Vertex representations for Yangians of Kac-Moody algebras
[Représentations vertex pour les Yangiens d’algèbres de Kac-Moody]
Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 665-706.

À l’aide d’opérateurs vertex, nous construisons des représentations du Yangien d’une algèbre de Kac-Moody simplement lacée et de son double. Comme corollaire, nous démontrons la propriété de Poincaré-Birkhoff-Witt pour les Yangiens affines simplement lacés.

Using vertex operators, we build representations of the Yangian of a simply laced Kac-Moody algebra and of its double. As a corollary, we prove the Poincaré-Birkhoff-Witt property for simply laced affine Yangians.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.103
Classification : 17B37, 81R10, 17B69
Keywords: Yangian, vertex operator, Kac-Moody algebra, Fock space, twisted group algebra, central extension
Mot clés : Yangien, opérateur vertex, algèbre de Kac-Moody, espace de Fock, algèbre de groupe tordue, extension centrale

Nicolas Guay 1 ; Vidas Regelskis 2, 3 ; Curtis Wendlandt 1

1 University of Alberta, Department of Mathematical and Statistical Sciences Edmonton, AB T6G 2G1, Canada
2 University of York, Department of Mathematics York, YO10 5DD, UK
3 Vilnius University, Institute of Theoretical Physics and Astronomy Saulėtekio av. 3, Vilnius 10257, Lithuania
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2019__6__665_0,
     author = {Nicolas Guay and Vidas Regelskis and Curtis Wendlandt},
     title = {Vertex representations for {Yangians} of {Kac-Moody} algebras},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {665--706},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.103},
     zbl = {07114036},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.103/}
}
TY  - JOUR
AU  - Nicolas Guay
AU  - Vidas Regelskis
AU  - Curtis Wendlandt
TI  - Vertex representations for Yangians of Kac-Moody algebras
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 665
EP  - 706
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.103/
DO  - 10.5802/jep.103
LA  - en
ID  - JEP_2019__6__665_0
ER  - 
%0 Journal Article
%A Nicolas Guay
%A Vidas Regelskis
%A Curtis Wendlandt
%T Vertex representations for Yangians of Kac-Moody algebras
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 665-706
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.103/
%R 10.5802/jep.103
%G en
%F JEP_2019__6__665_0
Nicolas Guay; Vidas Regelskis; Curtis Wendlandt. Vertex representations for Yangians of Kac-Moody algebras. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 665-706. doi : 10.5802/jep.103. https://jep.centre-mersenne.org/articles/10.5802/jep.103/

[AG19] A. Appel & S. Gautam - “An explicit isomorphism between quantum and classical 𝔰𝔩 n , Transform. Groups (2019), 36 pages | arXiv | DOI

[AMR06] D. Arnaudon, A. Molev & E. Ragoucy - “On the R-matrix realization of Yangians and their representations”, Ann. Henri Poincaré 7 (2006) no. 7-8, p. 1269-1325 | DOI | MR | Zbl

[Ber89] D. Bernard - “Vertex operator representations of the quantum affine algebra 𝒰 q (B r (1) ), Lett. Math. Phys. 17 (1989) no. 3, p. 239-245 | DOI | MR

[BT19] M. Bershtein & A. Tsymbaliuk - “Homomorphisms between different quantum toroidal and affine Yangian algebras”, J. Pure Appl. Algebra 223 (2019) no. 2, p. 867-899 | DOI | MR | Zbl

[BTM87] D. Bernard & J. Thierry-Mieg - “Level one representations of the simple affine Kac-Moody algebras in their homogeneous gradations”, Comm. Math. Phys. 111 (1987) no. 2, p. 181-246 | DOI | MR | Zbl

[CJ01] V. Chari & N. Jing - “Realization of level one representations of U q (𝔤 ^) at a root of unity”, Duke Math. J. 108 (2001) no. 1, p. 183-197 | DOI | MR | Zbl

[DK00] J. Ding & S. Khoroshkin - “Weyl group extension of quantized current algebras”, Transform. Groups 5 (2000) no. 1, p. 35-59 | DOI | MR | Zbl

[Dri86] V. G. Drinfel’d - “Degenerate affine Hecke algebras and Yangians”, Funktsional. Anal. i Prilozhen. 20 (1986) no. 1, p. 69-70 | MR | Zbl

[FJ88] I. B. Frenkel & N. H. Jing - “Vertex representations of quantum affine algebras”, Proc. Nat. Acad. Sci. U.S.A. 85 (1988) no. 24, p. 9373-9377 | DOI | MR | Zbl

[FK81] I. B. Frenkel & V. G. Kac - “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math. 62 (1980/81) no. 1, p. 23-66 | DOI | MR | Zbl

[FLM88] I. Frenkel, J. Lepowsky & A. Meurman - Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl

[FT19] M. Finkelberg & A. Tsymbaliuk - “Shifted quantum affine algebras: integral forms in type A”, Arnold Math. J. (2019) | arXiv | DOI

[GNOS86] P. Goddard, W. Nahm, D. Olive & A. Schwimmer - “Vertex operators for non-simply-laced algebras”, Comm. Math. Phys. 107 (1986) no. 2, p. 179-212 | DOI | MR | Zbl

[GNW18] N. Guay, H. Nakajima & C. Wendlandt - “Coproduct for Yangians of affine Kac-Moody algebras”, Adv. Math. 338 (2018), p. 865-911 | DOI | MR | Zbl

