À l’aide d’opérateurs vertex, nous construisons des représentations du Yangien d’une algèbre de Kac-Moody simplement lacée et de son double. Comme corollaire, nous démontrons la propriété de Poincaré-Birkhoff-Witt pour les Yangiens affines simplement lacés.
Using vertex operators, we build representations of the Yangian of a simply laced Kac-Moody algebra and of its double. As a corollary, we prove the Poincaré-Birkhoff-Witt property for simply laced affine Yangians.
Accepté le :
Publié le :
DOI : 10.5802/jep.103
Keywords: Yangian, vertex operator, Kac-Moody algebra, Fock space, twisted group algebra, central extension
Mot clés : Yangien, opérateur vertex, algèbre de Kac-Moody, espace de Fock, algèbre de groupe tordue, extension centrale
Nicolas Guay 1 ; Vidas Regelskis 2, 3 ; Curtis Wendlandt 1
@article{JEP_2019__6__665_0, author = {Nicolas Guay and Vidas Regelskis and Curtis Wendlandt}, title = {Vertex representations for {Yangians} of {Kac-Moody} algebras}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {665--706}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.103}, zbl = {07114036}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.103/} }
TY - JOUR AU - Nicolas Guay AU - Vidas Regelskis AU - Curtis Wendlandt TI - Vertex representations for Yangians of Kac-Moody algebras JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 665 EP - 706 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.103/ DO - 10.5802/jep.103 LA - en ID - JEP_2019__6__665_0 ER -
%0 Journal Article %A Nicolas Guay %A Vidas Regelskis %A Curtis Wendlandt %T Vertex representations for Yangians of Kac-Moody algebras %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 665-706 %V 6 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.103/ %R 10.5802/jep.103 %G en %F JEP_2019__6__665_0
Nicolas Guay; Vidas Regelskis; Curtis Wendlandt. Vertex representations for Yangians of Kac-Moody algebras. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 665-706. doi : 10.5802/jep.103. https://jep.centre-mersenne.org/articles/10.5802/jep.103/
[AG19] - “An explicit isomorphism between quantum and classical ”, Transform. Groups (2019), 36 pages | arXiv | DOI
[AMR06] - “On the -matrix realization of Yangians and their representations”, Ann. Henri Poincaré 7 (2006) no. 7-8, p. 1269-1325 | DOI | MR | Zbl
[Ber89] - “Vertex operator representations of the quantum affine algebra ”, Lett. Math. Phys. 17 (1989) no. 3, p. 239-245 | DOI | MR
[BT19] - “Homomorphisms between different quantum toroidal and affine Yangian algebras”, J. Pure Appl. Algebra 223 (2019) no. 2, p. 867-899 | DOI | MR | Zbl
[BTM87] - “Level one representations of the simple affine Kac-Moody algebras in their homogeneous gradations”, Comm. Math. Phys. 111 (1987) no. 2, p. 181-246 | DOI | MR | Zbl
[CJ01] - “Realization of level one representations of at a root of unity”, Duke Math. J. 108 (2001) no. 1, p. 183-197 | DOI | MR | Zbl
[DK00] - “Weyl group extension of quantized current algebras”, Transform. Groups 5 (2000) no. 1, p. 35-59 | DOI | MR | Zbl
[Dri86] - “Degenerate affine Hecke algebras and Yangians”, Funktsional. Anal. i Prilozhen. 20 (1986) no. 1, p. 69-70 | MR | Zbl
[FJ88] - “Vertex representations of quantum affine algebras”, Proc. Nat. Acad. Sci. U.S.A. 85 (1988) no. 24, p. 9373-9377 | DOI | MR | Zbl
[FK81] - “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math. 62 (1980/81) no. 1, p. 23-66 | DOI | MR | Zbl
[FLM88] - Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[FT19] - “Shifted quantum affine algebras: integral forms in type A”, Arnold Math. J. (2019) | arXiv | DOI
[GNOS86] - “Vertex operators for non-simply-laced algebras”, Comm. Math. Phys. 107 (1986) no. 2, p. 179-212 | DOI | MR | Zbl
