A branched transport limit of the Ginzburg-Landau functional
[Dérivation d’une fonctionnelle de type transport branché à partir du modèle de Ginzburg-Landau]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 317-375.

Nous étudions le modèle de Ginzburg-Landau pour les supraconducteurs de type I dans le régime de faible champ magnétique extérieur. Nous montrons qu’asymptotiquement, le flux magnétique se concentre sur des structures unidimensionnelles minimisant une fonctionnelle de type transport branché. Nous obtenons cette fonctionnelle simplifiée par Γ-convergence à partir du modèle de Ginzburg-Landau complet. Ceci permet d’obtenir une compréhension fine des différentes échelles mises en jeu.

We study the Ginzburg-Landau model of type-I superconductors in the regime of small external magnetic fields. We show that, in an appropriate asymptotic regime, flux patterns are described by a simplified branched transportation functional. We derive the simplified functional from the full Ginzburg-Landau model rigorously via Γ-convergence. The detailed analysis of the limiting procedure and the study of the limiting functional lead to a precise understanding of the multiple scales contained in the model.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.72
Classification : 35Q56, 49S05, 82D55, 49J10, 49S05
Keywords: Gamma convergence, Ginzburg-Landau, branched transportation, pattern formation, type-I superconductors
Mot clés : Gamma convergence, Ginzburg-Landau, transport branché, supraconducteurs de type I

Sergio Conti 1 ; Michael Goldman 2 ; Felix Otto 3 ; Sylvia Serfaty 4

1 Institut für Angewandte Mathematik, Universität Bonn Endenicher Allee 60, 53115 Bonn, Germany
2 LJLL, Université Paris Diderot, CNRS, UMR 7598 Bât. Sophie Germain, 75205 Paris Cedex 13, France
3 Max Planck Institute for Mathematics in the Sciences Inselstraße 22, 04103 Leipzig, Germany
4 Courant Institute, NYU 251 Mercer Street New York, N.Y. 10012-1185, USA and Institut Universitaire de France & UPMC 4, place Jussieu, 75252 Paris cedex 05, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2018__5__317_0,
     author = {Sergio Conti and Michael Goldman and Felix Otto and Sylvia Serfaty},
     title = {A branched transport limit of {the~Ginzburg-Landau} functional},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {317--375},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.72},
     zbl = {06988582},
     mrnumber = {3795445},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.72/}
}
TY  - JOUR
AU  - Sergio Conti
AU  - Michael Goldman
AU  - Felix Otto
AU  - Sylvia Serfaty
TI  - A branched transport limit of the Ginzburg-Landau functional
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 317
EP  - 375
VL  - 5
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.72/
DO  - 10.5802/jep.72
LA  - en
ID  - JEP_2018__5__317_0
ER  - 
%0 Journal Article
%A Sergio Conti
%A Michael Goldman
%A Felix Otto
%A Sylvia Serfaty
%T A branched transport limit of the Ginzburg-Landau functional
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 317-375
%V 5
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.72/
%R 10.5802/jep.72
%G en
%F JEP_2018__5__317_0
Sergio Conti; Michael Goldman; Felix Otto; Sylvia Serfaty. A branched transport limit of the Ginzburg-Landau functional. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 317-375. doi : 10.5802/jep.72. https://jep.centre-mersenne.org/articles/10.5802/jep.72/

[1] G. Alberti, R. Choksi & F. Otto - “Uniform energy distribution for an isoperimetric problem with long-range interactions”, J. Amer. Math. Soc. 22 (2009) no. 2, p. 569-605 | DOI | MR | Zbl

[2] L. Ambrosio, N. Fusco & D. Pallara - Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Oxford University Press, New York, 2000 | Zbl

[3] L. Ambrosio, N. Gigli & G. Savaré - Gradient flows in metric spaces and in the space of probability measures, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 2005 | Zbl

[4] P. Bella & M. Goldman - “Nucleation barriers at corners for a cubic-to-tetragonal phase transformation”, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015) no. 4, p. 715-724 | DOI | MR | Zbl

[5] H. Ben Belgacem, S. Conti, A. DeSimone & S. Müller - “Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates”, J. Nonlinear Sci. 10 (2000), p. 661-683 | DOI | Zbl

[6] H. Ben Belgacem, S. Conti, A. DeSimone & S. Müller - “Energy scaling of compressed elastic films”, Arch. Rational Mech. Anal. 164 (2002), p. 1-37 | DOI | Zbl

[7] M. Bernot, V. Caselles & J.-M. Morel - Optimal transportation networks. Models and theory, Lect. Notes in Math., vol. 1955, Springer-Verlag, Berlin, 2009 | Zbl

[8] F. Bethuel - “A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces” (2014), arXiv:1401.1649

[9] A. Braides - Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 22, Oxford University Press, Oxford, 2002 | MR | Zbl

[10] A. Brancolini, C. Rossmanith & B. Wirth - “Optimal micropatterns in 2D transport networks and their relation to image inpainting”, Arch. Rational Mech. Anal. 228 (2018) no. 1, p. 279-308 | DOI | MR | Zbl

[11] A. Brancolini & B. Wirth - “Optimal micropatterns in transport networks” (2015), arXiv:1511.08467 | Zbl

[12] A. Chan & S. Conti - “Energy scaling and branched microstructures in a model for shape-memory alloys with SO(2) invariance”, Math. Models Methods Appl. Sci. 25 (2015), p. 1091-1124 | DOI | MR | Zbl

[13] R. Choksi, S. Conti, R. V. Kohn & F. Otto - “Ground state energy scaling laws during the onset and destruction of the intermediate state in a type-I superconductor”, Comm. Pure Appl. Math. 61 (2008), p. 595-626 | DOI | MR | Zbl

