Nous montrons que le flot de Kähler-Ricci tordu sur une variété kählérienne compacte converge vers le flot des bords libres mobiles, dans une certaine limite d’échelle. Ceci conduit à un nouveau phénomène de formation de singularités et de changement topologique qui peut être vu comme une généralisation complexe du phénomène abondamment étudié de la formation de chocs dans la théorie des équations de Jacobi et des lois de conservation hyperboliques (notamment dans le modèle d’adhésion en cosmologie). En particulier, nous montrons comment retrouver le flot de Hele-Shaw (croissance du laplacien) dans des domaines 2D croissants à partir du flot de Ricci. Comme il sera expliqué ailleurs, la limite d’échelle en question apparaît comme la limite à température nulle de certains systèmes multi-particules sur .
We show that the twisted Kähler-Ricci flow on a compact Kähler manifold converges to a flow of moving free boundaries, in a certain scaling limit. This leads to a new phenomenon of singularity formation and topology change which can be seen as a complex generalization of the extensively studied formation of shocks in Hamilton-Jacobi equations and hyperbolic conservation laws (notably, in the adhesion model in cosmology). In particular we show how to recover the Hele-Shaw flow (Laplacian growth) of growing 2D domains from the Ricci flow. As will be explained elsewhere the scaling limit in question arises as the zero-temperature limit of a certain many particle system on .
Accepté le :
Publié le :
DOI : 10.5802/jep.77
Keywords: Kähler-Ricci flow, Kähler manifold, free boundary, Hele-Shaw flow, Hamilton-Jacobi equation
Mot clés : Flot de Kähler-Ricci, variété kählérienne, flot de Hele-Shaw, équation de Hamilton-Jacobi
Robert J. Berman 1 ; Chinh H. Lu 2
@article{JEP_2018__5__519_0, author = {Robert J. Berman and Chinh H. Lu}, title = {From the {K\"ahler-Ricci} flow to~moving~free~boundaries and shocks}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {519--563}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.77}, zbl = {06988587}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.77/} }
TY - JOUR AU - Robert J. Berman AU - Chinh H. Lu TI - From the Kähler-Ricci flow to moving free boundaries and shocks JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 519 EP - 563 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.77/ DO - 10.5802/jep.77 LA - en ID - JEP_2018__5__519_0 ER -
%0 Journal Article %A Robert J. Berman %A Chinh H. Lu %T From the Kähler-Ricci flow to moving free boundaries and shocks %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 519-563 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.77/ %R 10.5802/jep.77 %G en %F JEP_2018__5__519_0
Robert J. Berman; Chinh H. Lu. From the Kähler-Ricci flow to moving free boundaries and shocks. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 519-563. doi : 10.5802/jep.77. https://jep.centre-mersenne.org/articles/10.5802/jep.77/
[Alb94] - “On the structure of singular sets of convex functions”, Calc. Var. Partial Differential Equations 2 (1994) no. 1, p. 17-27 | MR | Zbl
[AZS81] - “The large-scale structure of the universe. I. General properties. One-dimensional and two-dimensional models”, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint (1981) no. 100, 31 pages | MR | Zbl
[BB13] - “Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties”, Ann. Fac. Sci. Toulouse Math. (6) 22 (2013) no. 4, p. 649-711 | DOI | Numdam | Zbl
[BBGZ13] - “A variational approach to complex Monge-Ampère equations”, Publ. Math. Inst. Hautes Études Sci. 117 (2013), p. 179-245 | DOI | Zbl
[BBWN11] - “Fekete points and convergence towards equilibrium measures on complex manifolds”, Acta Math. Acad. Sci. Hungar. 207 (2011) no. 1, p. 1-27 | MR | Zbl
[BE84] - “On Hopf’s formulas for solutions of Hamilton-Jacobi equations”, Nonlinear Anal. 8 (1984) no. 11, p. 1373-1381 | DOI | MR | Zbl