[GNW18] - “Coproduct for Yangians of affine Kac-Moody algebras”, Adv. Math. 338 (2018), p. 865-911 | DOI | MR | Zbl
[GRW19] - “Equivalences between three presentations of orthogonal and symplectic Yangians”, Lett. Math. Phys. 109 (2019) no. 2, p. 327-379 | DOI | MR | Zbl
[GTL13] - “Yangians and quantum loop algebras”, Selecta Math. (N.S.) 19 (2013) no. 2, p. 271-336 | DOI | MR | Zbl
[GTL16] - “Yangians, quantum loop algebras, and abelian difference equations”, J. Amer. Math. Soc. 29 (2016) no. 3, p. 775-824 | DOI | MR | Zbl
[Gua07] - “Affine Yangians and deformed double current algebras in type A”, Adv. Math. 211 (2007) no. 2, p. 436-484 | DOI | MR | Zbl
[IK96] - “A central extension of and its vertex representations”, Lett. Math. Phys. 37 (1996) no. 3, p. 319-328 | DOI | Zbl
[Ioh96] - “Bosonic representations of Yangian double with ”, J. Phys. A 29 (1996) no. 15, p. 4593-4621 | DOI | MR
[Jin90] - “Twisted vertex representations of quantum affine algebras”, Invent. Math. 102 (1990) no. 3, p. 663-690 | DOI | MR
[Jin98] - “Quantum Kac-Moody algebras and vertex representations”, Lett. Math. Phys. 44 (1998) no. 4, p. 261-271 | DOI | MR | Zbl
[Jin99] - “Level one representations of ”, Proc. Amer. Math. Soc. 127 (1999) no. 1, p. 21-27 | DOI | MR | Zbl
[Jin00] - “Quantum -algebras and representations of quantum affine algebras”, Comm. Algebra 28 (2000) no. 2, p. 829-844 | DOI | MR | Zbl
[JKM99] - “Level one representations of quantum affine algebras ”, Selecta Math. (N.S.) 5 (1999) no. 2, p. 243-255 | DOI | MR | Zbl
[JM96] - “Vertex operators of level-one -modules”, Lett. Math. Phys. 36 (1996) no. 2, p. 127-143 | DOI | MR | Zbl
[Kac90] - Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990 | DOI | Zbl
[Kas84] - “Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra”, J. Pure Appl. Algebra 34 (1984) no. 2-3, p. 265-275 | DOI | Zbl
[Kho97] - “Central extension of the Yangian double”, in Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr., vol. 2, Société Mathématique de France, Paris, 1997, p. 119-135 | MR | Zbl
[Kod19] - “Affine Yangian action on the Fock space”, Publ. RIMS, Kyoto Univ. 55 (2019) no. 1, p. 189-234 | DOI | MR | Zbl
[KSU97] - “A level-one representation of the quantum affine superalgebra ”, Comm. Math. Phys. 188 (1997) no. 2, p. 367-378 | DOI | MR | Zbl
[KT96] - “Yangian double”, Lett. Math. Phys. 36 (1996) no. 4, p. 373-402 | DOI | MR | Zbl
[Lev93] - “On PBW bases for Yangians”, Lett. Math. Phys. 27 (1993) no. 1, p. 37-42 | DOI | MR | Zbl
[LL04] - Introduction to vertex operator algebras and their representations, Progress in Math., vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl
[Mol07] - Yangians and classical Lie algebras, Math.Surveys and Monographs, vol. 143, American Mathematical Society, Providence, RI, 2007 | DOI | MR | Zbl
[MRY90] - “Toroidal Lie algebras and vertex representations”, Geom. Dedicata 35 (1990) no. 1-3, p. 283-307 | DOI | MR | Zbl
[Nak01] - “Quiver varieties and finite-dimensional representations of quantum affine algebras”, J. Amer. Math. Soc. 14 (2001) no. 1, p. 145-238 | DOI | MR | Zbl
[Neh03] - “An introduction to universal central extensions of Lie superalgebras”, in Groups, rings, Lie and Hopf algebras (St. John’s, NF, 2001), Math. Appl., vol. 555, Kluwer Acad. Publ., Dordrecht, 2003, p. 141-166 | DOI | MR | Zbl
[Sai98] - “Quantum toroidal algebras and their vertex representations”, Publ. RIMS, Kyoto Univ. 34 (1998) no. 2, p. 155-177 | DOI | MR | Zbl
[YZ18a] - “Cohomological Hall algebras and affine quantum groups”, Selecta Math. (N.S.) 24 (2018) no. 2, p. 1093-1119 | DOI | MR | Zbl
[YZ18b] - “The PBW theorem for the affine Yangians”, 2018 | arXiv | Zbl
Cité par Sources :