In this paper we prove, for a connected reductive algebraic group satisfying a mild technical assumption, that the Satake category of (with coefficients in a finite field, a finite extension of , or the ring of integers of such a field) can be described via Iwahori-Whittaker perverse sheaves on the affine Grassmannian. As applications, we confirm a conjecture of Juteau-Mautner-Williamson describing the tilting objects in the Satake category, and give a new proof of the property that a tensor product of tilting modules is tilting.
Dans cet article nous montrons, pour un groupe algébrique réductif connexe satisfaisant à une hypothèse technique mineure, que la catégorie de Satake de (avec coefficients dans un corps fini, une extension finie des nombres -adiques, ou l’anneau des entiers d’un tel corps) peut se décrire en termes de faisceaux pervers d’Iwahori-Whittaker sur la grassmannienne affine. Nous en déduisons la démonstration d’une conjecture de Juteau-Mautner-Williamson décrivant les objets basculants dans la catégorie de Satake, et également une nouvelle preuve du fait qu’un produit tensoriel de représentations basculantes est basculant.
Accepted:
Published online:
DOI: 10.5802/jep.104
Keywords: Affine Grassmannian, perverse sheaves, geometric Satake equivalence, tilting modules, parity sheaves
Mot clés : Grassmannienne affine, faisceaux pervers, équivalence de Satake géométrique, modules basculants, faisceaux à parité
Roman Bezrukavnikov 1; Dennis Gaitsgory 2; Ivan Mirković 3; Simon Riche 4; Laura Rider 5
@article{JEP_2019__6__707_0, author = {Roman Bezrukavnikov and Dennis Gaitsgory and Ivan Mirkovi\'c and Simon Riche and Laura Rider}, title = {An {Iwahori-Whittaker} model for the {Satake} category}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {707--735}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.104}, zbl = {07114040}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.104/} }
TY - JOUR AU - Roman Bezrukavnikov AU - Dennis Gaitsgory AU - Ivan Mirković AU - Simon Riche AU - Laura Rider TI - An Iwahori-Whittaker model for the Satake category JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 707 EP - 735 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.104/ DO - 10.5802/jep.104 LA - en ID - JEP_2019__6__707_0 ER -
%0 Journal Article %A Roman Bezrukavnikov %A Dennis Gaitsgory %A Ivan Mirković %A Simon Riche %A Laura Rider %T An Iwahori-Whittaker model for the Satake category %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 707-735 %V 6 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.104/ %R 10.5802/jep.104 %G en %F JEP_2019__6__707_0
Roman Bezrukavnikov; Dennis Gaitsgory; Ivan Mirković; Simon Riche; Laura Rider. An Iwahori-Whittaker model for the Satake category. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 707-735. doi : 10.5802/jep.104. https://jep.centre-mersenne.org/articles/10.5802/jep.104/
[AB09] - “Perverse sheaves on affine flags and Langlands dual group”, Israel J. Math. 170 (2009), p. 135-183, with an appendix by R. Bezrukavnikov and I. Mirković | DOI | MR | Zbl
[ABB + 05] - “Modules over the small quantum group and semi-infinite flag manifold”, Transform. Groups 10 (2005) no. 3-4, p. 279-362 | DOI | MR | Zbl
[ACR18] - “The parabolic exotic t-structure”, Épijournal de Géom. Alg. 2 (2018), article ID 8, 31 pages | MR | Zbl
[AG] - “Asymptotics of geometric Whittaker coefficients”, available at http://www.math.harvard.edu/~gaitsgde/GL/WhitAsympt.pdf | Zbl
[AMRW19] - “Koszul duality for Kac-Moody groups and characters of tilting modules”, J. Amer. Math. Soc. 32 (2019) no. 1, p. 261-310 | DOI | MR | Zbl
[And18] - “The Steinberg linkage class for a reductive algebraic group”, Ark. Mat. 56 (2018) no. 2, p. 229-241 | DOI | MR | Zbl
[AR15] - “Parity sheaves on the affine Grassmannian and the Mirković-Vilonen conjecture”, Acta Math. 215 (2015) no. 2, p. 183-216 | DOI | Zbl
[AR16] - “Modular perverse sheaves on flag varieties I: tilting and parity sheaves”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 2, p. 325-370, With a joint appendix with G. Williamson | DOI | MR | Zbl
[AR18a] - “Reductive groups, the loop Grassmannian, and the Springer resolution”, Invent. Math. 214 (2018) no. 1, p. 289-436 | DOI | MR | Zbl
[AR18b] - “Dualité de Koszul formelle et théorie des représentations des groupes algébriques réductifs en caractéristique positive”, 2018 | arXiv
[BBDG82] - “Faisceaux pervers”, in Analyse et topologie sur les espaces singuliers, Astérisque, vol. 100, Société Mathématique de France, Paris, 1982, 2nd ed.: 2018 | MR | Zbl