[Ber13] - “From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit” (2013), arXiv:1307.3008
[Ber14] - “Determinantal point processes and fermions on complex manifolds: large deviations and bosonization”, Comm. Math. Phys. 327 (2014) no. 1, p. 1-47 | MR | Zbl
[BK74] - “The smoothness of solutions to nonlinear variational inequalities”, Indiana Univ. Math. J. 23 (1973/74), p. 831-844 | DOI | MR
[BL12] - “Pluripotential energy”, Potential Anal. 36 (2012) no. 1, p. 155-176 | MR | Zbl
[Bog99] - “Singularities of viscosity solutions of Hamilton-Jacobi equations”, in Singularity theory and differential equations (Kyoto, 1999), Sūrikaisekikenkyūsho Kōkyūroku, vol. 1111, 1999, p. 138-143 | MR | Zbl
[Cao85] - “Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds”, Invent. Math. 81 (1985) no. 2, p. 359-372 | Zbl
[CEL84] - “Some properties of viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. 282 (1984) no. 2, p. 487-502 | DOI | MR | Zbl
[CG12] - “Exponential convergence for a convexifying equation”, ESAIM Contrôle Optim. Calc. Var. 18 (2012) no. 3, p. 611-620 | DOI | Numdam | MR | Zbl
[CL83] - “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. 277 (1983) no. 1, p. 1-42
[CL12] - “Kähler-Ricci flow and the Minimal Model Program for projective varieties” (2012), arXiv:math.AG/0603064 | DOI | MR | Zbl
[CS16] - “The twisted Kähler-Ricci flow”, J. reine angew. Math. 716 (2016), p. 179-205 | Zbl
[CZ17] - “Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds” (2017), arXiv:1702.05230
[DHH + 08] - “Numerical Kähler-Einstein metric on the third del Pezzo”, Comm. Math. Phys. 282 (2008) no. 2, p. 357-393 | Zbl
[DS11] - “Liouville quantum gravity and KPZ”, Invent. Math. 185 (2011) no. 2, p. 333-393 | MR | Zbl
[EGZ11] - “Viscosity solutions to degenerate complex Monge-Ampère equations”, Comm. Pure Appl. Math. 64 (2011) no. 8, p. 1059-1094, Corrigendum, Ibid. 70 (2017), no. 5, p. 815-821 | DOI | Zbl
[EGZ16] - “Weak solutions to degenerate complex Monge-Ampère flows II”, Adv. Math. 293 (2016), p. 37-80 | DOI | Zbl
[Gir03] - “On the convex hull of a Brownian excursion with parabolic drift”, Stochastic Process. Appl. 106 (2003) no. 1, p. 41-62 | MR | Zbl
[GMS91] - Nonlinear random waves and turbulence in nondispersive media: waves, rays, particles, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1991 | Zbl
[GV06] - Conformal and potential analysis in Hele-Shaw cells, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2006
[GZ05] - “Intrinsic capacities on compact Kähler manifolds”, J. Geom. Anal. 15 (2005) no. 4, p. 607-639 | DOI | Zbl
[GZ17] - “Regularizing properties of the twisted Kähler-Ricci flow”, J. reine angew. Math. 729 (2017), p. 275-304 | Zbl
[Ham82] - “Three-manifolds with positive Ricci curvature”, J. Differential Geom. 17 (1982) no. 2, p. 255-306 | DOI | MR | Zbl
[HS02] - “Hele-Shaw flow on hyperbolic surfaces”, J. Math. Pures Appl. (9) 81 (2002) no. 3, p. 187-222 | DOI | MR | Zbl
[HSvdW14] - “The Zeldovich approximation: key to understanding cosmic web complexity”, Mon. Not. Roy. Astron. Soc. 437 (2014) no. 4, p. 3442-3472 | DOI
[Hul16] - Permanental point processes on real tori, Chalmers Univ. of Tech., 2016, Thesis of Licentiate
[HvdWV + 12] - “The sticky geometry of the cosmic web” (2012), arXiv:1205.1669, Abstract to video publication of the Symposium on Computational Geometry 2012 (SoCG’12, Chapel Hill, NC, USA): www.youtube.com/watch?v=wI12X2zczqI | DOI
[KPSM92] - “Coherent structures in the universe and the adhesion model”, Astrophysical J., Part 1 393 (1992) no. 2, p. 437-449 | DOI
[LR86] - “Hopf formula and multitime Hamilton-Jacobi equations”, Proc. Amer. Math. Soc. 96 (1986) no. 1, p. 79-84 | DOI | MR | Zbl
[MZ08] - “Tropical curves, their Jacobians and theta functions”, in Curves and abelian varieties, Contemp. Math., vol. 465, American Mathematical Society, Providence, RI, 2008, p. 203-230 | DOI | MR | Zbl
