Nous établissons la conjecture de Hodge entière réelle pour les 1-cycles pour diverses classes de solides uniréglés (fibrés en coniques, solides de Fano sans points réels, certaines fibrations en del Pezzo) et pour les fibrés en coniques sur des bases de dimension supérieure satisfaisant elles-mêmes la conjecture de Hodge entière réelle pour les 1-cycles. De plus, nous montrons que les solides rationnellement connexes sur les corps réels clos non archimédiens ne vérifient pas en général la conjecture de Hodge entière réelle et que sur de tels corps, le théorème EPT de Bröcker reste vrai pour les surfaces simplement connexes de genre géométrique nul mais tombe en défaut pour certaines surfaces K3.
We establish the real integral Hodge conjecture for -cycles on various classes of uniruled threefolds (conic bundles, Fano threefolds with no real point, some del Pezzo fibrations) and on conic bundles over higher-dimensional bases which themselves satisfy the real integral Hodge conjecture for -cycles. In addition, we show that rationally connected threefolds over non-archimedean real closed fields do not satisfy the real integral Hodge conjecture in general and that over such fields, Bröcker’s EPT theorem remains true for simply connected surfaces of geometric genus zero but fails for some K3 surfaces.
Accepté le :
Publié le :
DOI : 10.5802/jep.120
Keywords: Real algebraic geometry, integral Hodge conjecture, real closed fields
Mot clés : Géométrie algébrique réelle, conjecture de Hodge entière, corps réels clos
Olivier Benoist 1 ; Olivier Wittenberg 2
@article{JEP_2020__7__373_0, author = {Olivier Benoist and Olivier Wittenberg}, title = {On the integral {Hodge} conjecture for real varieties, {II}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {373--429}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.120}, zbl = {07179024}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.120/} }
TY - JOUR AU - Olivier Benoist AU - Olivier Wittenberg TI - On the integral Hodge conjecture for real varieties, II JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 373 EP - 429 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.120/ DO - 10.5802/jep.120 LA - en ID - JEP_2020__7__373_0 ER -
%0 Journal Article %A Olivier Benoist %A Olivier Wittenberg %T On the integral Hodge conjecture for real varieties, II %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 373-429 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.120/ %R 10.5802/jep.120 %G en %F JEP_2020__7__373_0
Olivier Benoist; Olivier Wittenberg. On the integral Hodge conjecture for real varieties, II. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 373-429. doi : 10.5802/jep.120. https://jep.centre-mersenne.org/articles/10.5802/jep.120/
[AK77] - “Foundations of the theory of Fano schemes”, Compositio Math. 34 (1977) no. 1, p. 3-47 | Numdam | MR | Zbl
[AK85] - “A resolution theorem for homology cycles of real algebraic varieties”, Invent. math. 79 (1985) no. 3, p. 589-601 | DOI | MR | Zbl
[AK88] - “Polynomial equations of immersed surfaces”, Pacific J. Math. 131 (1988) no. 2, p. 209-217 | DOI | MR | Zbl
[Art73] - “Faisceaux constructibles, cohomologie d’une courbe algébrique”, in Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), Tome 3, Lect. Notes in Math., vol. 305, Springer-Verlag, Berlin, 1973, Exp. IX | Zbl
[Aud91] - The topology of torus actions on symplectic manifolds, Progress in Math., vol. 93, Birkhäuser Verlag, Basel, 1991 | MR | Zbl
[BCR98] - Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), vol. 36, Springer-Verlag, Berlin, 1998 | MR | Zbl
