Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero
[Intégration de fonctions de classe motivique exponentielle, uniforme dans tous les corps locaux de caractéristique nulle]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 45-78.

Par une cascade de généralisations, nous développons une théorie de l’intégration motivique qui fonctionne uniformément dans tous les corps locaux non archimédiens de caractéristique nulle, en surmontant des difficultés reliées à la ramification et à la caractéristique résiduelle petite. Nous définissons une classe de fonctions – appelées fonctions de classe motivique exponentielle – dont nous démontrons qu’elle est stable par intégration et par transformation de Fourier, étendant des résultats et des définitions de [10], [11] et [5]. Nous démontrons des résultats uniformes reliés à la rationalité et à différents types de lieux. Un ingrédient clef est une forme raffinée de l’élimination des quantificateurs de Denef-Pas, qui nous permet de comprendre des ensembles définissables dans le groupe de valeur et dans le corps valué.

Through a cascade of generalizations, we develop a theory of motivic integration which works uniformly in all non-archimedean local fields of characteristic zero, overcoming some of the difficulties related to ramification and small residue field characteristics. We define a class of functions, called functions of motivic exponential class, which we show to be stable under integration and under Fourier transformation, extending results and definitions from [10], [11] and [5]. We prove uniform results related to rationality and to various kinds of loci. A key ingredient is a refined form of Denef-Pas quantifier elimination which allows us to understand definable sets in the value group and in the valued field.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.63
Classification : 14E18, 03C10, 11S80, 11Q25, 40J99
Keywords: Motivic integration, motivic Fourier transforms, motivic exponential functions, $p$-adic integration, non-archimedean geometry, Denef-Pas cell decomposition, quantifier elimination, uniformity in all local fields
Mot clés : Intégration motivique, transformation de Fourier motivique, fonctions motiviques exponentielles, intégration $p$-adique, géométrie non archimédienne, décomposition cellulaire de Denef-Pas, élimination des quantificateurs, uniformité dans tous les corps locaux
Raf Cluckers 1 ; Immanuel Halupczok 2

1 Université de Lille, Laboratoire Painlevé, CNRS - UMR 8524 Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France and KU Leuven, Department of Mathematics Celestijnenlaan 200B, B-3001 Leuven, Belgium
2 Lehrstuhl für Algebra und Zahlentheorie, Mathematisches Institut Universitätsstr. 1, 40225 Düsseldorf, Germany
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2018__5__45_0,
     author = {Raf Cluckers and Immanuel Halupczok},
     title = {Integration of functions of~motivic~exponential~class, uniform~in~all~non-archimedean local fields of characteristic zero},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {45--78},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.63},
     zbl = {06988573},
     mrnumber = {3732692},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.63/}
}
TY  - JOUR
AU  - Raf Cluckers
AU  - Immanuel Halupczok
TI  - Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 45
EP  - 78
VL  - 5
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.63/
DO  - 10.5802/jep.63
LA  - en
ID  - JEP_2018__5__45_0
ER  - 
%0 Journal Article
%A Raf Cluckers
%A Immanuel Halupczok
%T Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 45-78
%V 5
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.63/
%R 10.5802/jep.63
%G en
%F JEP_2018__5__45_0
Raf Cluckers; Immanuel Halupczok. Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 45-78. doi : 10.5802/jep.63. https://jep.centre-mersenne.org/articles/10.5802/jep.63/

[1] A. Aizenbud & V. Drinfeld - “The wave front set of the Fourier transform of algebraic measures”, Israel J. Math. 207 (2015) no. 2, p. 527-580 | MR | Zbl

[2] Ş. Basarab - “Relative elimination of quantifiers for Henselian valued fields”, Ann. Pure Appl. Logic 53 (1991) no. 1, p. 51-74 | DOI | MR | Zbl

[3] R. Cluckers - “Presburger sets and p-minimal fields”, J. Symbolic Logic 68 (2003), p. 153-162 | DOI | MR | Zbl

[4] R. Cluckers & J. Denef - “Orbital integrals for linear groups”, J. Inst. Math. Jussieu 7 (2008) no. 2, p. 269-289 | MR | Zbl

[5] R. Cluckers, J. Gordon & I. Halupczok - “Integrability of oscillatory functions on local fields: transfer principles”, Duke Math. J. 163 (2014) no. 8, p. 1549-1600 | DOI | MR | Zbl

[6] R. Cluckers, J. Gordon & I. Halupczok - “Uniform analysis on local fields and applications to orbital integrals” (2017), arXiv:1703.03381

