[Du flot de Kähler-Ricci au flot des bords libres mobiles et aux chocs]
Nous montrons que le flot de Kähler-Ricci tordu sur une variété kählérienne compacte
We show that the twisted Kähler-Ricci flow on a compact Kähler manifold
Accepté le :
Publié le :
DOI : 10.5802/jep.77
Keywords: Kähler-Ricci flow, Kähler manifold, free boundary, Hele-Shaw flow, Hamilton-Jacobi equation
Mots-clés : Flot de Kähler-Ricci, variété kählérienne, flot de Hele-Shaw, équation de Hamilton-Jacobi
Robert J. Berman 1 ; Chinh H. Lu 2

@article{JEP_2018__5__519_0, author = {Robert J. Berman and Chinh H. Lu}, title = {From the {K\"ahler-Ricci} flow to~moving~free~boundaries and shocks}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {519--563}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.77}, zbl = {06988587}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.77/} }
TY - JOUR AU - Robert J. Berman AU - Chinh H. Lu TI - From the Kähler-Ricci flow to moving free boundaries and shocks JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 519 EP - 563 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.77/ DO - 10.5802/jep.77 LA - en ID - JEP_2018__5__519_0 ER -
%0 Journal Article %A Robert J. Berman %A Chinh H. Lu %T From the Kähler-Ricci flow to moving free boundaries and shocks %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 519-563 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.77/ %R 10.5802/jep.77 %G en %F JEP_2018__5__519_0
Robert J. Berman; Chinh H. Lu. From the Kähler-Ricci flow to moving free boundaries and shocks. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 519-563. doi : 10.5802/jep.77. https://jep.centre-mersenne.org/articles/10.5802/jep.77/
[Alb94] - “On the structure of singular sets of convex functions”, Calc. Var. Partial Differential Equations 2 (1994) no. 1, p. 17-27 | MR | Zbl
[AZS81] - “The large-scale structure of the universe. I. General properties. One-dimensional and two-dimensional models”, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint (1981) no. 100, 31 pages | MR | Zbl
[BB13] - “Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties”, Ann. Fac. Sci. Toulouse Math. (6) 22 (2013) no. 4, p. 649-711 | DOI | Numdam | Zbl
[BBGZ13] - “A variational approach to complex Monge-Ampère equations”, Publ. Math. Inst. Hautes Études Sci. 117 (2013), p. 179-245 | DOI | Zbl
[BBWN11] - “Fekete points and convergence towards equilibrium measures on complex manifolds”, Acta Math. Acad. Sci. Hungar. 207 (2011) no. 1, p. 1-27 | MR | Zbl
[BE84] - “On Hopf’s formulas for solutions of Hamilton-Jacobi equations”, Nonlinear Anal. 8 (1984) no. 11, p. 1373-1381 | DOI | MR | Zbl
[Ber13] - “From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit” (2013), arXiv:1307.3008
[Ber14] - “Determinantal point processes and fermions on complex manifolds: large deviations and bosonization”, Comm. Math. Phys. 327 (2014) no. 1, p. 1-47 | MR | Zbl
[BK74] - “The smoothness of solutions to nonlinear variational inequalities”, Indiana Univ. Math. J. 23 (1973/74), p. 831-844 | DOI | MR
[BL12] - “Pluripotential energy”, Potential Anal. 36 (2012) no. 1, p. 155-176 | MR | Zbl
[Bog99] - “Singularities of viscosity solutions of Hamilton-Jacobi equations”, in Singularity theory and differential equations (Kyoto, 1999), Sūrikaisekikenkyūsho Kōkyūroku, vol. 1111, 1999, p. 138-143 | MR | Zbl
[Cao85] - “Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds”, Invent. Math. 81 (1985) no. 2, p. 359-372 | Zbl