[Ben19] - “The period-index problem for real surfaces”, Publ. Math. Inst. Hautes Études Sci. 130 (2019), p. 63-110 | DOI | MR | Zbl
[BK03] - “On approximation of smooth submanifolds by nonsingular real algebraic subvarieties”, Ann. Sci. École Norm. Sup. (4) 36 (2003) no. 5, p. 685-690 | DOI | Numdam | MR | Zbl
[BLR90] - Néron models, Ergeb. Math. Grenzgeb. (3), vol. 21, Springer-Verlag, Berlin, 1990 | Zbl
[Bru87] - “Quotient spaces for semialgebraic equivalence relations”, Math. Z. 195 (1987) no. 1, p. 69-78 | DOI | MR | Zbl
[Brö80] - “Reelle Divisoren”, Arch. Math. (Basel) 35 (1980), p. 140-143 | DOI | MR | Zbl
[BT82] - “Remarks and counterexamples in the theory of real algebraic vector bundles and cycles”, in Real algebraic geometry and quadratic forms (Rennes, 1981), Lect. Notes in Math., vol. 959, Springer, Berlin, 1982, p. 198-211 | MR | Zbl
[BW18] - “On the integral Hodge conjecture for real varieties, I”, 2018, à paraître dans Invent. math. | arXiv
[Cas12] - “On the Picard number of divisors in Fano manifolds”, Ann. Sci. École Norm. Sup. (4) 45 (2012) no. 3, p. 363-403 | DOI | Numdam | MR | Zbl
[CK90] - Model theory, Studies in Logic and the Foundations of Math., vol. 73, North-Holland Publishing Co., Amsterdam, 1990 | Zbl
[Cle83] - “Double solids”, Adv. in Math. 47 (1983) no. 2, p. 107-230 | DOI | MR | Zbl
[Com12] - “Fondamenti per la geometria sopra le superficie razionali dal punto di vista reale”, Math. Ann. 73 (1912) no. 1, p. 1-72 | DOI | MR | Zbl
[Con01] - On numbers and games, A K Peters, Ltd., Natick, MA, 2001 | Zbl
[Cor77] - “Points algébriques sur les surfaces de del Pezzo”, C. R. Acad. Sci. Paris Sér. A-B 284 (1977) no. 24, p. A1531-A1534 | MR | Zbl
[CR82] - “La topologie du spectre réel”, in Ordered fields and real algebraic geometry (San Francisco, Calif., 1981), Contemp. Math., vol. 8, American Mathematical Society, Providence, R.I., 1982, p. 27-59 | DOI | Zbl
[CT92] - “Real rational surfaces without a real point”, Arch. Math. (Basel) 58 (1992) no. 4, p. 392-396 | DOI | MR | Zbl
[CT96] - “Groupes linéaires sur les corps de fonctions de courbes réelles”, J. reine angew. Math. 474 (1996), p. 139-167 | MR | Zbl
[CTC79] - “L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques”, Compositio Math. 39 (1979) no. 3, p. 301-332 | Zbl
[CTSD94] - “Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties”, J. reine angew. Math. 453 (1994), p. 49-112 | MR | Zbl
[CTV12] - “Cohomologie non ramifiée et conjecture de Hodge entière”, Duke Math. J. 161 (2012) no. 5, p. 735-801 | DOI | Zbl
[dBJ74] - “Une propriété de commutation au changement de base des images directes supérieures du faisceau structural”, C. R. Acad. Sci. Paris Sér. A-B 279 (1974), p. 745-747 | Zbl
[Del71] - “Théorie de Hodge, II”, Publ. Math. Inst. Hautes Études Sci. 40 (1971), p. 5-57 | DOI | Numdam | Zbl
[Del73] - “La formule de dualité globale”, in Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), Tome 3, Lect. Notes in Math., vol. 305, Springer-Verlag, Berlin, 1973, Exp. XVIII | Zbl
[Del74] - “Théorie de Hodge, III”, Publ. Math. Inst. Hautes Études Sci. 44 (1974), p. 5-77 | DOI | Numdam | Zbl
[Del91] - Homology of locally semialgebraic spaces, Lect. Notes in Math., vol. 1484, Springer-Verlag, Berlin, 1991 | MR | Zbl
[Dim85] - “Monodromy and Betti numbers of weighted complete intersections”, Topology 24 (1985) no. 3, p. 369-374 | DOI | MR | Zbl
[DK81] - “Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces”, Math. Z. 178 (1981) no. 2, p. 175-213 | DOI | MR | Zbl
