Dans cet article nous montrons, pour un groupe algébrique réductif connexe satisfaisant à une hypothèse technique mineure, que la catégorie de Satake de (avec coefficients dans un corps fini, une extension finie des nombres -adiques, ou l’anneau des entiers d’un tel corps) peut se décrire en termes de faisceaux pervers d’Iwahori-Whittaker sur la grassmannienne affine. Nous en déduisons la démonstration d’une conjecture de Juteau-Mautner-Williamson décrivant les objets basculants dans la catégorie de Satake, et également une nouvelle preuve du fait qu’un produit tensoriel de représentations basculantes est basculant.
In this paper we prove, for a connected reductive algebraic group satisfying a mild technical assumption, that the Satake category of (with coefficients in a finite field, a finite extension of , or the ring of integers of such a field) can be described via Iwahori-Whittaker perverse sheaves on the affine Grassmannian. As applications, we confirm a conjecture of Juteau-Mautner-Williamson describing the tilting objects in the Satake category, and give a new proof of the property that a tensor product of tilting modules is tilting.
Accepté le :
Publié le :
DOI : 10.5802/jep.104
Keywords: Affine Grassmannian, perverse sheaves, geometric Satake equivalence, tilting modules, parity sheaves
Mot clés : Grassmannienne affine, faisceaux pervers, équivalence de Satake géométrique, modules basculants, faisceaux à parité
Roman Bezrukavnikov 1 ; Dennis Gaitsgory 2 ; Ivan Mirković 3 ; Simon Riche 4 ; Laura Rider 5
@article{JEP_2019__6__707_0, author = {Roman Bezrukavnikov and Dennis Gaitsgory and Ivan Mirkovi\'c and Simon Riche and Laura Rider}, title = {An {Iwahori-Whittaker} model for the {Satake} category}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {707--735}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.104}, zbl = {07114040}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.104/} }
TY - JOUR AU - Roman Bezrukavnikov AU - Dennis Gaitsgory AU - Ivan Mirković AU - Simon Riche AU - Laura Rider TI - An Iwahori-Whittaker model for the Satake category JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 707 EP - 735 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.104/ DO - 10.5802/jep.104 LA - en ID - JEP_2019__6__707_0 ER -
%0 Journal Article %A Roman Bezrukavnikov %A Dennis Gaitsgory %A Ivan Mirković %A Simon Riche %A Laura Rider %T An Iwahori-Whittaker model for the Satake category %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 707-735 %V 6 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.104/ %R 10.5802/jep.104 %G en %F JEP_2019__6__707_0
Roman Bezrukavnikov; Dennis Gaitsgory; Ivan Mirković; Simon Riche; Laura Rider. An Iwahori-Whittaker model for the Satake category. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 707-735. doi : 10.5802/jep.104. https://jep.centre-mersenne.org/articles/10.5802/jep.104/
[AB09] - “Perverse sheaves on affine flags and Langlands dual group”, Israel J. Math. 170 (2009), p. 135-183, with an appendix by R. Bezrukavnikov and I. Mirković | DOI | MR | Zbl
[ABB + 05] - “Modules over the small quantum group and semi-infinite flag manifold”, Transform. Groups 10 (2005) no. 3-4, p. 279-362 | DOI | MR | Zbl
[ACR18] - “The parabolic exotic t-structure”, Épijournal de Géom. Alg. 2 (2018), article ID 8, 31 pages | MR | Zbl
[AG] - “Asymptotics of geometric Whittaker coefficients”, available at http://www.math.harvard.edu/~gaitsgde/GL/WhitAsympt.pdf | Zbl
[AMRW19] - “Koszul duality for Kac-Moody groups and characters of tilting modules”, J. Amer. Math. Soc. 32 (2019) no. 1, p. 261-310 | DOI | MR | Zbl
[And18] - “The Steinberg linkage class for a reductive algebraic group”, Ark. Mat. 56 (2018) no. 2, p. 229-241 | DOI | MR | Zbl
[AR15] - “Parity sheaves on the affine Grassmannian and the Mirković-Vilonen conjecture”, Acta Math. 215 (2015) no. 2, p. 183-216 | DOI | Zbl
[AR16] - “Modular perverse sheaves on flag varieties I: tilting and parity sheaves”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 2, p. 325-370, With a joint appendix with G. Williamson | DOI | MR | Zbl
[AR18a] - “Reductive groups, the loop Grassmannian, and the Springer resolution”, Invent. Math. 214 (2018) no. 1, p. 289-436 | DOI | MR | Zbl
[AR18b] - “Dualité de Koszul formelle et théorie des représentations des groupes algébriques réductifs en caractéristique positive”, 2018 | arXiv
[BBDG82] - “Faisceaux pervers”, in Analyse et topologie sur les espaces singuliers, Astérisque, vol. 100, Société Mathématique de France, Paris, 1982, 2nd ed.: 2018 | MR | Zbl
