[Mouillage et stratification pour le modèle SOS II : transitions de niveau, états de Gibbs et régularité de l’énergie libre]
Nous considérons le modèle « Solid-On-Solid » (SOS) incluant une interaction avec une paroi. Il s’agit du modèle de mécanique statistique associé au champ à valeurs entières et à la fonctionnelle d’énergie
Nous démontrons que pour des valeurs de suffisamment grandes, il existe une suite décroissante , satisfaisant , et telle que : l’énergie libre associée au système est infiniment dérivable sur , et n’admet pas de dérivée aux points ; pour tout entier , pour les valeurs de dans l’intervalle (avec la convention ), il existe une unique mesure de Gibbs correspondant à une hauteur de localisation , alors qu’aux points de non-dérivabilité il y a multiplicité des états de Gibbs, en particulier il en existe deux correspondant aux hauteurs de localisation et respectivement. La valeur marque donc une transition de niveau entre la hauteur et la hauteur . Ces résultats et ceux prouvés dans [28] fournissent une description complète des transitions de niveau et de la transition de mouillage pour le modèle SOS.
We consider the Solid-on-Solid model interacting with a wall, which is the statistical mechanics model associated with the integer-valued field , and the energy functional
We prove that for sufficiently large, there exists a decreasing sequence , satisfying , and such that: The free energy associated with the system is infinitely differentiable on , and not differentiable on . For each within the interval (with the convention ), there exists a unique translation invariant Gibbs state which is localized around height , while at a point of non-differentiability, at least two ergodic Gibbs states coexist. The respective typical heights of these two Gibbs states are and . The value corresponds thus to a first order layering transition from level to level . These results combined with those obtained in [28] provide a complete description of the wetting and layering transition for SOS.
Accepté le :
Publié le :
DOI : 10.5802/jep.110
Keywords: Solid-on-Solid, wetting, layering transitions, Gibbs states
Mot clés : Modèle SOS, mouillage, transitions de niveau, état de Gibbs
Hubert Lacoin 1
@article{JEP_2020__7__1_0, author = {Hubert Lacoin}, title = {Wetting and layering for {Solid-on-Solid} {II:} {Layering} transitions, {Gibbs} states, and regularity of the free energy}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1--62}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.110}, zbl = {07128376}, mrnumber = {4033749}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.110/} }
TY - JOUR AU - Hubert Lacoin TI - Wetting and layering for Solid-on-Solid II: Layering transitions, Gibbs states, and regularity of the free energy JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 1 EP - 62 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.110/ DO - 10.5802/jep.110 LA - en ID - JEP_2020__7__1_0 ER -
%0 Journal Article %A Hubert Lacoin %T Wetting and layering for Solid-on-Solid II: Layering transitions, Gibbs states, and regularity of the free energy %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 1-62 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.110/ %R 10.5802/jep.110 %G en %F JEP_2020__7__1_0
Hubert Lacoin. Wetting and layering for Solid-on-Solid II: Layering transitions, Gibbs states, and regularity of the free energy. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1-62. doi : 10.5802/jep.110. https://jep.centre-mersenne.org/articles/10.5802/jep.110/
[1] - “Existence of an unbounded vacant set for subcritical continuum percolation”, Electron. Comm. Probab. 23 (2018), article ID 63, 8 pages | DOI | MR | Zbl
[2] - “Translation invariance and instability of phase coexistence in the two-dimensional Ising system”, Comm. Math. Phys. 73 (1980) no. 1, p. 83-94 | DOI | MR
[3]
