[Stabilité statistique quantitative, vitesse de convergence vers l’équilibre et produits croisés partiellement hyperboliques]
Nous considérons une relation générale entre la stabilité des points fixes d’opérateurs de transfert convenablement perturbés et la convergence vers l’équilibre (une notion strictement reliée à la décroissance des corrélations). Nous appliquons cette relation aux perturbations déterministes d’une classe de produits croisés partiellement hyperboliques (par morceaux) dont le comportement sur la fibration préservée est dominé par l’expansion de l’application de la base. Nous appliquons ces résultats aux applications sur un tore fibrant sur le cercle, partiellement hyperboliques, linéaires par morceaux, avec décroissance lente des corrélations d’allure polynomiale. Il s’avère que, dans ce cas, la dépendance de la mesure physique en les petites perturbations déterministes, dans une métrique anisotrope, est au moins Hölder-continue, avec un exposant estimé explicitement en termes des propriétés arithmétiques du système. Nous donnons des exemples explicites d’applications sur un tore fibrant sur le cercle qui ont une stabilité Hölder et une dépendance non différentiable de la mesure physique en les perturbations.
We consider a general relation between fixed point stability of suitably perturbed transfer operators and convergence to equilibrium (a notion which is strictly related to decay of correlations). We apply this relation to deterministic perturbations of a class of (piecewise) partially hyperbolic skew products whose behavior on the preserved fibration is dominated by the expansion of the base map. In particular, we apply the results to power law mixing toral extensions. It turns out that in this case, the dependence of the physical measure on small deterministic perturbations, in a suitable anisotropic metric, is at least Hölder continuous, with an exponent which is explicitly estimated depending on the arithmetical properties of the system. We show explicit examples of toral extensions having actually Hölder stability and non differentiable dependence of the physical measure on perturbations.
Accepté le :
Publié le :
DOI : 10.5802/jep.73
Keywords: Statistical stability, convergence to equilibrium, decay of correlations, transfer operator, skew product, Diophantine type, Hölder response
Mot clés : Stabilité statistique, convergence vers l’équilibre, décroissance des corrélations, opérateur de transfert, produit croisé, type diophantien, réponse de type Hölder
Stefano Galatolo 1
@article{JEP_2018__5__377_0, author = {Stefano Galatolo}, title = {Quantitative statistical stability, speed~of~convergence to equilibrium and partially~hyperbolic skew products}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {377--405}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.73}, zbl = {06988583}, mrnumber = {3808889}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.73/} }
TY - JOUR AU - Stefano Galatolo TI - Quantitative statistical stability, speed of convergence to equilibrium and partially hyperbolic skew products JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 377 EP - 405 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.73/ DO - 10.5802/jep.73 LA - en ID - JEP_2018__5__377_0 ER -
%0 Journal Article %A Stefano Galatolo %T Quantitative statistical stability, speed of convergence to equilibrium and partially hyperbolic skew products %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 377-405 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.73/ %R 10.5802/jep.73 %G en %F JEP_2018__5__377_0
Stefano Galatolo. Quantitative statistical stability, speed of convergence to equilibrium and partially hyperbolic skew products. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 377-405. doi : 10.5802/jep.73. https://jep.centre-mersenne.org/articles/10.5802/jep.73/
[1] - “Strong statistical stability of non-uniformly expanding maps”, Nonlinearity 17 (2004) no. 4, p. 1193-1215 | DOI | MR | Zbl
[2] - “Statistical stability in chaotic dynamics”, in Progress and challenges in dynamical systems, Springer Proc. Math. Stat., vol. 54, Springer, Heidelberg, 2013, p. 7-24 | DOI | MR | Zbl
