An indiscrete Bieberbach theorem: from amenable CAT(0) groups to Tits buildings
[Bieberbach indiscret : des groupes CAT(0) moyennables aux immeubles de Tits]
Journal de l’École polytechnique — Mathématiques, Tome 2 (2015) , pp. 333-383.

Nous étudions les espaces à courbure négative qui admettent une action cocompacte d’un groupe moyennable. Lorsque le groupe de toutes les isométries est sans point fixe global à l’infini, une classification est établie ; le bord à l’infini est alors un immeuble sphérique. Si en outre l’espace est géodésiquement complet, il s’agit nécessairement d’un produit de plats, d’espaces symétriques, d’arbres bi-réguliers et d’immeubles de Bruhat–Tits.

Lorsqu’un immeuble sphérique apparaît comme bord d’un espace CAT(0) propre, nous proposons un critère qui implique la condition de Moufang. Nous en déduisons qu’un immeuble euclidien irréductible localement fini de dimension 2 est de Bruhat–Tits si et seulement si son groupe d’automorphismes est cocompact et opère transitivement sur les chambres à l’infini.

Non-positively curved spaces admitting a cocompact isometric action of an amenable group are investigated. A classification is established under the assumption that there is no global fixed point at infinity under the full isometry group. The visual boundary is then a spherical building. When the ambient space is geodesically complete, it must be a product of flats, symmetric spaces, biregular trees and Bruhat–Tits buildings.

We provide moreover a sufficient condition for a spherical building arising as the visual boundary of a proper CAT(0) space to be Moufang, and deduce that an irreducible locally finite Euclidean building of dimension 2 is a Bruhat–Tits building if and only if its automorphism group acts cocompactly and chamber-transitively at infinity.

Reçu le : 2015-03-26
Accepté le : 2015-09-23
DOI : https://doi.org/10.5802/jep.26
Classification : 53C20,  53C24,  43A07,  53C23,  20F65,  20E42
Mots clés: Immeuble, espace symétrique, espace CAT(0), groupe moyennable, courbure négative, groupe localement compact
@article{JEP_2015__2__333_0,
     author = {Pierre-Emmanuel Caprace and Nicolas Monod},
     title = {An indiscrete Bieberbach theorem: from~amenable CAT$(0)$ groups to Tits buildings},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     pages = {333--383},
     publisher = {\'Ecole polytechnique},
     volume = {2},
     year = {2015},
     doi = {10.5802/jep.26},
     zbl = {1332.53048},
     mrnumber = {3438730},
     language = {en},
     url = {jep.centre-mersenne.org/item/JEP_2015__2__333_0/}
}
Caprace, Pierre-Emmanuel; Monod, Nicolas. An indiscrete Bieberbach theorem: from amenable CAT$(0)$ groups to Tits buildings. Journal de l’École polytechnique — Mathématiques, Tome 2 (2015) , pp. 333-383. doi : 10.5802/jep.26. https://jep.centre-mersenne.org/item/JEP_2015__2__333_0/

[1] P. Abramenko & K. S. Brown - Buildings. Theory and applications, Graduate Texts in Math., vol. 248, Springer, New York, 2008 | Zbl 1214.20033

[2] S. Adams & W. Ballmann - “Amenable isometry groups of Hadamard spaces”, Math. Ann. 312 (1998) no. 1, p. 183-195 | Article | MR 1645958 | Zbl 0913.53012

[3] M. T. Anderson - “On the fundamental group of nonpositively curved manifolds”, Math. Ann. 276 (1987) no. 2, p. 269-278 | Article | MR 870965

[4] R. Arens - “Topologies for homeomorphism groups”, Amer. J. Math. 68 (1946), p. 593-610 | Article | MR 19916 | Zbl 0061.24306

[5] A. Avez - “Variétés riemanniennes sans points focaux”, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), p. A188-A191 | Zbl 0188.26402

[6] R. Azencott & E. N. Wilson - “Homogeneous manifolds with negative curvature. I”, Trans. Amer. Math. Soc. 215 (1976), p. 323-362 | Article | MR 394507 | Zbl 0293.53017