[CEL84] - “Some properties of viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. 282 (1984) no. 2, p. 487-502 | DOI | MR | Zbl
[CG12] - “Exponential convergence for a convexifying equation”, ESAIM Contrôle Optim. Calc. Var. 18 (2012) no. 3, p. 611-620 | DOI | Numdam | MR | Zbl
[CL83] - “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. 277 (1983) no. 1, p. 1-42
[CL12] - “Kähler-Ricci flow and the Minimal Model Program for projective varieties” (2012), arXiv:math.AG/0603064 | DOI | MR | Zbl
[CS16] - “The twisted Kähler-Ricci flow”, J. reine angew. Math. 716 (2016), p. 179-205 | Zbl
[CZ17] - “Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds” (2017), arXiv:1702.05230
[DHH + 08] - “Numerical Kähler-Einstein metric on the third del Pezzo”, Comm. Math. Phys. 282 (2008) no. 2, p. 357-393 | Zbl
[DS11] - “Liouville quantum gravity and KPZ”, Invent. Math. 185 (2011) no. 2, p. 333-393 | MR | Zbl
[EGZ11] - “Viscosity solutions to degenerate complex Monge-Ampère equations”, Comm. Pure Appl. Math. 64 (2011) no. 8, p. 1059-1094, Corrigendum, Ibid. 70 (2017), no. 5, p. 815-821 | DOI | Zbl
[EGZ16] - “Weak solutions to degenerate complex Monge-Ampère flows II”, Adv. Math. 293 (2016), p. 37-80 | DOI | Zbl
[Gir03] - “On the convex hull of a Brownian excursion with parabolic drift”, Stochastic Process. Appl. 106 (2003) no. 1, p. 41-62 | MR | Zbl
[GMS91] - Nonlinear random waves and turbulence in nondispersive media: waves, rays, particles, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1991 | Zbl
[GV06] - Conformal and potential analysis in Hele-Shaw cells, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2006
[GZ05] - “Intrinsic capacities on compact Kähler manifolds”, J. Geom. Anal. 15 (2005) no. 4, p. 607-639 | DOI | Zbl
[GZ17] - “Regularizing properties of the twisted Kähler-Ricci flow”, J. reine angew. Math. 729 (2017), p. 275-304 | Zbl
[Ham82] - “Three-manifolds with positive Ricci curvature”, J. Differential Geom. 17 (1982) no. 2, p. 255-306 | DOI | MR | Zbl
[HS02] - “Hele-Shaw flow on hyperbolic surfaces”, J. Math. Pures Appl. (9) 81 (2002) no. 3, p. 187-222 | DOI | MR | Zbl
[HSvdW14] - “The Zeldovich approximation: key to understanding cosmic web complexity”, Mon. Not. Roy. Astron. Soc. 437 (2014) no. 4, p. 3442-3472 | DOI
[Hul16] - Permanental point processes on real tori, Chalmers Univ. of Tech., 2016, Thesis of Licentiate
[HvdWV + 12] - “The sticky geometry of the cosmic web” (2012), arXiv:1205.1669, Abstract to video publication of the Symposium on Computational Geometry 2012 (SoCG’12, Chapel Hill, NC, USA): www.youtube.com/watch?v=wI12X2zczqI | DOI
[KPSM92] - “Coherent structures in the universe and the adhesion model”, Astrophysical J., Part 1 393 (1992) no. 2, p. 437-449 | DOI
[LR86] - “Hopf formula and multitime Hamilton-Jacobi equations”, Proc. Amer. Math. Soc. 96 (1986) no. 1, p. 79-84 | DOI | MR | Zbl
[MZ08] - “Tropical curves, their Jacobians and theta functions”, in Curves and abelian varieties, Contemp. Math., vol. 465, American Mathematical Society, Providence, RI, 2008, p. 203-230 | DOI | MR | Zbl
[OBSC00] - Spatial tessellations: concepts and applications of Voronoi diagrams, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 2000 | Zbl
[Rub14] - “Smooth and singular Kähler-Einstein metrics”, in Geometric and spectral analysis, Contemp. Math., vol. 630, American Mathematical Society, Providence, RI, 2014, p. 45-138 | Zbl
[RWN15a] - “Applications of the duality between the complex Monge-Ampère equation and the Hele-Shaw flow” (2015), arXiv:1509.02665