[BBM04] - “Some results about geometric Whittaker model”, Adv. Math. 186 (2004) no. 1, p. 143-152 | DOI | MR | Zbl
[BD] - “Quantization of Hitchin’s integrable system and Hecke eigensheaves”, unpublished preprint available at http://www.math.uchicago.edu/~mitya/langlands.html | Zbl
[Bez16] - “On two geometric realizations of an affine Hecke algebra”, Publ. Math. Inst. Hautes Études Sci. 123 (2016), p. 1-67 | DOI | MR | Zbl
[BGS96] - “Koszul duality patterns in representation theory”, J. Amer. Math. Soc. 9 (1996) no. 2, p. 473-527 | DOI | MR | Zbl
[BL94] - Equivariant sheaves and functors, Lect. Notes in Math., vol. 1578, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[BR18] - “Notes on the geometric Satake equivalence”, in Relative aspects in representation theory, Langlands functoriality and automorphic forms (CIRM Jean-Morlet Chair, Spring 2016) (V. Heiermann & D. Prasad, eds.), Lect. Notes in Math., vol. 2221, Springer, 2018, p. 1-134 | DOI
[BR18] - “A topological approach to Soergel theory”, 2018 | arXiv
[BY13] - “On Koszul duality for Kac-Moody groups”, Represent. Theory 17 (2013), p. 1-98 | DOI | MR | Zbl
[CPS88] - “Finite-dimensional algebras and highest weight categories”, J. reine angew. Math. 391 (1988), p. 85-99 | MR | Zbl
[Fal03] - “Algebraic loop groups and moduli spaces of bundles”, J. Eur. Math. Soc. (JEMS) 5 (2003) no. 1, p. 41-68 | DOI | MR | Zbl
[FG06] - “Local geometric Langlands correspondence and affine Kac-Moody algebras”, in Algebraic geometry and number theory, Progress in Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, p. 69-260 | DOI | MR | Zbl
[FGKV98] - “Geometric realization of Whittaker functions and the Langlands conjecture”, J. Amer. Math. Soc. 11 (1998) no. 2, p. 451-484 | DOI | MR | Zbl
[FGV01] - “Whittaker patterns in the geometry of moduli spaces of bundles on curves”, Ann. of Math. (2) 153 (2001) no. 3, p. 699-748 | DOI | MR | Zbl
[FK88] - Étale cohomology and the Weil conjecture, Ergeb. Math. Grenzgeb. (3), vol. 13, Springer-Verlag, Berlin, 1988 | DOI | Zbl
[FM99] - “Semi-infinite flags. I. Case of global curve ”, in Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, American Mathematical Society, Providence, RI, 1999, p. 81-112 | DOI | MR | Zbl
[Gai01] - “Construction of central elements in the affine Hecke algebra via nearby cycles”, Invent. Math. 144 (2001) no. 2, p. 253-280 | DOI | MR | Zbl
[Gai18] - “The local and global versions of the Whittaker category”, 2018 | arXiv
[Jan03] - Representations of algebraic groups, Math. Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[JMW14] - “Parity sheaves”, J. Amer. Math. Soc. 27 (2014) no. 4, p. 1169-1212 | DOI | MR | Zbl
[JMW16] - “Parity sheaves and tilting modules”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 2, p. 257-275 | DOI | MR | Zbl
[Jut08] - “Modular representations of reductive groups and geometry of affine Grassmannians”, 2008 | arXiv | Zbl
[Lus83] - “Singularities, character formulas, and a -analog of weight multiplicities”, in Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, vol. 101, Société Mathématique de France, Paris, 1983, p. 208-229 | MR | Zbl
[Mat90] - “Filtrations of -modules”, Ann. Sci. École Norm. Sup. (4) 23 (1990) no. 4, p. 625-644 | DOI | MR | Zbl
[MR18] - “Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković-Vilonen conjecture”, J. Eur. Math. Soc. (JEMS) 20 (2018) no. 9, p. 2259-2332 | DOI | Zbl
[MV07] - “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. of Math. (2) 166 (2007) no. 1, p. 95-143, Erratum: Ibid., 188 (2018), no. 3, p. 1017–1018 | DOI | MR | Zbl
[Nad05] - “Perverse sheaves on real loop Grassmannians”, Invent. Math. 159 (2005) no. 1, p. 1-73 | DOI | MR | Zbl
[NP01] - “Résolutions de Demazure affines et formule de Casselman-Shalika géométrique”, J. Algebraic Geom. 10 (2001) no. 3, p. 515-547 | Zbl
[Ras16] - “-algebras and Whittaker categories”, 2016 | arXiv
[Ric16] - Geometric representation theory in positive characteristic, habilitation thesis, Univ. Clermont-Ferrand, 2016 | TEL | Zbl
[RSW14] - “Modular Koszul duality”, Compositio Math. 150 (2014) no. 2, p. 273-332 | DOI | MR | Zbl
[RW18] - Tilting modules and the -canonical basis, Astérisque, vol. 397, Société Mathématique de France, Paris, 2018 | Zbl
[Spr82] - “Quelques applications de la cohomologie d’intersection”, in Séminaire N. Bourbaki, Vol. 1981/82, Astérisque, vol. 92, Société Mathématique de France, Paris, 1982, p. 249-273, Exp. no. 589 | MR | Zbl
[Wan15] - “A new Fourier transform”, Math. Res. Lett. 22 (2015) no. 5, p. 1541-1562 | DOI | MR | Zbl
Cité par Sources :