On démontre un résultat de stabilité faible pour les équations de Navier-Stokes tridimensionnelles, incompressibles et homogènes. Plus précisément on étudie le problème suivant : si une suite de données initiales , bornée dans un espace invariant d’échelle, converge faiblement vers une donnée qui engendre une solution globale régulière, est-ce que engendre une solution globale régulière ? Une réponse affirmative à cette question en général aurait pour conséquence la régularité globale pour toute donnée initiale, via les exemples ou avec . On introduit donc un nouveau concept de convergence faible (convergence faible remise à l’échelle) sous lequel on peut donner une réponse affirmative. La démonstration repose sur des décompositions en profils dans des espaces de régularité anisotrope, et leur propagation par les équations de Navier-Stokes.
We prove a weak stability result for the three-dimensional homogeneous incompressible Navier-Stokes system. More precisely, we investigate the following problem: if a sequence of initial data, bounded in some scaling invariant space, converges weakly to an initial data which generates a global smooth solution, does generate a global smooth solution? A positive answer in general to this question would imply global regularity for any data, through the following examples or with . We therefore introduce a new concept of weak convergence (rescaled weak convergence) under which we are able to give a positive answer. The proof relies on profile decompositions in anisotropic spaces and their propagation by the Navier-Stokes equations.
Accepté le :
Publié le :
DOI : 10.5802/jep.84
Keywords: Navier-Stokes equations, anisotropy, Besov spaces, profile decomposition
Mot clés : Équations de Navier-Stokes, anisotropie, espaces de Besov, décompositions en profils
Hajer Bahouri 1 ; Jean-Yves Chemin 2 ; Isabelle Gallagher 3
@article{JEP_2018__5__843_0, author = {Hajer Bahouri and Jean-Yves Chemin and Isabelle Gallagher}, title = {On the stability of global solutions to the three-dimensional {Navier-Stokes} equations}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {843--911}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.84}, zbl = {06988594}, mrnumber = {3877168}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.84/} }
TY - JOUR AU - Hajer Bahouri AU - Jean-Yves Chemin AU - Isabelle Gallagher TI - On the stability of global solutions to the three-dimensional Navier-Stokes equations JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 843 EP - 911 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.84/ DO - 10.5802/jep.84 LA - en ID - JEP_2018__5__843_0 ER -
%0 Journal Article %A Hajer Bahouri %A Jean-Yves Chemin %A Isabelle Gallagher %T On the stability of global solutions to the three-dimensional Navier-Stokes equations %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 843-911 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.84/ %R 10.5802/jep.84 %G en %F JEP_2018__5__843_0
Hajer Bahouri; Jean-Yves Chemin; Isabelle Gallagher. On the stability of global solutions to the three-dimensional Navier-Stokes equations. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 843-911. doi : 10.5802/jep.84. https://jep.centre-mersenne.org/articles/10.5802/jep.84/
[1] - “On the stability of global solutions to Navier-Stokes equations in the space”, J. Math. Pures Appl. (9) 83 (2004) no. 6, p. 673-697 | DOI | MR | Zbl
[2] - Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wiss., vol. 343, Springer, Heidelberg, 2011 | MR | Zbl
[3] - “A general wavelet-based profile decomposition in the critical embedding of function spaces”, Confluentes Math. 3 (2011) no. 3, p. 387-411 | DOI | MR | Zbl
[4] - “On the stability in weak topology of the set of global solutions to the Navier-Stokes equations”, Arch. Rational Mech. Anal. 209 (2013) no. 2, p. 569-629 | DOI | MR | Zbl
