Extremal norms for fiber-bunched cocycles
Jairo Bochi; Eduardo Garibaldi
Journal de l'École polytechnique — Mathématiques, Volume 6  (2019), p. 947-1004

In traditional Ergodic Optimization, one seeks to maximize Birkhoff averages. The most useful tool in this area is the celebrated Mañé Lemma, in its various forms. In this paper, we prove a non-commutative Mañé Lemma, suited to the problem of maximization of Lyapunov exponents of linear cocycles or, more generally, vector bundle automorphisms. More precisely, we provide conditions that ensure the existence of an extremal norm, that is, a Finsler norm with respect to which no vector can be expanded in a single iterate by a factor bigger than the maximal asymptotic expansion rate. These conditions are essentially irreducibility and sufficiently strong fiber-bunching. Therefore we extend the classic concept of Barabanov norm, which is used in the study of the joint spectral radius. We obtain several consequences, including sufficient conditions for the existence of Lyapunov maximizing sets.

En optimisation ergodique traditionnelle, on cherche à maximiser des moyennes de Birkhoff. L’outil le plus utile dans ce domaine est le célèbre lemme de Mañé, sous ses diverses formes. Dans cet article, nous montrons un lemme de Mañé non commutatif, adapté au problème de la maximisation des exposants de Lyapunov de cocycles linéaires ou, plus généralement, des automorphismes de fibrés vectoriels. Plus précisément, nous fournissons des conditions qui garantissent l’existence d’une norme extrémale, c’est-à-dire une norme de Finsler pour laquelle aucun vecteur ne peut être dilaté en une seule itération par un facteur plus grand que le taux de croissance asymptotique maximal. Ces conditions sont essentiellement l’irréductibilité et un resserrement des fibres suffisamment fort. Nous étendons donc le concept classique de norme de Barabanov, utilisé dans l’étude du rayon spectral joint. Nous obtenons plusieurs conséquences, notamment des conditions suffisantes pour l’existence des ensembles maximisants de Lyapunov.

Received : 2019-02-01
Accepted : 2019-10-04
Published online : 2019-10-11
DOI : https://doi.org/10.5802/jep.109
Classification:  37H15,  37D20,  37D30,  15A60,  93D30
Keywords: Linear cocycle, extremal norm, Lyapunov exponent, ergodic optimization, joint spectral radius
@article{JEP_2019__6__947_0,
     author = {Jairo Bochi and Eduardo Garibaldi},
     title = {Extremal norms for fiber-bunched cocycles},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     pages = {947-1004},
     doi = {10.5802/jep.109},
     language = {en},
     url = {https://jep.centre-mersenne.org/item/JEP_2019__6__947_0}
}
Bochi, Jairo; Garibaldi, Eduardo. Extremal norms for fiber-bunched cocycles. Journal de l'École polytechnique — Mathématiques, Volume 6 (2019) , pp. 947-1004. doi : 10.5802/jep.109. https://jep.centre-mersenne.org/item/JEP_2019__6__947_0/

[1] E. Akin - The general topology of dynamical systems, Graduate Studies in Math., vol. 1, American Mathematical Society, Providence, RI, 1993 | MR 1219737 | Zbl 0781.54025

[2] V. M. Alekseev & M. V. Yakobson - “Symbolic dynamics and hyperbolic dynamic systems”, Phys. Rep. 75 (1981) no. 5, p. 287-325 | Article | MR 630253

[3] D. V. Anosov - “Roughness of geodesic flows on compact Riemannian manifolds of negative curvature”, Dokl. Akad. Nauk SSSR 145 (1962), p. 707-709 | MR 143156 | Zbl 0135.40401

[4] N. Aoki & K. Hiraide - Topological theory of dynamical systems. Recent advances, North-Holland Math. Library, vol. 52, North-Holland Publishing Co., Amsterdam, 1994 | Zbl 0798.54047

[5] L. Arnold - Random dynamical systems, Springer Monographs in Math., Springer-Verlag, Berlin, 1998 | Article | Zbl 0906.34001

[6] A. Avila & J. Bochi - “A uniform dichotomy for generic SL(2,) cocycles over a minimal base”, Bull. Soc. math. France 135 (2007) no. 3, p. 407-417 | Article | MR 2430187 | Zbl 1217.37017

[7] A. Avila & M. Viana - “Simplicity of Lyapunov spectra: a sufficient criterion”, Portugal. Math. 64 (2007) no. 3, p. 311-376 | Article | MR 2350698 | Zbl 1137.37001

[8] A. Avila & M. Viana - “Extremal Lyapunov exponents: an invariance principle and applications”, Invent. Math. 181 (2010) no. 1, p. 115-189 | Article | MR 2651382 | Zbl 1196.37054

