An equivalence between truncations of categorified quantum groups and Heisenberg categories
; ;
Journal de l'École polytechnique — Mathématiques, Volume 5 (2018) , pp. 197-238.

We introduce a simple diagrammatic 2-category 𝒜 that categorifies the image of the Fock space representation of the Heisenberg algebra and the basic representation of 𝔰𝔩 . We show that 𝒜 is equivalent to a truncation of the Khovanov–Lauda categorified quantum group 𝒰 of type A , and also to a truncation of Khovanov’s Heisenberg 2-category . This equivalence is a categorification of the principal realization of the basic representation of 𝔰𝔩 . As a result of the categorical equivalences described above, certain actions of induce actions of 𝒰, and vice versa. In particular, we obtain an explicit action of 𝒰 on representations of symmetric groups. We also explicitly compute the Grothendieck group of the truncation of . The 2-category 𝒜 can be viewed as a graphical calculus describing the functors of i-induction and i-restriction for symmetric groups, together with the natural transformations between their compositions. The resulting computational tool is used to give simple diagrammatic proofs of (apparently new) representation theoretic identities.

Nous introduisons une 2-catégorie élémentaire 𝒜 qui catégorifie l’image de l’espace de Fock comme représentation de l’algèbre de Heisenberg, ainsi que la représentation basique de 𝔰𝔩 . Nous montrons que 𝒜 est équivalente à une troncation du groupe quantique catégorifié de Khovanov–Lauda 𝒰 en type A , ainsi qu’à une troncation de la 2-catégorie de Heisenberg  introduite par Khovanov. Cette équivalence se comprend comme une catégorification de la réalisation principale de la représentation basique de 𝔰𝔩 . Il résulte des équivalences catégoriques précédentes que certaines actions de induisent des actions de 𝒰, et vice versa. En particulier, nous obtenons une action explicite de 𝒰 sur les représentations des groupes symétriques. Nous calculons également explicitement le groupe de Grothendieck de la troncation de . La 2-catégorie 𝒜 s’interprète comme un calcul graphique décrivant les foncteurs de i-induction et i-restriction pour les groupes symétriques, ainsi que les transformations naturelles entre leurs composées. Nous utilisons l’outil de calcul qui en découle pour donner des preuves diagrammatiques simples d’identités (apparemment nouvelles) en théorie des représentations.

Received: 2017-04-11
Accepted: 2017-12-04
Published online: 2017-12-12
DOI: https://doi.org/10.5802/jep.68
Classification: 17B10,  17B65,  20C30,  16D90
Keywords: Categorification, Heisenberg algebra, Fock space, basic representation, principal realization, symmetric group
@article{JEP_2018__5__197_0,
     author = {Hoel Queffelec and Alistair Savage and Oded Yacobi},
     title = {An equivalence between truncations of categorified quantum groups and Heisenberg~categories},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     pages = {197-238},
     doi = {10.5802/jep.68},
     zbl = {06988578},
     mrnumber = {3738513},
     language = {en},
     url={jep.centre-mersenne.org/item/JEP_2018__5__197_0/}
}
Queffelec, Hoel; Savage, Alistair; Yacobi, Oded. An equivalence between truncations of categorified quantum groups and Heisenberg categories. Journal de l'École polytechnique — Mathématiques, Volume 5 (2018) , pp. 197-238. doi : 10.5802/jep.68. https://jep.centre-mersenne.org/item/JEP_2018__5__197_0/

[BHLW17] A. Beliakova, K. Habiro, A. D. Lauda & B. Webster - “Current algebras and categorified quantum groups”, J. London Math. Soc. (2) 95 (2017) no. 1, p. 248-276 | Article | MR 3653092 | Zbl 06775077

[BK09a] J. Brundan & A. Kleshchev - “Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras”, Invent. Math. 178 (2009) no. 3, p. 451-484 | Article | MR 2551762 | Zbl 1201.20004

[BK09b] J. Brundan & A. Kleshchev - “Graded decomposition numbers for cyclotomic Hecke algebras”, Adv. Math. 222 (2009) no. 6, p. 1883-1942 | Article | MR 2562768 | Zbl 1241.20003

[CKL13] S. Cautis, J. Kamnitzer & A. Licata - “Coherent sheaves on quiver varieties and categorification”, Math. Ann. 357 (2013) no. 3, p. 805-854 | Article | MR 3118615 | Zbl 1284.14016

[CL11] S. Cautis & A. Licata - “Vertex operators and 2-representations of quantum affine algebras”, arXiv:1112.6189, 2011

[CL12] S. Cautis & A. Licata - “Heisenberg categorification and Hilbert schemes”, Duke Math. J. 161 (2012) no. 13, p. 2469-2547 | Article | MR 2988902 | Zbl 1263.14020