[OBSC00] - Spatial tessellations: concepts and applications of Voronoi diagrams, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 2000 | Zbl
[Rub14] - “Smooth and singular Kähler-Einstein metrics”, in Geometric and spectral analysis, Contemp. Math., vol. 630, American Mathematical Society, Providence, RI, 2014, p. 45-138 | Zbl
[RWN15a] - “Applications of the duality between the complex Monge-Ampère equation and the Hele-Shaw flow” (2015), arXiv:1509.02665
[RWN15b] - “Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation”, Publ. Math. Inst. Hautes Études Sci. 122 (2015), p. 315-335 | DOI | Zbl
[RWN15c] - “The Hele-Shaw flow and moduli of holomorphic discs”, Compositio Math. 151 (2015) no. 12, p. 2301-2328 | DOI | MR | Zbl
[RWN17a] - “Envelopes of positive metrics with prescribed singularities”, Ann. Fac. Sci. Toulouse Math. (6) 26 (2017) no. 3, p. 687-728 | DOI | MR | Zbl
[RWN17b] - “Homogeneous Monge-Ampère equations and canonical tubular neighbourhoods in Kähler geometry”, Internat. Math. Res. Notices (2017) no. 23, p. 7069-7108
[RZ11] - “The Cauchy problem for the homogeneous Monge-Ampère equation, II. Legendre transform”, Adv. Math. 228 (2011) no. 6, p. 2989-3025 | DOI | Zbl
[RZ17] - “The Cauchy problem for the homogeneous Monge-Ampère equation, III. Lifespan”, J. reine angew. Math. 724 (2017), p. 105-143 | Zbl
[SAF92] - “The inviscid Burgers equation with initial data of Brownian type”, Comm. Math. Phys. 148 (1992) no. 3, p. 623-641 | MR | Zbl
[Sak91] - “Regularity of a boundary having a Schwarz function”, Acta Math. Acad. Sci. Hungar. 166 (1991) no. 3-4, p. 263-297 | MR | Zbl
[Sch77] - “Some examples of singularities in a free boundary”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977) no. 1, p. 133-144 | Numdam | MR | Zbl
[Ser14] - “Multi-dimensional Systems of Conservation Laws: An Introductory Lecture”, in Hyperbolic conservation laws and related analysis with applications (G.-Q. G. Chen, H. Holden & K. H. Karlsen, eds.), Springer, Berlin, Heidelberg, 2014, p. 243-309 | DOI
[She07] - “Gaussian free fields for mathematicians”, Probab. Theory Related Fields 139 (2007) no. 3-4, p. 521-541 | DOI | MR | Zbl
[Sin92] - “Statistics of shocks in solutions of inviscid Burgers equation”, Comm. Math. Phys. 148 (1992) no. 3, p. 601-621 | DOI | MR | Zbl
[Siu87] - Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, DMV Seminar, vol. 8, Birkhäuser Verlag, Basel, 1987 | Zbl
[ST12] - “Canonical measures and Kähler-Ricci flow”, J. Amer. Math. Soc. 25 (2012) no. 2, p. 303-353 | DOI | Zbl
[ST17] - “The Kähler-Ricci flow through singularities”, Invent. Math. 207 (2017) no. 2, p. 519-595 | Zbl
[SW12] - “Lecture notes on the Kähler-Ricci flow” (2012), arXiv:1212.3653
[Tos17] - “Regularity of envelopes in Kähler classes” (2017), arXiv:1702.05015
[Tsu88] - “Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type”, Math. Ann. 281 (1988) no. 1, p. 123-133 | DOI | Zbl
[TZ06] - “On the Kähler-Ricci flow on projective manifolds of general type”, Chinese Ann. Math. Ser. B 27 (2006) no. 2, p. 179-192 | DOI
[Vas09] - “From the Hele-Shaw experiment to integrable systems: a historical overview”, Complex Anal. Oper. Theory 3 (2009) no. 2, p. 551-585 | DOI | MR
[VDFN94] - “Burgers’ equation, devil’s staircases and the mass distribution for large-scale structures”, Astron. Astrophys. 289 (1994), p. 325-356
[VER96] - “The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane”, Adv. Differential Equations 1 (1996) no. 1, p. 21-50 | MR | Zbl
[Ves99] - “A method to convexify functions via curve evolution”, Comm. Partial Differential Equations 24 (1999) no. 9-10, p. 1573-1591 | DOI | MR | Zbl
[Zab06] - “Matrix models and growth processes: from viscous flows to the quantum Hall effect”, in Applications of random matrices in physics, NATO Sci. Ser. II Math. Phys. Chem., vol. 221, Springer, Dordrecht, 2006, p. 261-318 | DOI | MR | Zbl
Cité par Sources :