[5] - “High frequency approximation of solutions to critical nonlinear wave equations”, Amer. J. Math. 121 (1999) no. 1, p. 131-175 | DOI | MR | Zbl
[6] - “On the lack of compactness in the 2D critical Sobolev embedding”, J. Funct. Anal. 260 (2011) no. 1, p. 208-252 | DOI | MR | Zbl
[7] - “Lack of compactness in the 2D critical Sobolev embedding, the general case”, J. Math. Pures Appl. (9) 101 (2014) no. 4, p. 415-457 | DOI | MR | Zbl
[8] - “A Fourier approach to the profile decomposition in Orlicz spaces”, Math. Res. Lett. 21 (2014) no. 1, p. 33-54 | DOI | MR | Zbl
[9] - “La propriété de Fatou dans les espaces de Besov homogènes”, Comptes Rendus Mathématique 349 (2011) no. 15-16, p. 837-840 | DOI | Zbl
[10] - “Ill-posedness of the Navier-Stokes equations in a critical space in 3D”, J. Funct. Anal. 255 (2008) no. 9, p. 2233-2247 | DOI | MR | Zbl
[11] - “Convergence of solutions of -systems or how to blow bubbles”, Arch. Rational Mech. Anal. 89 (1985) no. 1, p. 21-56 | DOI | MR | Zbl
[12] - “Remarques sur l’existence globale pour le système de Navier-Stokes incompressible”, SIAM J. Math. Anal. 23 (1992) no. 1, p. 20-28 | DOI | Zbl
[13] - “Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel”, J. Anal. Math. 77 (1999), p. 27-50 | DOI | Zbl
[14] - “Large, global solutions to the Navier-Stokes equations, slowly varying in one direction”, Trans. Amer. Math. Soc. 362 (2010) no. 6, p. 2859-2873 | DOI | MR | Zbl
[15] - “The role of spectral anisotropy in the resolution of the three-dimensional Navier-Stokes equations”, in Studies in phase space analysis with applications to PDEs, Progr. Nonlinear Differential Equations Appl., vol. 84, Birkhäuser/Springer, New York, 2013, p. 53-79 | DOI | MR | Zbl
[16] - “Sums of large global solutions to the incompressible Navier-Stokes equations”, J. reine angew. Math. 681 (2013), p. 65-82 | MR
[17] - “Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes”, J. Differential Equations 121 (1995) no. 2, p. 314-328 | Zbl
[18] - “On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations”, Comm. Math. Phys. 272 (2007) no. 2, p. 529-566 | MR | Zbl
[19] - “On the Navier-Stokes initial value problem. I”, Arch. Rational Mech. Anal. 16 (1964), p. 269-315 | DOI | MR | Zbl
[20] - “Profile decomposition for solutions of the Navier-Stokes equations”, Bull. Soc. math. France 129 (2001) no. 2, p. 285-316 | DOI | Numdam | MR | Zbl
[21] - “Asymptotics and stability for global solutions to the Navier-Stokes equations”, Ann. Inst. Fourier (Grenoble) 53 (2003) no. 5, p. 1387-1424 | DOI | Numdam | MR | Zbl
[22] - “A profile decomposition approach to the Navier-Stokes regularity criterion”, Math. Ann. 355 (2013) no. 4, p. 1527-1559 | DOI | Zbl
[23] - “Microlocal defect measures”, Comm. Partial Differential Equations 16 (1991) no. 11, p. 1761-1794 | DOI | MR | Zbl
[24] - “Description du défaut de compacité de l’injection de Sobolev”, ESAIM Contrôle Optim. Calc. Var. 3 (1998), p. 213-233
[25] - “The second iterate for the Navier-Stokes equation”, J. Funct. Anal. 255 (2008) no. 9, p. 2248-2264 | DOI | MR | Zbl
[26] - “Solutions in of the Navier-Stokes initial value problem”, Arch. Rational Mech. Anal. 89 (1985) no. 3, p. 267-281 | DOI | MR
[27] - “Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable”, J. Funct. Anal. 261 (2011) no. 11, p. 3181-3210 | DOI | MR | Zbl
[28] - “Stability to the global large solutions of 3-D Navier-Stokes equations”, Adv. in Math. 225 (2010) no. 3, p. 1248-1284 | DOI | MR
[29] - “Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces” (2017), arXiv:1704.00560
[30] - “Blowup theory for the critical nonlinear Schrödinger equations revisited”, Internat. Math. Res. Notices (2005) no. 46, p. 2815-2828 | DOI | Zbl