[7] W. Ballmann - Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin | MR 1377265 | Zbl 0834.53003

[8] W. Ballmann & M. Brin - “Diameter rigidity of spherical polyhedra”, Duke Math. J. 97 (1999) no. 2, p. 235-259 | Article | MR 1682245 | Zbl 0980.53045

[9] A. Balser & A. Lytchak - “Centers of convex subsets of buildings”, Ann. Global Anal. Geom. 28 (2005) no. 2, p. 201-209 | Article | MR 2180749

[10] A. Balser & A. Lytchak - “Building-like spaces”, J. Math. Kyoto Univ. 46 (2006) no. 4, p. 789-804 | Article | MR 2320351 | Zbl 1170.53305

[11] M. R. Bridson & A. Haefliger - Metric spaces of non-positive curvature, Grundlehren Math. Wiss., vol. 319, Springer, Berlin, 1999 | MR 1744486 | Zbl 0988.53001

[12] M. Burger & V. Schroeder - “Amenable groups and stabilizers of measures on the boundary of a Hadamard manifold”, Math. Ann. 276 (1987) no. 3, p. 505-514 | Article | MR 875344 | Zbl 0599.53036

[13] K. Burns & R. Spatzier - “On topological Tits buildings and their classification”, Publ. Math. Inst. Hautes Études Sci. 65 (1987), p. 5-34 | Article | Numdam | Zbl 0643.53036

[14] P.-E. Caprace - “Lectures on proper CAT (0) spaces and their isometry groups”, in Geometric group theory, IAS/Park City Math. Ser., vol. 21, American Mathematical Society, Providence, R.I., 2014, p. 91-125 | Article | MR 3329726

[15] P.-E. Caprace, Y. de Cornulier, N. Monod & R. Tessera - “Amenable hyperbolic groups”, J. Eur. Math. Soc. (JEMS) 17 (2015) no. 11, p. 2903-2947 | Article | MR 3420526 | Zbl 1330.43002

[16] P.-E. Caprace & N. Monod - “Isometry groups of non-positively curved spaces: structure theory”, J. Topology 2 (2009) no. 4, p. 661-700 | Article | MR 2574740 | Zbl 1209.53060

[17] P.-E. Caprace & N. Monod - “Fixed points and amenability in non-positive curvature”, Math. Ann. 356 (2013) no. 4, p. 1303-1337 | Article | MR 3072802 | Zbl 1280.53037

[18] T. Foertsch & A. Lytchak - “The de Rham decomposition theorem for metric spaces”, Geom. Funct. Anal. 18 (2008) no. 1, p. 120-143 | MR 2399098 | Zbl 1159.53026

[19] R. Geoghegan & P. Ontaneda - “Boundaries of cocompact proper CAT (0) spaces”, Topology 46 (2007) no. 2, p. 129-137 | MR 2313068 | Zbl 1124.20026

[20] D. Gromoll & J. A. Wolf - “Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature”, Bull. Amer. Math. Soc. 77 (1971), p. 545-552 | Article | MR 281122 | Zbl 0237.53037

[21] T. Grundhöfer, L. Kramer, H. Van Maldeghem & R. M. Weiss - “Compact totally disconnected Moufang buildings”, Tôhoku Math. J. (2) 64 (2012) no. 3, p. 333-360 | Article | MR 2979286 | Zbl 1269.20024

[22] T. Grundhöfer & H. Van Maldeghem - “Topological polygons and affine buildings of rank three”, Atti Sem. Mat. Fis. Univ. Modena 38 (1990) no. 2, p. 459-479 | MR 1076466 | Zbl 0725.51003

[23] D. P. Guralnik & E. L. Swenson - “A ‘transversal’ for minimal invariant sets in the boundary of a CAT(0) group”, Trans. Amer. Math. Soc. 365 (2013) no. 6, p. 3069-3095 | Article | MR 3034459 | Zbl 1326.20046