[9] K. Ball - “An elementary introduction to modern convex geometry”, in Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, p. 1-58 | MR 1491097 | Zbl 0901.52002

[10] N. E. Barabanov - “On the Lyapunov exponent of discrete inclusions. I”, Avtomat. i Telemekh. (1988) no. 2, p. 40-46 | MR 940263 | Zbl 0665.93043

[11] M. A. Berger & Y. Wang - “Bounded semigroups of matrices”, Linear Algebra Appl. 166 (1992), p. 21-27 | Article | MR 1152485 | Zbl 0818.15006

[12] V. D. Blondel & J. N. Tsitsiklis - “The boundedness of all products of a pair of matrices is undecidable”, Systems Control Lett. 41 (2000) no. 2, p. 135-140 | Article | MR 1831027 | Zbl 0985.93042

[13] J. Bochi - “The multiplicative ergodic theorem of Oseledets”, 2008, Note available at http://www.mat.uc.cl/~jairo.bochi/docs/oseledets.pdf

[14] J. Bochi - “Ergodic optimization of Birkhoff averages and Lyapunov exponents”, in Proc. Int. Cong. of Math. (Rio de Janeiro, 2018), Vol. 2, World Scientific, 2019, p. 1821-1842

[15] J. Bochi & N. Gourmelon - “Some characterizations of domination”, Math. Z. 263 (2009) no. 1, p. 221-231 | Article | MR 2529495 | Zbl 1181.37032

[16] J. Bochi & I. D. Morris - “Continuity properties of the lower spectral radius”, Proc. London Math. Soc. (3) 110 (2015) no. 2, p. 477-509 | Article | MR 3335285 | Zbl 1311.15022

[17] J. Bochi, R. Potrie & A. Sambarino - “Anosov representations and dominated splittings”, J. Eur. Math. Soc. (JEMS) 21 (2019) no. 11, p. 3343-3414 | Article | MR 4012341

[18] J. Bochi & M. Rams - “The entropy of Lyapunov-optimizing measures of some matrix cocycles”, J. Modern Dyn. 10 (2016), p. 255-286 | Article | MR 3538864 | Zbl 1346.15030

[19] C. Bonatti & M. Viana - “Lyapunov exponents with multiplicity 1 for deterministic products of matrices”, Ergodic Theory Dynam. Systems 24 (2004) no. 5, p. 1295-1330 | Article | MR 2104587 | Zbl 1087.37017

[20] C. Bonatti, L. J. Díaz & M. Viana - Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. Mathematical Physics, III, Encyclopaedia of Math. Sciences, vol. 102, Springer-Verlag, Berlin, 2005 | Zbl 1060.37020

[21] C. Bonatti, X. Gómez-Mont & M. Viana - “Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices”, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) no. 4, p. 579-624 | Article | Zbl 1025.37018

[22] T. Bousch - “La condition de Walters”, Ann. Sci. École Norm. Sup. (4) 34 (2001) no. 2, p. 287-311 | Article | MR 1841880 | Zbl 0988.37036

[23] T. Bousch - “Le lemme de Mañé-Conze-Guivarc’h pour les systèmes amphidynamiques rectifiables”, Ann. Fac. Sci. Toulouse Math. (6) 20 (2011) no. 1, p. 1-14 | Article | MR 2829831 | Zbl 1221.37088

[24] T. Bousch & O. Jenkinson - “Cohomology classes of dynamically non-negative C k functions”, Invent. Math. 148 (2002) no. 1, p. 207-217 | Article | MR 1892849 | Zbl 1079.37505

[25] T. Bousch & J. Mairesse - “Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture”, J. Amer. Math. Soc. 15 (2002) no. 1, p. 77-111 | Article | MR 1862798 | Zbl 1057.49007

[26] R. Bowen - “Periodic points and measures for Axiom A diffeomorphisms”, Trans. Amer. Math. Soc. 154 (1971), p. 377-397 | Article | MR 282372 | Zbl 0212.29103

[27] X. Bressaud & A. Quas - “Rate of approximation of minimizing measures”, Nonlinearity 20 (2007) no. 4, p. 845-853 | Article | MR 2307883 | Zbl 1121.37003

[28] E. Breuillard & K. Fujiwara - “On the joint spectral radius for isometries of non-positively curved spaces and uniform growth”, 2018 | arXiv:1804.00748

[29] M. I. Brin & J. B. Pesin - “Partially hyperbolic dynamical systems”, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), p. 170-212 | MR 343316 | Zbl 0304.58017