[RWN15b] - “Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation”, Publ. Math. Inst. Hautes Études Sci. 122 (2015), p. 315-335 | DOI | Zbl
[RWN15c] - “The Hele-Shaw flow and moduli of holomorphic discs”, Compositio Math. 151 (2015) no. 12, p. 2301-2328 | DOI | MR | Zbl
[RWN17a] - “Envelopes of positive metrics with prescribed singularities”, Ann. Fac. Sci. Toulouse Math. (6) 26 (2017) no. 3, p. 687-728 | DOI | MR | Zbl
[RWN17b] - “Homogeneous Monge-Ampère equations and canonical tubular neighbourhoods in Kähler geometry”, Internat. Math. Res. Notices (2017) no. 23, p. 7069-7108
[RZ11] - “The Cauchy problem for the homogeneous Monge-Ampère equation, II. Legendre transform”, Adv. Math. 228 (2011) no. 6, p. 2989-3025 | DOI | Zbl
[RZ17] - “The Cauchy problem for the homogeneous Monge-Ampère equation, III. Lifespan”, J. reine angew. Math. 724 (2017), p. 105-143 | Zbl
[SAF92] - “The inviscid Burgers equation with initial data of Brownian type”, Comm. Math. Phys. 148 (1992) no. 3, p. 623-641 | MR | Zbl
[Sak91] - “Regularity of a boundary having a Schwarz function”, Acta Math. Acad. Sci. Hungar. 166 (1991) no. 3-4, p. 263-297 | MR | Zbl
[Sch77] - “Some examples of singularities in a free boundary”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977) no. 1, p. 133-144 | Numdam | MR | Zbl
[Ser14] - “Multi-dimensional Systems of Conservation Laws: An Introductory Lecture”, in Hyperbolic conservation laws and related analysis with applications (G.-Q. G. Chen, H. Holden & K. H. Karlsen, eds.), Springer, Berlin, Heidelberg, 2014, p. 243-309 | DOI
[She07] - “Gaussian free fields for mathematicians”, Probab. Theory Related Fields 139 (2007) no. 3-4, p. 521-541 | DOI | MR | Zbl
[Sin92] - “Statistics of shocks in solutions of inviscid Burgers equation”, Comm. Math. Phys. 148 (1992) no. 3, p. 601-621 | DOI | MR | Zbl
[Siu87] - Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, DMV Seminar, vol. 8, Birkhäuser Verlag, Basel, 1987 | Zbl
[ST12] - “Canonical measures and Kähler-Ricci flow”, J. Amer. Math. Soc. 25 (2012) no. 2, p. 303-353 | DOI | Zbl
[ST17] - “The Kähler-Ricci flow through singularities”, Invent. Math. 207 (2017) no. 2, p. 519-595 | Zbl
[SW12] - “Lecture notes on the Kähler-Ricci flow” (2012), arXiv:1212.3653
[Tos17] - “Regularity of envelopes in Kähler classes” (2017), arXiv:1702.05015
[Tsu88] - “Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type”, Math. Ann. 281 (1988) no. 1, p. 123-133 | DOI | Zbl
[TZ06] - “On the Kähler-Ricci flow on projective manifolds of general type”, Chinese Ann. Math. Ser. B 27 (2006) no. 2, p. 179-192 | DOI
[Vas09] - “From the Hele-Shaw experiment to integrable systems: a historical overview”, Complex Anal. Oper. Theory 3 (2009) no. 2, p. 551-585 | DOI | MR
[VDFN94] - “Burgers’ equation, devil’s staircases and the mass distribution for large-scale structures”, Astron. Astrophys. 289 (1994), p. 325-356
[VER96] - “The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane”, Adv. Differential Equations 1 (1996) no. 1, p. 21-50 | MR | Zbl
[Ves99] - “A method to convexify functions via curve evolution”, Comm. Partial Differential Equations 24 (1999) no. 9-10, p. 1573-1591 | DOI | MR | Zbl
[Zab06] - “Matrix models and growth processes: from viscous flows to the quantum Hall effect”, in Applications of random matrices in physics, NATO Sci. Ser. II Math. Phys. Chem., vol. 221, Springer, Dordrecht, 2006, p. 261-318 | DOI | MR | Zbl
Cité par Sources :