[24] E. Heintze - “On homogeneous manifolds of negative curvature”, Math. Ann. 211 (1974), p. 23-34 | Article | MR 353210 | Zbl 0273.53042

[25] B. Kleiner - “The local structure of length spaces with curvature bounded above”, Math. Z. 231 (1999) no. 3, p. 409-456 | MR 1704987 | Zbl 0940.53024

[26] B. Kleiner & B. Leeb - “Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings”, Publ. Math. Inst. Hautes Études Sci. 86 (1997), p. 115-197 | Article | Numdam | Zbl 0910.53035

[27] H. B. Lawson Jr. & S.-T. Yau - “Compact manifolds of nonpositive curvature”, J. Differential Geom. 7 (1972), p. 211-228 | Article | MR 334083 | Zbl 0266.53035

[28] B. Leeb - A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften, vol. 326, Universität Bonn Mathematisches Institut, Bonn, 2000 | MR 1934160 | Zbl 1005.53031

[29] A. Lytchak - “Rigidity of spherical buildings and joins”, Geom. Funct. Anal. 15 (2005) no. 3, p. 720-752 | Article | MR 2221148 | Zbl 1083.53044

[30] A. Lytchak & V. Schroeder - “Affine functions on CAT (κ)-spaces”, Math. Z. 255 (2007) no. 2, p. 231-244 | MR 2262730 | Zbl 1197.53044

[31] N. Monod - “Superrigidity for irreducible lattices and geometric splitting”, J. Amer. Math. Soc. 19 (2006) no. 4, p. 781-814 | Article | MR 2219304 | Zbl 1105.22006

[32] N. Monod & P. Py - “An exotic deformation of the hyperbolic space”, Amer. J. Math. 136 (2014) no. 5, p. 1249-1299 | Article | MR 3263898 | Zbl 1304.53030

[33] B. Mühlherr, H. P. Petersson & R. M. Weiss - Descent in the buildings, Annals of Mathematics Studies, vol. 190, Princeton University Press, Princeton, N.J., 2015 | MR 3364836 | Zbl 1338.51002

[34] R. K. Oliver - “On Bieberbach’s analysis of discrete Euclidean groups”, Proc. Amer. Math. Soc. 80 (1980) no. 1, p. 15-21 | MR 574501 | Zbl 0434.20029

[35] P. Papasoglu & E. Swenson - “Boundaries and JSJ decompositions of CAT(0)-groups”, Geom. Funct. Anal. 19 (2009) no. 2, p. 559-590 | MR 2545250 | Zbl 1226.20038

[36] E. Swenson - “On cyclic CAT (0) domains of discontinuity”, Groups Geom. Dyn. 7 (2013) no. 3, p. 737-750 | Article | MR 3095716 | Zbl 1314.53075

[37] J. Tits - Buildings of spherical type and finite BN-pairs, Lect. Notes in Math., vol. 386, Springer-Verlag, Berlin, 1974 | MR 470099 | Zbl 0295.20047

[38] J. Tits - “Endliche Spiegelungsgruppen, die als Weylgruppen auftreten”, Invent. Math. 43 (1977) no. 3, p. 283-295 | Article | MR 460485 | Zbl 0399.20037

[39] J. Tits - Résumés des cours au Collège de France 1973–2000, Documents Mathématiques, vol. 12, Société Mathématique de France, Paris, 2013 | Zbl 1286.01001

[40] J. Tits & R. M. Weiss - Moufang polygons, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002 | Zbl 1010.20017

[41] H. Van Maldeghem & K. Van Steen - “Characterizations by automorphism groups of some rank 3 buildings. I. Some properties of half strongly-transitive triangle buildings”, Geom. Dedicata 73 (1998) no. 2, p. 119-142 | Article | MR 1652033 | Zbl 0938.51007

[42] R. M. Weiss - The structure of spherical buildings, Princeton University Press, Princeton, N.J., 2003 | MR 2034361

[43] R. M. Weiss - The structure of affine buildings, Annals of Mathematics Studies, vol. 168, Princeton University Press, Princeton, N.J., 2009 | MR 2468338 | Zbl 1166.51001