[7] R. Cluckers & L. Lipshitz - “Fields with analytic structure”, J. Eur. Math. Soc. (JEMS) 13 (2011), p. 1147-1223 | DOI | MR | Zbl

[8] R. Cluckers & F. Loeser - “b-minimality”, J. Math. Logic 7 (2007) no. 2, p. 195-227 | MR | Zbl

[9] R. Cluckers & F. Loeser - “Constructible motivic functions and motivic integration”, Invent. Math. 173 (2008) no. 1, p. 23-121 | MR | Zbl

[10] R. Cluckers & F. Loeser - “Constructible exponential functions, motivic Fourier transform and transfer principle”, Ann. of Math. (2) 171 (2010), p. 1011-1065 | DOI | MR | Zbl

[11] R. Cluckers & F. Loeser - “Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero”, J. reine angew. Math. 701 (2015), p. 1-31 | MR | Zbl

[12] P. J. Cohen - “Decision procedures for real and p-adic fields”, Comm. Pure Appl. Math. 22 (1969), p. 131-151 | DOI | MR | Zbl

[13] J. Denef - “The rationality of the Poincaré series associated to the p-adic points on a variety”, Invent. Math. 77 (1984), p. 1-23 | DOI | Zbl

[14] J. Denef - “p-adic semialgebraic sets and cell decomposition”, J. reine angew. Math. 369 (1986), p. 154-166

[15] J. Denef - “On the Degree of Igusa’s local zeta function”, Amer. J. Math. 109 (1987), p. 991-1008 | DOI | MR | Zbl

[16] J. Denef - “Report on Igusa’s local zeta function”, in Séminaire Bourbaki, Astérisque, vol. 201-203, Société Mathématique de France, 1991, p. 359-386 | Zbl

[17] J. Denef - “Arithmetic and geometric applications of quantifier elimination for valued fields”, in Model theory, algebra, and geometry (D. Haskell, A. Pillay & C. Steinhorn, eds.), MSRI Publications, vol. 39, Cambridge University Press, 2000, p. 173-198 | MR

[18] J. Denef & F. Loeser - “Definable sets, motives and p-adic integrals”, J. Amer. Math. Soc. 14 (2001) no. 2, p. 429-469 | DOI | MR | Zbl

[19] J. Flenner - “Relative decidability and definability in henselian valued fields”, J. Symbolic Logic 76 (2011) no. 4, p. 1240-1260 | DOI | MR | Zbl

[20] H. Hironaka - “Resolution of singularities of an algebraic variety over a field of characteristic zero. I”, Ann. of Math. (2) 79 (1964) no. 1, p. 109-203 | MR | Zbl

[21] E. Hrushovski & D. Kazhdan - “Integration in valued fields”, in Algebraic geometry and number theory, Progress in Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, p. 261-405 | DOI | MR | Zbl

[22] J. Igusa - An introduction to the theory of local zeta functions, Studies in advanced mathematics, American Mathematical Society, Providence, RI, 2000 | Zbl

[23] F. Loeser & J. Sebag - “Motivic integration on smooth rigid varieties and invariants of degenerations”, Duke Math. J. 119 (2003) no. 2, p. 315-344 | MR | Zbl

[24] A. Macintyre - “On definable subsets of p-adic fields”, J. Symbolic Logic 41 (1976), p. 605-610 | DOI | MR | Zbl

[25] J. Nicaise & J. Sebag - “Invariant de Serre et fibre de Milnor analytique”, Comptes Rendus Mathématique 341 (2005) no. 1, p. 21-24 | DOI | MR | Zbl

[26] J. Nicaise & J. Sebag - “Motivic Serre invariants, ramification, and the analytic Milnor fiber”, Invent. Math. 168 (2007) no. 1, p. 133-173 | MR | Zbl

[27] J. Pas - “Uniform p-adic cell decomposition and local zeta functions”, J. reine angew. Math. 399 (1989), p. 137-172 | MR | Zbl

[28] J. Pas - “Cell decomposition and local zeta functions in a tower of unramified extensions of a p-adic field”, Proc. London Math. Soc. (3) 60 (1990) no. 1, p. 37-67 | DOI | MR | Zbl

[29] S. Rideau - “Some properties of analytic difference valued fields”, J. Inst. Math. Jussieu 16 (2017) no. 3, p. 447-499 | DOI | MR | Zbl

[30] J. Sebag - “Intégration motivique sur les schémas formels”, Bull. Soc. math. France 132 (2004) no. 1, p. 1-54 | DOI | Numdam | Zbl

Cité par Sources :