[BBM04] - “Some results about geometric Whittaker model”, Adv. Math. 186 (2004) no. 1, p. 143-152 | DOI | MR | Zbl
[BD] - “Quantization of Hitchin’s integrable system and Hecke eigensheaves”, unpublished preprint available at http://www.math.uchicago.edu/~mitya/langlands.html | Zbl
[Bez16] - “On two geometric realizations of an affine Hecke algebra”, Publ. Math. Inst. Hautes Études Sci. 123 (2016), p. 1-67 | DOI | MR | Zbl
[BGS96] - “Koszul duality patterns in representation theory”, J. Amer. Math. Soc. 9 (1996) no. 2, p. 473-527 | DOI | MR | Zbl
[BL94] - Equivariant sheaves and functors, Lect. Notes in Math., vol. 1578, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[BR18] - “Notes on the geometric Satake equivalence”, in Relative aspects in representation theory, Langlands functoriality and automorphic forms (CIRM Jean-Morlet Chair, Spring 2016) (V. Heiermann & D. Prasad, eds.), Lect. Notes in Math., vol. 2221, Springer, 2018, p. 1-134 | DOI
[BR18] - “A topological approach to Soergel theory”, 2018 | arXiv
[BY13] - “On Koszul duality for Kac-Moody groups”, Represent. Theory 17 (2013), p. 1-98 | DOI | MR | Zbl
[CPS88] - “Finite-dimensional algebras and highest weight categories”, J. reine angew. Math. 391 (1988), p. 85-99 | MR | Zbl
[Fal03] - “Algebraic loop groups and moduli spaces of bundles”, J. Eur. Math. Soc. (JEMS) 5 (2003) no. 1, p. 41-68 | DOI | MR | Zbl
[FG06] - “Local geometric Langlands correspondence and affine Kac-Moody algebras”, in Algebraic geometry and number theory, Progress in Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, p. 69-260 | DOI | MR | Zbl
[FGKV98] - “Geometric realization of Whittaker functions and the Langlands conjecture”, J. Amer. Math. Soc. 11 (1998) no. 2, p. 451-484 | DOI | MR | Zbl
[FGV01] - “Whittaker patterns in the geometry of moduli spaces of bundles on curves”, Ann. of Math. (2) 153 (2001) no. 3, p. 699-748 | DOI | MR | Zbl
[FK88] - Étale cohomology and the Weil conjecture, Ergeb. Math. Grenzgeb. (3), vol. 13, Springer-Verlag, Berlin, 1988 | DOI | Zbl
[FM99] - “Semi-infinite flags. I. Case of global curve ”, in Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, American Mathematical Society, Providence, RI, 1999, p. 81-112 | DOI | MR | Zbl
[Gai01] - “Construction of central elements in the affine Hecke algebra via nearby cycles”, Invent. Math. 144 (2001) no. 2, p. 253-280 | DOI | MR | Zbl
[Gai18] - “The local and global versions of the Whittaker category”, 2018 | arXiv
[Jan03] - Representations of algebraic groups, Math. Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[JMW14] - “Parity sheaves”, J. Amer. Math. Soc. 27 (2014) no. 4, p. 1169-1212 | DOI | MR | Zbl
[JMW16] - “Parity sheaves and tilting modules”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 2, p. 257-275 | DOI | MR | Zbl
[Jut08] - “Modular representations of reductive groups and geometry of affine Grassmannians”, 2008 | arXiv | Zbl
[Lus83] - “Singularities, character formulas, and a -analog of weight multiplicities”, in Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, vol. 101, Société Mathématique de France, Paris, 1983, p. 208-229 | MR | Zbl
[Mat90] - “Filtrations of -modules”, Ann. Sci. École Norm. Sup. (4) 23 (1990) no. 4, p. 625-644 | DOI | MR | Zbl
[MR18] - “Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković-Vilonen conjecture”, J. Eur. Math. Soc. (JEMS) 20 (2018) no. 9, p. 2259-2332 | DOI | Zbl
[MV07] - “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. of Math. (2) 166 (2007) no. 1, p. 95-143, Erratum: Ibid., 188 (2018), no. 3, p. 1017–1018 | DOI | MR | Zbl
[Nad05] - “Perverse sheaves on real loop Grassmannians”, Invent. Math. 159 (2005) no. 1, p. 1-73 | DOI | MR | Zbl
[NP01] - “Résolutions de Demazure affines et formule de Casselman-Shalika géométrique”, J. Algebraic Geom. 10 (2001) no. 3, p. 515-547 | Zbl
[Ras16] - “-algebras and Whittaker categories”, 2016 | arXiv
[Ric16] - Geometric representation theory in positive characteristic, habilitation thesis, Univ. Clermont-Ferrand, 2016 | TEL | Zbl
[RSW14] - “Modular Koszul duality”, Compositio Math. 150 (2014) no. 2, p. 273-332 | DOI | MR | Zbl
[RW18] - Tilting modules and the -canonical basis, Astérisque, vol. 397, Société Mathématique de France, Paris, 2018 | Zbl
[Spr82] - “Quelques applications de la cohomologie d’intersection”, in Séminaire N. Bourbaki, Vol. 1981/82, Astérisque, vol. 92, Société Mathématique de France, Paris, 1982, p. 249-273, Exp. no. 589 | MR | Zbl
[Wan15] - “A new Fourier transform”, Math. Res. Lett. 22 (2015) no. 5, p. 1541-1562 | DOI | MR | Zbl
Cited by Sources: