[Accouplement d’Euler-Poincaré, indice de Dirac et accouplement elliptique des modules de Harish-Chandra]
Let
Soit
Accepté le :
Publié le :
DOI : 10.5802/jep.32
Keywords: Harish-Chandra module, elliptic representation, Euler-Poincaré pairing, elliptic pairing, Dirac cohomology
Mots-clés : Module de Harish-Chandra, représentation elliptique, accouplement d’Euler-Poincaré, accouplement elliptique, cohomologie de Dirac
David Renard 1

@article{JEP_2016__3__209_0, author = {David Renard}, title = {Euler-Poincar\'e pairing, {Dirac} index and elliptic pairing for {Harish-Chandra} modules}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {209--229}, publisher = {ole polytechnique}, volume = {3}, year = {2016}, doi = {10.5802/jep.32}, zbl = {1356.22014}, mrnumber = {3491807}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.32/} }
TY - JOUR AU - David Renard TI - Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules JO - Journal de l’École polytechnique — Mathématiques PY - 2016 SP - 209 EP - 229 VL - 3 PB - ole polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.32/ DO - 10.5802/jep.32 LA - en ID - JEP_2016__3__209_0 ER -
%0 Journal Article %A David Renard %T Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules %J Journal de l’École polytechnique — Mathématiques %D 2016 %P 209-229 %V 3 %I ole polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.32/ %R 10.5802/jep.32 %G en %F JEP_2016__3__209_0
David Renard. Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules. Journal de l’École polytechnique — Mathématiques, Tome 3 (2016), pp. 209-229. doi : 10.5802/jep.32. https://jep.centre-mersenne.org/articles/10.5802/jep.32/
[1] - “On Fredholm index in Banach spaces”, Integral Equations Operator Theory 25 (1996) no. 1, p. 1-34 | DOI | MR
[2] - “On elliptic tempered characters”, Acta Math. 171 (1993) no. 1, p. 73-138 | DOI | MR | Zbl
[3] - “A geometric construction of the discrete series for semisimple Lie groups”, Invent. Math. 42 (1977), p. 1-62 | DOI | MR | Zbl
[4] - “Cyclic homology and the Selberg principle”, J. Funct. Anal. 109 (1992) no. 2, p. 289-330 | DOI | MR | Zbl
[5] - “Intégrales orbitales sur les groupes de Lie réductifs”, Ann. Sci. École Norm. Sup. (4) 27 (1994) no. 5, p. 573-609 | DOI | Numdam | Zbl
[6] - “Formule d’inversion des intégrales orbitales sur les groupes de Lie réductifs”, J. Funct. Anal. 134 (1995) no. 1, p. 100-182 | DOI | MR | Zbl
[7] - “Algebraic and analytic Dirac induction for graded affine Hecke algebras” (2012), arXiv:1201.2130 | Zbl
[8] - “Characters of Springer representations on elliptic conjugacy classes”, Duke Math. J. 162 (2013) no. 2, p. 201-223 | DOI | MR | Zbl
[9] - “On the
[10] - “Une preuve courte du principe de Selberg pour un groupe
[11] - “Supertempered distributions on real reductive groups”, in Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, p. 139-153 | MR | Zbl
[12] - “Dirac cohomology, elliptic representations and endoscopy”, in Representations of Reductive Groups: In Honor of the 60th Birthday of David A. Vogan, Jr., Progress in Math., vol. 312, Springer International Publishing, 2015, p. 241-276 | DOI | MR | Zbl
[13] - “Dirac cohomology of some Harish-Chandra modules”, Transform. Groups 14 (2009) no. 1, p. 163-173 | DOI | MR | Zbl
[14] - “Dirac cohomology, unitary representations and a proof of a conjecture of Vogan”, J. Amer. Math. Soc. 15 (2002) no. 1, p. 185-202 | DOI | MR | Zbl
[15] - Dirac operators in representation theory, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 2006 | Zbl
[16] - “The Euler-Poincaré pairing of Harish-Chandra modules”, arXiv:1509.01755v1
[17] - “Cuspidal geometry of
[18] - Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995 | MR | Zbl
[19] - “Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the
[20] - “Tamagawa numbers”, Ann. of Math. (2) 127 (1988) no. 3, p. 629-646 | DOI | MR | Zbl
[21] - “Pseudo-coefficients très cuspidaux et
[22] - Clifford algebras and Lie theory, Ergeb. Math. Grenzgeb. (3), vol. 58, Springer, Heidelberg, 2013 | DOI | MR | Zbl
[23] - “Dirac operator and the discrete series”, Ann. of Math. (2) 96 (1972), p. 1-30 | DOI | MR | Zbl
[24] - “Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules”, arXiv:1409.4166 | DOI | Zbl
[25] - “Representation theory and sheaves on the Bruhat-Tits building”, Publ. Math. Inst. Hautes Études Sci. 85 (1997), p. 97-191 | DOI | Numdam | Zbl
[26] - “Caractérisation des intégrales orbitales sur un groupe réductif
[27] - “On formal dimensions for reductive
[28] - Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
- - “Dirac cohomology and orthogonality relations for weight modules”, Pacific Journal of Mathematics 319 (2022) no. 1, p. 129-152 | DOI:10.2140/pjm.2022.319.129 | Zbl:1504.17013
- - “Dirac index and twisted characters”, Transactions of the American Mathematical Society 371 (2019) no. 3, p. 1701-1733 | DOI:10.1090/tran/7318 | Zbl:1405.22016
- - “Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules”, Journal de l'École Polytechnique – Mathématiques 3 (2016), p. 209-229 | DOI:10.5802/jep.32 | Zbl:1356.22014
Cité par 3 documents. Sources : zbMATH