[DK82] - “On the homology of algebraic varieties over real closed fields”, J. reine angew. Math. 335 (1982), p. 122-163 | MR | Zbl
[DK84] - “Separation, retractions and homotopy extension in semialgebraic spaces”, Pacific J. Math. 114 (1984) no. 1, p. 47-71 | DOI | MR | Zbl
[DK85] - Locally semialgebraic spaces, Lect. Notes in Math., vol. 1173, Springer-Verlag, Berlin, 1985 | MR | Zbl
[DN14] - “On the Picard number of singular Fano varieties”, Internat. Math. Res. Notices (2014) no. 4, p. 955-990 | DOI | MR | Zbl
[Duc98] - “L’obstruction de réciprocité à l’existence de points rationnels pour certaines variétés sur le corps des fonctions d’une courbe réelle”, J. reine angew. Math. 504 (1998), p. 73-114 | DOI | MR | Zbl
[ELP73] - “On some Hasse principles over formally real fields”, Math. Z. 134 (1973), p. 291-301 | DOI | MR | Zbl
[ELW15] - “Index of varieties over Henselian fields and Euler characteristic of coherent sheaves”, J. Algebraic Geom. 24 (2015) no. 4, p. 693-718 | DOI | MR | Zbl
[EW16] - “On the cycle class map for zero-cycles over local fields”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 2, p. 483-520, with an appendix by Spencer Bloch | DOI | MR | Zbl
[FK10] - “Topology of real cubic fourfolds”, J. Topology 3 (2010) no. 1, p. 1-28 | DOI | MR | Zbl
[FK19] - “First homology of a real cubic is generated by lines”, 2019 | arXiv
[Ful98] - Intersection theory, Ergeb. Math. Grenzgeb. (3), vol. 2, Springer-Verlag, Berlin, 1998 | MR | Zbl
[GH85] - “On the Noether-Lefschetz theorem and some remarks on codimension-two cycles”, Math. Ann. 271 (1985) no. 1, p. 31-51 | DOI | MR | Zbl
[Gro57] - “Sur quelques points d’algèbre homologique”, Tôhoku Math. J. (2) 9 (1957), p. 119-221 | Zbl
[Gro61] - “Techniques de construction et théorèmes d’existence en géométrie algébrique, IV: les schémas de Hilbert”, in Séminaire Bourbaki, vol. 6, Société Mathématique de France, Paris, 1961, p. 249-276, Exp. no. 221 (new ed. 1995) | Zbl
[Gro65] - “Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude locale des schémas et des morphismes de schémas, II”, Publ. Math. Inst. Hautes Études Sci. 24 (1965) | Zbl
[Gro66] - “Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude locale des schémas et des morphismes de schémas, III”, Publ. Math. Inst. Hautes Études Sci. 28 (1966) | Zbl
[Gro68] - “Le groupe de Brauer I, II, III”, in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, p. 46-188 | Zbl
[Hir68] - “Smoothing of algebraic cycles of small dimensions”, Amer. J. Math. 90 (1968), p. 1-54 | Zbl
[Hir94] - Differential topology, Graduate Texts in Math., vol. 33, Springer-Verlag, New York, 1994 | DOI | MR | Zbl
[IP99] - “Fano varieties”, in Algebraic geometry, V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin, 1999 | MR
[IS88] - “Rational and homological equivalence for real cycles”, Invent. math. 94 (1988) no. 2, p. 307-316 | MR | Zbl
[Isk79] - “Anticanonical models of three-dimensional algebraic varieties”, in Current problems in mathematics, vol. 12, VINITI, Moscow, 1979, p. 59-157 | DOI | MR | Zbl
[KK98] - “Complex algebraic varieties: periods of integrals and Hodge structures”, in Algebraic geometry, III, Encyclopaedia Math. Sci., vol. 36, Springer, Berlin, 1998 | Zbl
[KM16] - “Approximating curves on real rational surfaces”, J. Algebraic Geom. 25 (2016) no. 3, p. 549-570 | DOI | Zbl
[Kne76] - “On algebraic curves over real closed fields. I”, Math. Z. 150 (1976) no. 1, p. 49-70 | DOI | MR | Zbl
[Kol86] - “Higher direct images of dualizing sheaves I”, Ann. of Math. (2) 123 (1986) no. 1, p. 11-42 | DOI | MR | Zbl