[30] A. Cicone, N. Guglielmi & V. Y. Protasov - “Linear switched dynamical systems on graphs”, Nonlinear Anal. Hybrid Syst. 29 (2018), p. 165-186 | Article | MR 3795595 | Zbl 1391.37035

[31] F. Colonius & W. Kliemann - The dynamics of control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000 | Article | Zbl 0998.93502

[32] G. Contreras - “Ground states are generically a periodic orbit”, Invent. Math. 205 (2016) no. 2, p. 383-412 | Article | MR 3529118 | Zbl 1378.37047

[33] G. Contreras, A. O. Lopes & P. Thieullen - “Lyapunov minimizing measures for expanding maps of the circle”, Ergodic Theory Dynam. Systems 21 (2001) no. 5, p. 1379-1409 | Article | MR 1855838 | Zbl 0997.37016

[34] J. Conze & Y. Guivarc’h - “Croissance des sommes ergodiques et principe variationnel”, circa 1993, Unpublished manuscript

[35] D. Coronel, A. Navas & M. Ponce - “On bounded cocycles of isometries over minimal dynamics”, J. Modern Dyn. 7 (2013) no. 1, p. 45-74 | Article | MR 3071465 | Zbl 1417.37045

[36] S. Crovisier & R. Potrie - “Introduction to partially hyperbolic dynamics”, 2015, Notes ICTP

[37] E. Garibaldi - Ergodic optimization in the expanding case. Concepts, tools and applications, SpringerBriefs in Math., Springer, Cham, 2017 | Article | Zbl 1417.37016

[38] E. Garibaldi & J. T. A. Gomes - “Aubry set for asymptotically sub-additive potentials”, Stochastic Dyn. 16 (2016) no. 2, article ID 1660009, 13 pages | Article | MR 3470558 | Zbl 1357.37006

[39] N. Gourmelon - “Adapted metrics for dominated splittings”, Ergodic Theory Dynam. Systems 27 (2007) no. 6, p. 1839-1849 | Article | MR 2371598 | Zbl 1127.37031

[40] M.-R. Herman - “Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2”, Comment. Math. Helv. 58 (1983) no. 3, p. 453-502 | Article | MR 727713 | Zbl 0554.58034

[41] M. W. Hirsch, C. C. Pugh & M. Shub - Invariant manifolds, Lect. Notes in Math., vol. 583, Springer-Verlag, Berlin-New York, 1977 | Zbl 0355.58009

[42] O. Jenkinson - “Ergodic optimization”, Discrete Contin. Dynam. Systems 15 (2006) no. 1, p. 197-224 | Article | MR 2191393 | Zbl 1116.37017

[43] O. Jenkinson - “Ergodic optimization in dynamical systems”, Ergodic Theory Dynam. Systems 39 (2019) no. 10, p. 2593-2618 | Article | MR 4000508 | Zbl 07114041

[44] R. Jungers - The joint spectral radius. Theory and applications, Lect. Notes in Control and Information Sci., vol. 385, Springer-Verlag, Berlin, 2009 | Article | MR 2507938

[45] B. Kalinin - “Livšic theorem for matrix cocycles”, Ann. of Math. (2) 173 (2011) no. 2, p. 1025-1042 | Article | MR 2776369 | Zbl 1238.37008

[46] B. Kalinin & V. Sadovskaya - “Cocycles with one exponent over partially hyperbolic systems”, Geom. Dedicata 167 (2013), p. 167-188 | Article | MR 3128775 | Zbl 1301.37017

[47] A. Katok & B. Hasselblatt - Introduction to the modern theory of dynamical systems, Encyclopedia of Math. and its Appl., vol. 54, Cambridge University Press, Cambridge, 1995 | Article | MR 1326374 | Zbl 0878.58020

[48] Y. Katznelson - An introduction to harmonic analysis, Dover Publications, Inc., New York, 1976 | Zbl 0352.43001

[49] V. Kozyakin - “An explicit Lipschitz constant for the joint spectral radius”, Linear Algebra Appl. 433 (2010) no. 1, p. 12-18 | Article | MR 2645060 | Zbl 1198.15006

[50] U. Krengel - Ergodic theorems, De Gruyter Studies in Math., vol. 6, Walter de Gruyter & Co., Berlin, 1985 | Article | MR 797411 | Zbl 0575.28009

[51] A. O. Lopes & P. Thieullen - “Sub-actions for Anosov diffeomorphisms”, in Geometric methods in dynamics. II, Astérisque, vol. 287, Société Mathématique de France, Paris, 2003, p. 135-146 | Zbl 1045.37010

[52] J. N. Mather - “Action minimizing invariant measures for positive definite Lagrangian systems”, Math. Z. 207 (1991) no. 2, p. 169-207 | Article | MR 1109661 | Zbl 0696.58027