, Personal communication[4] - “Layering and wetting transitions for an SOS interface”, J. Statist. Phys. 142 (2011) no. 3, p. 524-576 | DOI | MR | Zbl
[5] - “A series approach to wetting and layering transitions. II. Solid-on-solid models”, J. Phys. A 21 (1988) no. 1, p. 159-171 | DOI | MR
[6] - “Ising model in half-space: a series of phase transitions in low magnetic fields.”, Theoret. and Math. Phys. 153 (2007) no. 2, p. 1539-1574 | DOI | MR | Zbl
[7] - “On the convergence of cluster expansions for polymer gases”, J. Statist. Phys. 139 (2010) no. 4, p. 598-617 | DOI | MR | Zbl
[8] - “Decay of correlations in surface models”, J. Statist. Phys. 27 (1982) no. 3, p. 425-440 | DOI | MR
[9] - “Random surfaces in statistical mechanics: roughening, rounding, wetting, ...”, J. Statist. Phys. 42 (1986) no. 5-6, p. 743-798 | DOI | MR
[10] - “The growth of crystals and the equilibrium structure of their surfaces”, Philos. Trans. Roy. Soc. London Ser. A 243 (1951), p. 299-358 | DOI | MR | Zbl
[11] - “Scaling limit and cube-root fluctuations in SOS surfaces above a wall”, J. Eur. Math. Soc. (JEMS) 18 (2016) no. 5, p. 931-995 | DOI | MR | Zbl
[12] - “Entropic repulsion in surfaces: a large deviation bound for all ”, Boll. Un. Mat. Ital. 10 (2017) no. 3, p. 451-466 | DOI | Zbl
[13] - “On the layering transition of an SOS surface interacting with a wall. I. Equilibrium results”, J. Statist. Phys. 82 (1996) no. 3-4, p. 823-913 | DOI | MR | Zbl
[14] - “On the layering transition of an SOS surface interacting with a wall. II. The Glauber dynamics”, Comm. Math. Phys. 177 (1996) no. 1, p. 173-201 | DOI | MR | Zbl
[15] - “The pinning of an interface by a planar defect”, J. Phys. A 15 (1982) no. 9, p. L481-L485 | DOI | MR
[16] - “A finite-volume version of Aizenman-Higuchi theorem for the 2d Ising model”, Probab. Theory Related Fields 153 (2012) no. 1-2, p. 25-44 | DOI | MR | Zbl
[17] - “Layering transition in SOS model with external magnetic field”, J. Statist. Phys. 74 (1994) no. 3-4, p. 533-563 | DOI | MR | Zbl
[18] - “Gibbs states describing a coexistence of phases for the three-dimensional Ising model”, Theor. Probability Appl. 17 (1972) no. 4, p. 582-600 | DOI | Zbl
[19] - “Taming Griffiths’ singularities: infinite differentiability of quenched correlation functions”, Comm. Math. Phys. 170 (1995) no. 1, p. 21-39 | DOI | MR | Zbl
[20] - “The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas”, Comm. Math. Phys. 81 (1981) no. 4, p. 527-602 | DOI | MR
[21] - “Disorder and wetting transition: the pinned harmonic crystal in dimension three or larger”, Ann. Appl. Probab. 28 (2018) no. 1, p. 577-606 | DOI | MR | Zbl
[22] - “Subcritical regimes in the Poisson Boolean model of continuum percolation”, Ann. Probab. 36 (2008) no. 4, p. 1209-1220 | DOI | MR | Zbl
[23] - “On continuum percolation”, Ann. Probab. 13 (1985) no. 4, p. 1250-1266 | DOI | MR | Zbl
[24] - “On some limit theorems related to the phase separation line in the two-dimensional Ising model”, Z. Wahrsch. Verw. Gebiete 50 (1979) no. 3, p. 287-315 | DOI | MR | Zbl
[25] - “Remarks on the inequalities”, Comm. Math. Phys. 36 (1974), p. 227-231 | DOI | MR
[26] - “Low-temperature interfaces: prewetting, layering, faceting and Ferrari-Spohn diffusions”, Markov Process. Related Fields 24 (2018) no. 3, p. 487-537 | MR | Zbl
[27] - “Cluster expansion for abstract polymer models”, Comm. Math. Phys. 103 (1986) no. 3, p. 491-498 | DOI | MR | Zbl
[28] - “Wetting and layering for solid-on-solid I: Identification of the wetting point and critical behavior”, Comm. Math. Phys. 362 (2018) no. 3, p. 1007-1048 | DOI | MR | Zbl
[29] - “Roughening transition in the solid-on-solid model”, Phys. Rev. B 15 (1977) no. 2, p. 689-692 | DOI
[30] - “Statistical mechanics and the partition of numbers. II. The form of crystal surfaces”, Math. Proc. Cambridge Philos. Soc. 48 (1952), p. 683-697 | DOI | MR
[31] - “Structural Transition in the Ising-Model Interface”, Phys. Rev. Lett. 31 (1973) no. 8, p. 549-551 | DOI
Cité par Sources :