[CL15] S. Cautis & A. D. Lauda - “Implicit structure in 2-representations of quantum groups”, Selecta Math. (N.S.) 21 (2015) no. 1, p. 201-244 | Article | MR 3300416 | Zbl 1370.17017

[CLLS16] S. Cautis, A. D. Lauda, A. Licata & J. Sussan - “W-algebras from Heisenberg categories”, J. Inst. Math. Jussieu (2016), online, doi:10.1017/S1474748016000189 | Zbl 06963839

[CR08] J. Chuang & R. Rouquier - “Derived equivalences for symmetric groups and 𝔰𝔩 2 -categorification”, Ann. of Math. (2) 167 (2008) no. 1, p. 245-298 | MR 2373155 | Zbl 1144.20001

[FH91] W. Fulton & J. Harris - Representation theory, Graduate Texts in Math., vol. 129, Springer-Verlag, New York, 1991

[Kac90] V. G. Kac - Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990 | Zbl 0716.17022

[Kho14] M. Khovanov - “Heisenberg algebra and a graphical calculus”, Fund. Math. 225 (2014) no. 1, p. 169-210 | Article | MR 3205569 | Zbl 1304.18019

[KL10] M. Khovanov & A. D. Lauda - “A categorification of quantum sl (n)”, Quantum Topol. 1 (2010) no. 1, p. 1-92 | MR 2628852 | Zbl 1206.17015

[Kle05] A. Kleshchev - Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005 | MR 2165457 | Zbl 1080.20011

[Kle14] A. Kleshchev - “Modular representation theory of symmetric groups”, arXiv:1405.3326, 2014 | Zbl 1373.20010

[Lem16] J. Lemay - “Geometric realizations of the basic representation of 𝔤𝔩 ^ r ”, Selecta Math. (N.S.) 22 (2016) no. 1, p. 341-387 | Article | MR 3437840

[LRS] A. Licata, D. Rosso & A. Savage - “Categorification and Heisenberg doubles arising from towers of algebras”, J. Combinatorial Theory Ser. A, to appear, arXiv:1610.01862

[LS10] A. Licata & A. Savage - “Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves”, Selecta Math. (N.S.) 16 (2010) no. 2, p. 201-240 | Article | MR 2679481 | Zbl 1213.14011

[LS13] A. Licata & A. Savage - “Hecke algebras, finite general linear groups, and Heisenberg categorification”, Quantum Topol. 4 (2013) no. 2, p. 125-185 | Article | MR 3032820 | Zbl 1279.20006

[MS17] M. Mackaay & A. Savage - “Degenerate cyclotomic Hecke algebras and higher level Heisenberg categorification”, arXiv:1705.03066, 2017 | Zbl 06893263

[MSV13] M. Mackaay, M. Stošić & P. Vaz - “A diagrammatic categorification of the q-Schur algebra”, Quantum Topol. 4 (2013) no. 1, p. 1-75 | MR 2998837 | Zbl 1272.81098

[Nag09] K. Nagao - “Quiver varieties and Frenkel-Kac construction”, J. Algebra 321 (2009) no. 12, p. 3764-3789 | Article | MR 2517812 | Zbl 1196.17021

[Nak98] H. Nakajima - “Quiver varieties and Kac-Moody algebras”, Duke Math. J. 91 (1998) no. 3, p. 515-560 | Article | MR 1604167 | Zbl 0970.17017

[QR16] H. Queffelec & D. E. V. Rose - “The 𝔰𝔩 n foam 2-category: A combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality”, Adv. Math. 302 (2016), p. 1251-1339 | Article | MR 3545951 | Zbl 1360.57025

[Rou08] R. Rouquier - “2-Kac-Moody algebras”, arXiv:0812.5023v1, 2008

[RS17] D. Rosso & A. Savage - “A general approach to Heisenberg categorification via wreath product algebras”, Math. Z. 286 (2017) no. 1-2, p. 603-655 | Article | MR 3648512 | Zbl 1366.18006

[Sav06] A. Savage - “A geometric boson-fermion correspondence”, C. R. Math. Rep. Acad. Sci. Canada 28 (2006) no. 3, p. 65-84 | MR 2310488 | Zbl 1137.17025

[SVV17] P. Shan, M. Varagnolo & E. Vasserot - “On the center of quiver Hecke algebras”, Duke Math. J. 166 (2017) no. 6, p. 1005-1101 | Article | MR 3635899 | Zbl 1380.20005

[VV11] M. Varagnolo & E. Vasserot - “Canonical bases and KLR-algebras”, J. reine angew. Math. 659 (2011), p. 67-100 | MR 2837011 | Zbl 1229.17019

[Web12] B. Webster - “A categorical action on quantized quiver varieties”, arXiv:1208.5957, 2012

[Zhe14] H. Zheng - “Categorification of integrable representations of quantum groups”, Acta Mech. Sinica (English Ed.) 30 (2014) no. 6, p. 899-932 | Article | MR 3200442 | Zbl 1343.17012