[3] - “Statistical stability for robust classes of maps with non-uniform expansion”, Ergodic Theory Dynam. Systems 22 (2002) no. 1, p. 1-32 | MR | Zbl
[4] - “Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors”, Math. Z. 276 (2014) no. 3-4, p. 1001-1048, Erratum: Ibid. 282 (2016), no. 1-2, p. 615–621 | DOI | MR | Zbl
[5] - “Linear response in the intermittent family: differentiation in a weighted -norm”, Discrete Contin. Dynam. Systems 36 (2016) no. 12, p. 6657-6668 | DOI | MR | Zbl
[6] - “Metastability of certain intermittent maps”, Nonlinearity 25 (2012) no. 1, p. 107-124 | MR | Zbl
[7] - “Linear response, or else”, in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, p. 525-545 | Zbl
[8] - “Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps”, Invent. Math. 201 (2015) no. 3, p. 773-844 | Zbl
[9] - “Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables”, Nonlinearity 30 (2017) no. 3, p. 1204-1220, Corrigendum: Ibid. 30 (2017), no. 8, p. C4–C6 | DOI | MR | Zbl
[10] - “Linear response for intermittent maps”, Comm. Math. Phys. 347 (2016) no. 3, p. 857-874 | MR | Zbl
[11] - Laws of chaos. Invariant measures and dynamical systems in one dimension, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1997 | Zbl
[12] - “The topology of group extensions of -systems”, Mat. Zametki 18 (1975) no. 3, p. 453-465 | MR | Zbl
[13] - “Stable ergodicity of skew products”, Ann. Sci. École Norm. Sup. (4) 32 (1999) no. 6, p. 859-889 | DOI | Numdam | MR | Zbl
[14] - “Exponential mixing for skew products with discontinuities”, Trans. Amer. Math. Soc. 369 (2017) no. 2, p. 783-803 | DOI | MR | Zbl
[15] - “On dynamics of mostly contracting diffeomorphisms”, Comm. Math. Phys. 213 (2000) no. 1, p. 181-201 | MR | Zbl
[16] - “On mixing properties of compact group extensions of hyperbolic systems”, Israel J. Math. 130 (2002), p. 157-205 | DOI | MR | Zbl
[17] - “On differentiability of SRB states for partially hyperbolic systems”, Invent. Math. 155 (2004) no. 2, p. 389-449 | DOI | MR | Zbl
[18] - “Quantitative statistical stability and convergence to equilibrium. An application to maps with indifferent fixed points”, Chaos Solitons Fractals 103 (2017), p. 596-601 | DOI | MR | Zbl
[19] - “Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz like maps” (2015), arXiv:1507.08191
[20] - “Rigorous approximation of stationary measures and convergence to equilibrium for iterated function systems”, J. Phys. A 49 (2016) no. 27, 274001, 22 pages | MR | Zbl
[21] - “An elementary approach to rigorous approximation of invariant measures”, SIAM J. Appl. Dyn. Syst. 13 (2014) no. 2, p. 958-985 | DOI | MR | Zbl
[22] - “Long hitting time, slow decay of correlations and arithmetical properties”, Discrete Contin. Dynam. Systems 27 (2010) no. 1, p. 185-204 | MR | Zbl
[23] - “Skew products, quantitative recurrence, shrinking targets and decay of correlations”, Ergodic Theory Dynam. Systems 35 (2015) no. 6, p. 1814-1845 | DOI | MR | Zbl
[24] - “Generalized bounded variation and applications to piecewise monotonic transformations”, Z. Wahrsch. Verw. Gebiete 69 (1985) no. 3, p. 461-478 | DOI | MR | Zbl
[25] - “Linear response for intermittent maps with summable and nonsummable decay of correlations”, Nonlinearity 29 (2016) no. 6, p. 1735-1754 | DOI | MR | Zbl
[26] - “Invariant measures and their properties. A functional analytic point of view”, in Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, p. 185-237 | Zbl
[27] - “Stability of the spectrum for transfer operators”, J. Spectral Theory (to appear), arXiv:1612.05011
[28] - “Exponentially mixing, locally constant skew extensions of shift maps” (2017), arXiv:1701.08659
[29] - “Flots qui ne mélangent pas exponentiellement”, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) no. 4, p. 191-193 | Zbl
[30] - “On stochastic stability of expanding circle maps with neutral fixed points”, Dyn. Syst. 28 (2013) no. 3, p. 423-452 | MR | Zbl
[31] - “On the smooth dependence of SRB measures for partially hyperbolic systems” (2017), arXiv:1701.05253
Cité par Sources :