[31] - “The resolution of the Navier-Stokes equations in anisotropic spaces”, Rev. Mat. Iberoamericana 15 (1999) no. 1, p. 1-36 | DOI | MR | Zbl
[32] - “Analysis of the lack of compactness in the critical Sobolev embeddings”, J. Funct. Anal. 161 (1999) no. 2, p. 384-396 | DOI | MR | Zbl
[33] - “Minimal -initial data for potential Navier-Stokes singularities” (2012), arXiv:1201.1592 | Zbl
[34] - “Minimal -initial data for potential Navier-Stokes singularities”, SIAM J. Math. Anal. 45 (2013) no. 3, p. 1448-1459 | DOI | MR | Zbl
[35] - “Strong -solutions of the Navier-Stokes equation in , with applications to weak solutions”, Math. Z. 187 (1984) no. 4, p. 471-480 | DOI | MR
[36] - “An alternative approach to regularity for the Navier-Stokes equations in critical spaces”, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) no. 2, p. 159-187 | DOI | Numdam | MR | Zbl
[37] - “Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation”, Acta Math. 201 (2008) no. 2, p. 147-212 | MR | Zbl
[38] - “On the defect of compactness for the Strichartz estimates of the Schrödinger equations”, J. Differential Equations 175 (2001) no. 2, p. 353-392 | MR | Zbl
[39] - “Profile decompositions for critical Lebesgue and Besov space embeddings”, Indiana Univ. Math. J. 59 (2010) no. 5, p. 1801-1830 | DOI | MR | Numdam | Zbl
[40] - “Well-posedness for the Navier-Stokes equations”, Adv. in Math. 157 (2001) no. 1, p. 22-35 | MR | Zbl
[41] - Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002 | MR | Zbl
[42] - “Essai sur le mouvement d’un liquide visqueux emplissant l’espace”, Acta Math. 63 (1933), p. 193-248 | DOI | Zbl
[43] - “Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique”, J. Math. Pures Appl. 12 (1933), p. 1-82 | Zbl
[44] - “The concentration-compactness principle in the calculus of variations. The limit case. I”, Rev. Mat. Iberoamericana 1 (1985) no. 1, p. 145-201 | DOI | MR | Zbl
[45] - “The concentration-compactness principle in the calculus of variations. The limit case. II”, Rev. Mat. Iberoamericana 1 (1985) no. 2, p. 45-121 | DOI | MR | Zbl
[46] - “Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D”, Internat. Math. Res. Notices (1998) no. 8, p. 399-425 | DOI | Zbl
[47] - “Wavelets, paraproducts, and Navier-Stokes equations”, in Current developments in mathematics, 1996 (Cambridge, MA), Int. Press, Boston, MA, 1997, p. 105-212 | Zbl
[48] - “Équation anisotrope de Navier-Stokes dans des espaces critiques”, Rev. Mat. Iberoamericana 21 (2005) no. 1, p. 179-235 | DOI | Zbl
[49] - “Asymptotic behavior of global solutions to the Navier-Stokes equations in ”, Rev. Mat. Iberoamericana 14 (1998) no. 1, p. 71-93 | DOI | MR
[50] - “Behaviour of Navier-Stokes solutions with data in with ”, in progress
[51] - Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 3, Walter de Gruyter & Co., Berlin, 1996 | MR | Zbl
[52] - “Minimal initial data for potential Navier-Stokes singularities”, J. Funct. Anal. 260 (2011) no. 3, p. 879-891 | DOI | MR | Zbl
[53] - “A global compactness result for elliptic boundary value problems involving limiting nonlinearities”, Math. Z. 187 (1984) no. 4, p. 511-517 | DOI | MR | Zbl
[54] - “-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations”, Proc. Edinburgh Math. Soc. 115 (1990) no. 3-4, p. 193-230 | DOI | MR | Zbl
[55] - Concentration compactness. Functional-analytic grounds and applications, Imperial College Press, London, 2007 | Zbl
[56] - Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983 | MR | Zbl
[57] - Interpolation theory, function spaces, differential operators, Johann Ambrosius Barth, Heidelberg, 1995 | Zbl
[58] - “The Navier-Stokes initial value problem in ”, Arch. Rational Mech. Anal. 74 (1980) no. 3, p. 219-230 | DOI | MR | Zbl
Cité par Sources :