[53] I. D. Morris - “A sufficient condition for the subordination principle in ergodic optimization”, Bull. London Math. Soc. 39 (2007) no. 2, p. 214-220 | Article | MR 2323451 | Zbl 1127.37012

[54] I. D. Morris - “A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory”, Adv. Math. 225 (2010) no. 6, p. 3425-3445 | Article | MR 2729011 | Zbl 1205.15032

[55] I. D. Morris - “Mather sets for sequences of matrices and applications to the study of joint spectral radii”, Proc. London Math. Soc. (3) 107 (2013) no. 1, p. 121-150 | Article | MR 3083190 | Zbl 1277.15009

[56] E. Oregón-Reyes - “A new inequality about matrix products and a Berger-Wang formula”, 2017 | arXiv:1710.00639

[57] Y. B. Pesin - Lectures on partial hyperbolicity and stable ergodicity, Zurich Lectures in Advanced Math., European Mathematical Society, Zürich, 2004 | Article | MR 2068774 | Zbl 1098.37024

[58] M. Philippe, R. Essick, G. E. Dullerud & R. M. Jungers - “Stability of discrete-time switching systems with constrained switching sequences”, Automatica J. IFAC 72 (2016), p. 242-250 | Article | MR 3542938 | Zbl 1344.93088

[59] A. A. Pinto & D. A. Rand - “Smoothness of holonomies for codimension 1 hyperbolic dynamics”, Bull. London Math. Soc. 34 (2002) no. 3, p. 341-352 | Article | MR 1887706 | Zbl 1027.37016

[60] C. Pugh, M. Shub & A. Wilkinson - “Hölder foliations”, Duke Math. J. 86 (1997) no. 3, p. 517-546 | Article | Zbl 0877.58045

[61] C. Pugh, M. Shub & A. Wilkinson - “Hölder foliations, revisited”, J. Modern Dyn. 6 (2012) no. 1, p. 79-120 | Article | Zbl 1259.37024

[62] C. C. Pugh - “On arbitrary sequences of isomorphisms in R m R m ”, Trans. Amer. Math. Soc. 184 (1973), p. 387-400 | Article | MR 326778

[63] L. Qiu, Y. Zhang & C.-K. Li - “Unitarily invariant metrics on the Grassmann space”, SIAM J. Matrix Anal. Appl. 27 (2005) no. 2, p. 507-531 | Article | MR 2179686 | Zbl 1099.15024

[64] G.-C. Rota & G. Strang - “A note on the joint spectral radius”, Nederl. Akad. Wetensch. Indag. Math. 22 (1960), p. 379-381 | Article | MR 147922 | Zbl 0095.09701

[65] D. Ruelle - Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics, Encyclopedia of Math. and its Appl., vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978 | Zbl 0401.28016

[66] K. Sakai - “Shadowing properties of -hyperbolic homeomorphisms”, Topology Appl. 112 (2001) no. 3, p. 229-243 | Article | MR 1824161 | Zbl 0983.37024

[67] S. V. Savchenko - “Homological inequalities for finite topological Markov chains”, Funkcional. Anal. i Priložen. 33 (1999) no. 3, p. 91-93 | Article | MR 1724277 | Zbl 0995.37001

[68] J. Schmeling & R. Siegmund-Schultze - “Hölder continuity of the holonomy maps for hyperbolic basic sets. I”, in Ergodic theory and related topics, III (Güstrow, 1990), Lect. Notes in Math., vol. 1514, Springer, Berlin, 1992, p. 174-191 | Article | Zbl 0766.58043

[69] K. Sigmund - “On minimal centers of attraction and generic points”, J. reine angew. Math. 295 (1977), p. 72-79 | Article | MR 482710 | Zbl 0354.54025

[70] S. Smale - “Differentiable dynamical systems”, Bull. Amer. Math. Soc. 73 (1967), p. 747-817 | Article | MR 228014 | Zbl 0202.55202

[71] G. W. Stewart - Matrix algorithms. Vol. I. Basic decompositions, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998 | Article | Zbl 0910.65012

[72] M. Viana - “Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents”, Ann. of Math. (2) 167 (2008) no. 2, p. 643-680 | Article | MR 2415384 | Zbl 1173.37019

[73] P. Walters - An introduction to ergodic theory, Graduate Texts in Math., vol. 79, Springer-Verlag, New York-Berlin, 1982 | MR 648108 | Zbl 0475.28009

[74] F. Wirth - “The generalized spectral radius and extremal norms”, Linear Algebra Appl. 342 (2002), p. 17-40 | Article | MR 1873424 | Zbl 0996.15020