
[20] - Introduction to ergodic theory, Princeton University Press, Princeton, NJ, 1976 | Zbl
[21] - “Nonlocal effects induced by homogenization”, in Partial differential equations and the calculus of variations, Vol. II, Progr. Nonlinear Differential Equations Appl., vol. 2, Birkhäuser Boston, Boston, MA, 1989, p. 925-938 | MR | Zbl
[22] - “Homogenization of two-dimensional linear flows with integral invariance”, SIAM J. Appl. Math. 57 (1997) no. 5, p. 1390-1405 | DOI | MR | Zbl
Cité par Sources :