[Kol93] - “Shafarevich maps and plurigenera of algebraic varieties”, Invent. math. 113 (1993) no. 1, p. 177-215 | DOI | MR | Zbl
[Kol96] - Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), vol. 32, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[Lam81] - “The topology of complex projective varieties after S. Lefschetz”, Topology 20 (1981) no. 1, p. 15-51 | MR
[Lan52] - “On quasi algebraic closure”, Ann. of Math. (2) 55 (1952), p. 373-390 | DOI | MR | Zbl
[Lan53] - “The theory of real places”, Ann. of Math. (2) 57 (1953) no. 2, p. 378-391 | DOI | MR | Zbl
[Man66] - “Rational surfaces over perfect fields”, Publ. Math. Inst. Hautes Études Sci. 30 (1966), p. 55-113 | DOI | MR | Zbl
[Mic08] - Topics in differential geometry, Graduate Studies in Math., vol. 93, American Mathematical Society, Providence, RI, 2008 | Numdam | Zbl
[MM81] - “Classification of Fano -folds with ”, manuscripta math. 36 (1981) no. 2, p. 147-162 | MR | Zbl
[MM83] - “On Fano -folds with ”, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, p. 101-129
[Oes19] - “Conic bundles and iterated root stacks”, European J. Math. 5 (2019) no. 2, p. 518-527 | DOI
[PS08] - Mixed Hodge structures, Ergeb. Math. Grenzgeb. (3), vol. 52, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl
[PS16] - “Degree 3 cohomology of function fields of surfaces”, Internat. Math. Res. Notices (2016) no. 14, p. 4341-4374 | MR | Zbl
[Ray70] - “Spécialisation du foncteur de Picard”, Publ. Math. Inst. Hautes Études Sci. 38 (1970), p. 27-76 | DOI | MR | Zbl
[Sar82] - “On conic bundle structures”, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 46 (1982) no. 2, p. 371-408 | DOI | Numdam | MR | Zbl
[Sch94] - Real and étale cohomology, Lect. Notes in Math., vol. 1588, Springer-Verlag, Berlin, 1994 | MR | Zbl
[Sch95] - “Purity theorems for real spectra and applications”, in Real analytic and algebraic geometry (Trento, 1992), de Gruyter, Berlin, 1995, p. 229-250 | MR | Zbl
[Sch96] - “Hasse principles and approximation theorems for homogeneous spaces over fields of virtual cohomological dimension one”, Invent. math. 125 (1996) no. 2, p. 307-365 | MR | Zbl
[SD72] - “Rational points on del Pezzo surfaces of degree ”, in Algebraic geometry (Oslo 1970), Wolters-Noordhoff, Groningen, 1972, p. 287-290 | DOI | MR | Zbl
[SGA1] - Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques, vol. 3, Société Mathématique de France, Paris, 2003
[She19] - “Rationality, universal generation and the integral Hodge conjecture”, Geom. Topol. 23 (2019) no. 6, p. 2861-2898 | DOI | MR | Zbl
[Sil89] - Real algebraic surfaces, Lect. Notes in Math., vol. 1392, Springer-Verlag, Berlin, 1989 | MR | Zbl
[vH00] - Algebraic cycles and topology of real algebraic varieties, CWI Tract, vol. 129, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 2000 | MR | Zbl
[Voi02] - Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Société Mathématique de France, Paris, 2002 | Zbl
[Voi06] - “On integral Hodge classes on uniruled or Calabi-Yau threefolds”, in Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, 2006, p. 43-73 | DOI | MR | Zbl
[Wal16] - Differential topology, Cambridge Studies in Advanced Math., vol. 156, Cambridge University Press, Cambridge, 2016 | MR | Zbl
[Wei94] - An introduction to homological algebra, Cambridge Studies in Advanced Math., vol. 38, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[Wit34] - “Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper”, J. reine angew. Math. 171 (1934), p. 4-11 | Zbl
[Wit37] - “Theorie der quadratischen Formen in beliebigen Körpern”, J. reine angew. Math. 176 (1937), p. 31-44 | MR | Zbl
Cité par Sources :