[GRW19] N. Guay, V. Regelskis & C. Wendlandt - “Equivalences between three presentations of orthogonal and symplectic Yangians”, Lett. Math. Phys. 109 (2019) no. 2, p. 327-379 | DOI | MR | Zbl

[GTL13] S. Gautam & V. Toledano Laredo - “Yangians and quantum loop algebras”, Selecta Math. (N.S.) 19 (2013) no. 2, p. 271-336 | DOI | MR | Zbl

[GTL16] S. Gautam & V. Toledano Laredo - “Yangians, quantum loop algebras, and abelian difference equations”, J. Amer. Math. Soc. 29 (2016) no. 3, p. 775-824 | DOI | MR | Zbl

[Gua07] N. Guay - “Affine Yangians and deformed double current algebras in type A”, Adv. Math. 211 (2007) no. 2, p. 436-484 | DOI | MR | Zbl

[IK96] K. Iohara & M. Kohno - “A central extension of 𝒟Y (𝔤𝔩 2 ) and its vertex representations”, Lett. Math. Phys. 37 (1996) no. 3, p. 319-328 | DOI | Zbl

[Ioh96] K. Iohara - “Bosonic representations of Yangian double 𝒟Y (𝔤) with 𝔤=𝔤𝔩 N ,𝔰𝔩 N , J. Phys. A 29 (1996) no. 15, p. 4593-4621 | DOI | MR

[Jin90] N. H. Jing - “Twisted vertex representations of quantum affine algebras”, Invent. Math. 102 (1990) no. 3, p. 663-690 | DOI | MR

[Jin98] N. Jing - “Quantum Kac-Moody algebras and vertex representations”, Lett. Math. Phys. 44 (1998) no. 4, p. 261-271 | DOI | MR | Zbl

[Jin99] N. Jing - “Level one representations of U q (G 2 (1) ), Proc. Amer. Math. Soc. 127 (1999) no. 1, p. 21-27 | DOI | MR | Zbl

[Jin00] N. Jing - “Quantum Z-algebras and representations of quantum affine algebras”, Comm. Algebra 28 (2000) no. 2, p. 829-844 | DOI | MR | Zbl

[JKM99] N. Jing, Y. Koyama & K. C. Misra - “Level one representations of quantum affine algebras U q (C n (1) ), Selecta Math. (N.S.) 5 (1999) no. 2, p. 243-255 | DOI | MR | Zbl

[JM96] N. Jing & K. C. Misra - “Vertex operators of level-one U q (B n (1) )-modules”, Lett. Math. Phys. 36 (1996) no. 2, p. 127-143 | DOI | MR | Zbl

[Kac90] V. G. Kac - Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990 | DOI | Zbl

[Kas84] C. Kassel - “Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra”, J. Pure Appl. Algebra 34 (1984) no. 2-3, p. 265-275 | DOI | Zbl

[Kho97] S. M. Khoroshkin - “Central extension of the Yangian double”, in Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr., vol. 2, Société Mathématique de France, Paris, 1997, p. 119-135 | MR | Zbl

[Kod19] R. Kodera - “Affine Yangian action on the Fock space”, Publ. RIMS, Kyoto Univ. 55 (2019) no. 1, p. 189-234 | DOI | MR | Zbl

[KSU97] K. Kimura, J. Shiraishi & J. Uchiyama - “A level-one representation of the quantum affine superalgebra U q (𝔰𝔩 ^(M+1|N+1)), Comm. Math. Phys. 188 (1997) no. 2, p. 367-378 | DOI | MR | Zbl

[KT96] S. M. Khoroshkin & V. N. Tolstoy - “Yangian double”, Lett. Math. Phys. 36 (1996) no. 4, p. 373-402 | DOI | MR | Zbl

[Lev93] S. Z. Levendorskiĭ - “On PBW bases for Yangians”, Lett. Math. Phys. 27 (1993) no. 1, p. 37-42 | DOI | MR | Zbl

[LL04] J. Lepowsky & H. Li - Introduction to vertex operator algebras and their representations, Progress in Math., vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl

[Mol07] A. Molev - Yangians and classical Lie algebras, Math.Surveys and Monographs, vol. 143, American Mathematical Society, Providence, RI, 2007 | DOI | MR | Zbl

[MRY90] R. V. Moody, S. E. Rao & T. Yokonuma - “Toroidal Lie algebras and vertex representations”, Geom. Dedicata 35 (1990) no. 1-3, p. 283-307 | DOI | MR | Zbl

[Nak01] H. Nakajima - “Quiver varieties and finite-dimensional representations of quantum affine algebras”, J. Amer. Math. Soc. 14 (2001) no. 1, p. 145-238 | DOI | MR | Zbl

[Neh03] E. Neher - “An introduction to universal central extensions of Lie superalgebras”, in Groups, rings, Lie and Hopf algebras (St. John’s, NF, 2001), Math. Appl., vol. 555, Kluwer Acad. Publ., Dordrecht, 2003, p. 141-166 | DOI | MR | Zbl

[Sai98] Y. Saito - “Quantum toroidal algebras and their vertex representations”, Publ. RIMS, Kyoto Univ. 34 (1998) no. 2, p. 155-177 | DOI | MR | Zbl

[YZ18a] Y. Yang & G. Zhao - “Cohomological Hall algebras and affine quantum groups”, Selecta Math. (N.S.) 24 (2018) no. 2, p. 1093-1119 | DOI | MR | Zbl

[YZ18b] Y. Yang & G. Zhao - “The PBW theorem for the affine Yangians”, 2018 | arXiv | Zbl

Cité par Sources :