[14] R. Choksi, R. V. Kohn & F. Otto - “Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy”, Comm. Math. Phys. 201 (1999), p. 61-79 | DOI | MR | Zbl

[15] R. Choksi, R. V. Kohn & F. Otto - “Energy minimization and flux domain structure in the intermediate state of a type-I superconductor”, J. Nonlinear Sci. 14 (2004), p. 119-171 | DOI | MR | Zbl

[16] E. Cinti & F. Otto - “Interpolation inequalities in pattern formation”, J. Funct. Anal. 271 (2016) no. 11, p. 3348-3392 | DOI | MR | Zbl

[17] S. Conti - “Branched microstructures: scaling and asymptotic self-similarity”, Comm. Pure Appl. Math. 53 (2000), p. 1448-1474 | DOI | MR | Zbl

[18] S. Conti, J. Diermeier & B. Zwicknagl - “Deformation concentration for martensitic microstructures in the limit of low volume fraction”, Calc. Var. Partial Differential Equations 56 (2017) no. 1, 56:16 pages | DOI | MR | Zbl

[19] S. Conti, F. Otto & S. Serfaty - “Branched microstructures in the Ginzburg-Landau model of type-I superconductors”, SIAM J. Math. Anal. 48 (2016) no. 4, p. 2994-3034 | DOI | MR | Zbl

[20] S. Conti & B. Zwicknagl - “Low volume-fraction microstructures in martensites and crystal plasticity”, Math. Models Methods Appl. Sci. 26 (2016) no. 7, p. 1319-1355 | DOI | MR | Zbl

[21] G. Dal Maso - An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston Inc., Boston, MA, 1993 | MR | Zbl

[22] R. L. Frank, C. Hainzl, R. Seiringer & J. P. Solovej - “Microscopic derivation of Ginzburg-Landau theory”, J. Amer. Math. Soc. 25 (2012) no. 3, p. 667-713 | DOI | MR | Zbl

[23] M. Goldman - “Self-similar minimizers of a branched transport functional” (2017), arXiv:1704.05342

[24] M. Goldman & B. Merlet - “Phase segregation for binary mixtures of Bose-Einstein Condensates”, SIAM J. Math. Anal. 49 (2017) no. 3, p. 1947-1981 | DOI | MR | Zbl

[25] A. Jaffe & C. Taubes - Vortices and monopoles. Structure of static gauge theories, Progress in Physics, vol. 2, Birkhäuser, Boston MA, 1980 | Zbl

[26] W. Jin & P. Sternberg - “Energy estimates of the von Kármán model of thin-film blistering”, J. Math. Phys. 42 (2001), p. 192-199 | DOI | Zbl

[27] H. Knüpfer, R. V. Kohn & F. Otto - “Nucleation barriers for the cubic-to-tetragonal phase transformation”, Comm. Pure Appl. Math. 66 (2013) no. 6, p. 867-904 | DOI | MR | Zbl

[28] H. Knüpfer & C. B. Muratov - “Domain structure of bulk ferromagnetic crystals in applied fields near saturation”, J. Nonlinear Sci. 21 (2011) no. 6, p. 921-962 | DOI | MR | Zbl

[29] R. V. Kohn & S. Müller - “Branching of twins near an austenite-twinned-martensite interface”, Phil. Mag. A 66 (1992), p. 697-715 | DOI

[30] R. V. Kohn & S. Müller - “Surface energy and microstructure in coherent phase transitions”, Comm. Pure Appl. Math. 47 (1994), p. 405-435 | DOI | MR | Zbl

[31] L. Modica - “The gradient theory of phase transitions and the minimal interface criterion”, Arch. Rational Mech. Anal. 98 (1987), p. 123-142 | DOI | MR | Zbl

[32] F. Otto & T. Viehmann - “Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy”, Calc. Var. Partial Differential Equations 38 (2010) no. 1-2, p. 135-181 | DOI | MR | Zbl

[33] E. Oudet & F. Santambrogio - “A Modica-Mortola approximation for branched transport and applications”, Arch. Rational Mech. Anal. 201 (2011) no. 1, p. 115-142 | DOI | MR | Zbl

[34] R. Prozorov - “Equilibrium topology of the intermediate state in type-I superconductors of different shapes”, Phys. Rev. Lett. 98 (2007), 257001 pages | DOI

[35] R. Prozorov, R. W. Giannetta, A. A. Polyanskii & G. K. Perkins - “Topological hysteresis in the intermediate state of type I superconductors”, Phys. Rev. B 72 (2005), 212508 pages | DOI

[36] R. Prozorov & J. Hoberg - “Dynamic formation of metastable intermediate state patterns in type-I superconductors”, in 25th international conference on low temperature physics, Journal of Physics: Conference Series, vol. 150, IOP Publishing, 2009, article # 052217

[37] E. Sandier & S. Serfaty - Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 70, Birkhäuser Boston, Inc., Boston, MA, 2007 | MR | Zbl

[38] S. Serfaty - Coulomb gases and Ginzburg-Landau vortices, Zürich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, 2015 | DOI | Zbl

[39] M. Tinkham - Introduction to superconductivity, Int. series in Pure and Appl. physics, McGraw Hill, New York, 1996 | DOI

[40] T. Viehmann - Uniaxial ferromagnets, Universität Bonn, 2009, Ph. D. Thesis | Zbl

[41] C. Villani - Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[42] Q. Xia - “Interior regularity of optimal transport paths”, Calc. Var. Partial Differential Equations 20 (2004) no. 3, p. 283-299 | MR | Zbl

[43] B. Zwicknagl - “Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes”, Arch. Rational Mech. Anal. 213 (2014), p. 355-421 | DOI | MR | Zbl

Cité par Sources :