[Espaces de modules de faisceaux semistables par rapport à une polarisation kählérienne]
En utilisant le critère d’existence d’un bon espace de modules d’un champ d’Artin dû à Alper–Fedorchuk–Smyth, nous construisons un espace de modules propre de faisceaux de rang sur une variété projective complexe donnée, de classes de Chern fixées et qui sont Gieseker-Maruyama-semistables par rapport à une classe de Kähler fixée.
Using an existence criterion for good moduli spaces of Artin stacks by Alper–Fedorchuk–Smyth we construct a proper moduli space of rank two sheaves with fixed Chern classes on a given complex projective manifold that are Gieseker-Maruyama-semistable with respect to a fixed Kähler class.
Accepté le :
Publié le :
DOI : 10.5802/jep.116
Keywords: Kähler manifolds, moduli of coherent sheaves, algebraic stacks, good moduli spaces, semi-universal deformations, local quotient presentations
Mot clés : Variétés de Kähler, modules de faisceaux cohérents, champs algébriques, bons espaces de modules, déformations semi-universelles, présentations quotient locales
Daniel Greb 1 ; Matei Toma 2
@article{JEP_2020__7__233_0, author = {Daniel Greb and Matei Toma}, title = {Moduli spaces of sheaves that are semistable with respect to a {K\"ahler} polarisation}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {233--261}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.116}, zbl = {07152736}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.116/} }
TY - JOUR AU - Daniel Greb AU - Matei Toma TI - Moduli spaces of sheaves that are semistable with respect to a Kähler polarisation JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 233 EP - 261 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.116/ DO - 10.5802/jep.116 LA - en ID - JEP_2020__7__233_0 ER -
%0 Journal Article %A Daniel Greb %A Matei Toma %T Moduli spaces of sheaves that are semistable with respect to a Kähler polarisation %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 233-261 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.116/ %R 10.5802/jep.116 %G en %F JEP_2020__7__233_0
Daniel Greb; Matei Toma. Moduli spaces of sheaves that are semistable with respect to a Kähler polarisation. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 233-261. doi : 10.5802/jep.116. https://jep.centre-mersenne.org/articles/10.5802/jep.116/
[AFS17] - “Second flip in the Hassett-Keel program: existence of good moduli spaces”, Compositio Math. 153 (2017) no. 8, p. 1584-1609 | DOI | MR | Zbl
[AHLH18] - “Existence of moduli spaces for algebraic stacks”, 2018 | arXiv
[AHR15] - “A Luna étale slice theorem for algebraic stacks”, 2015 | arXiv
[AK16] - “Equivariant versal deformations of semistable curves”, Michigan Math. J. 65 (2016) no. 2, p. 227-250 | DOI | MR | Zbl
[Alp13] - “Good moduli spaces for Artin stacks”, Ann. Inst. Fourier (Grenoble) 63 (2013) no. 6, p. 2349-2402 | DOI | Numdam | MR | Zbl
[Alp15] - “Artin algebraization and quotient stacks”, 2015 | arXiv | Zbl
[Ant19] - “Criteria of separatedness and properness”, 2019, notes available at https://www.dpmms.cam.ac.uk/~sa443/papers/criteria.pdf
[BTT17] - “A continuity theorem for families of sheaves on complex surfaces”, J. Topology 10 (2017) no. 4, p. 995-1028 | DOI | MR | Zbl
[Dré04] - “Luna’s slice theorem and applications”, in Algebraic group actions and quotients, Hindawi Publ. Corp., Cairo, 2004, p. 39-89 | Zbl
[Eis95] - Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Math., vol. 150, Springer-Verlag, New York, 1995 | DOI | Zbl
[Fle78] - Deformationen holomorpher Abbildungen, Osnabrücker Schriften zur Mathematik (Reihe P), vol. 8, Fachbereich Mathematik, Univ. Osnabrük, 1978, available online at http://www.ruhr-uni-bochum.de/imperia/md/content/mathematik/lehrstuhli/deformationen.pdf
[Gie77] - “On the moduli of vector bundles on an algebraic surface”, Ann. of Math. (2) 106 (1977) no. 1, p. 45-60 | DOI | MR | Zbl
[GRT16a] - “Moduli of vector bundles on higher-dimensional base manifolds—construction and variation”, Internat. J. Math. 27 (2016) no. 7, article ID 1650054, 27 pages | DOI | MR | Zbl
[GRT16b] - “Variation of Gieseker moduli spaces via quiver GIT”, Geom. Topol. 20 (2016) no. 3, p. 1539-1610 | DOI | MR | Zbl
[GT17] - “Compact moduli spaces for slope-semistable sheaves”, Algebraic Geom. 4 (2017) no. 1, p. 40-78 | DOI | MR | Zbl
[Har77] - Algebraic geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, New York-Heidelberg, 1977 | Zbl
[Har10] - Deformation theory, Graduate Texts in Math., vol. 257, Springer, New York, 2010 | DOI | MR | Zbl
[HL10] - The geometry of moduli spaces of sheaves, Cambridge Math. Library, Cambridge University Press, Cambridge, 2010 | DOI | Zbl
[HMP98] - “Semistable quotients”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998) no. 2, p. 233-248 | Numdam | MR | Zbl
[JS12] - A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc., vol. 217, no. 1020, American Mathematical Society, Providence, RI, 2012 | DOI | Zbl
[Kem93] - Algebraic varieties, London Math. Society Lect. Note Ser., vol. 172, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl
[Knu71] - Algebraic spaces, Lect. Notes in Math., vol. 203, Springer-Verlag, Berlin-New York, 1971 | MR | Zbl
[KS90] - “A construction of maximal modular subspaces in local deformation theory”, Abh. Math. Sem. Univ. Hamburg 60 (1990), p. 17-36 | DOI | MR | Zbl
[Lan75] - “Valuative criteria for families of vector bundles on algebraic varieties”, Ann. of Math. (2) 101 (1975), p. 88-110 | DOI | MR | Zbl
[Lan83] - “Universal families of extensions”, J. Algebra 83 (1983) no. 1, p. 101-112 | DOI | MR | Zbl
[LMB00] - Champs algébriques, Ergeb. Math. Grenzgeb. (3), vol. 39, Springer-Verlag, Berlin, 2000 | Zbl
[LP97] - Lectures on vector bundles, Cambridge Studies in Advanced Math., vol. 54, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[Pal90] - “Deformations of complex spaces”, in Several complex variables. IV. Algebraic aspects of complex analysis (G. M. Khenkin, ed.), Encycl. Math. Sci., vol. 10, Springer-Verlag, Berlin, 1990, p. 105-194
[Ses67] - “Space of unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2) 85 (1967), p. 303-336 | DOI | MR | Zbl
[Sta19] - “The Stacks Project”, 2019, https://stacks.math.columbia.edu
[Tel08] - “Families of holomorphic bundles”, Commun. Contemp. Math. 10 (2008) no. 4, p. 523-551 | DOI | MR | Zbl
[Tom16] - “Bounded sets of sheaves on Kähler manifolds”, J. reine angew. Math. 710 (2016), p. 77-93 | DOI | Zbl
[Tom17] - “Properness criteria for families of coherent analytic sheaves”, 2017, to appear in Algebraic Geom. | arXiv
[Tom19] - “Bounded sets of sheaves on Kähler manifolds. II”, 2019 | arXiv | Zbl
Cité par Sources :