Nous introduisons une 2-catégorie élémentaire qui catégorifie l’image de l’espace de Fock comme représentation de l’algèbre de Heisenberg, ainsi que la représentation basique de . Nous montrons que est équivalente à une troncation du groupe quantique catégorifié de Khovanov–Lauda en type , ainsi qu’à une troncation de la 2-catégorie de Heisenberg introduite par Khovanov. Cette équivalence se comprend comme une catégorification de la réalisation principale de la représentation basique de . Il résulte des équivalences catégoriques précédentes que certaines actions de induisent des actions de , et vice versa. En particulier, nous obtenons une action explicite de sur les représentations des groupes symétriques. Nous calculons également explicitement le groupe de Grothendieck de la troncation de . La 2-catégorie s’interprète comme un calcul graphique décrivant les foncteurs de -induction et -restriction pour les groupes symétriques, ainsi que les transformations naturelles entre leurs composées. Nous utilisons l’outil de calcul qui en découle pour donner des preuves diagrammatiques simples d’identités (apparemment nouvelles) en théorie des représentations.
We introduce a simple diagrammatic 2-category that categorifies the image of the Fock space representation of the Heisenberg algebra and the basic representation of . We show that is equivalent to a truncation of the Khovanov–Lauda categorified quantum group of type , and also to a truncation of Khovanov’s Heisenberg 2-category . This equivalence is a categorification of the principal realization of the basic representation of . As a result of the categorical equivalences described above, certain actions of induce actions of , and vice versa. In particular, we obtain an explicit action of on representations of symmetric groups. We also explicitly compute the Grothendieck group of the truncation of . The 2-category can be viewed as a graphical calculus describing the functors of -induction and -restriction for symmetric groups, together with the natural transformations between their compositions. The resulting computational tool is used to give simple diagrammatic proofs of (apparently new) representation theoretic identities.
Accepté le :
Publié le :
DOI : 10.5802/jep.68
Keywords: Categorification, Heisenberg algebra, Fock space, basic representation, principal realization, symmetric group
Mot clés : Catégorification, algèbre de Heisenberg, espace de Fock, représentation basique, réalisation principale, groupe symétrique
Hoel Queffelec 1 ; Alistair Savage 2 ; Oded Yacobi 3
@article{JEP_2018__5__197_0, author = {Hoel Queffelec and Alistair Savage and Oded Yacobi}, title = {An equivalence between truncations of categorified quantum groups and {Heisenberg~categories}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {197--238}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.68}, zbl = {06988578}, mrnumber = {3738513}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.68/} }
TY - JOUR AU - Hoel Queffelec AU - Alistair Savage AU - Oded Yacobi TI - An equivalence between truncations of categorified quantum groups and Heisenberg categories JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 197 EP - 238 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.68/ DO - 10.5802/jep.68 LA - en ID - JEP_2018__5__197_0 ER -
%0 Journal Article %A Hoel Queffelec %A Alistair Savage %A Oded Yacobi %T An equivalence between truncations of categorified quantum groups and Heisenberg categories %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 197-238 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.68/ %R 10.5802/jep.68 %G en %F JEP_2018__5__197_0
Hoel Queffelec; Alistair Savage; Oded Yacobi. An equivalence between truncations of categorified quantum groups and Heisenberg categories. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 197-238. doi : 10.5802/jep.68. https://jep.centre-mersenne.org/articles/10.5802/jep.68/
[BHLW17] - “Current algebras and categorified quantum groups”, J. London Math. Soc. (2) 95 (2017) no. 1, p. 248-276 | DOI | MR | Zbl
[BK09a] - “Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras”, Invent. Math. 178 (2009) no. 3, p. 451-484 | DOI | MR | Zbl
[BK09b] - “Graded decomposition numbers for cyclotomic Hecke algebras”, Adv. Math. 222 (2009) no. 6, p. 1883-1942 | DOI | MR | Zbl
[CKL13] - “Coherent sheaves on quiver varieties and categorification”, Math. Ann. 357 (2013) no. 3, p. 805-854 | DOI | MR | Zbl
[CL11] - “Vertex operators and 2-representations of quantum affine algebras”, arXiv:1112.6189, 2011
[CL12] - “Heisenberg categorification and Hilbert schemes”, Duke Math. J. 161 (2012) no. 13, p. 2469-2547 | DOI | MR | Zbl
[CL15] - “Implicit structure in 2-representations of quantum groups”, Selecta Math. (N.S.) 21 (2015) no. 1, p. 201-244 | DOI | MR | Zbl
[CLLS16] - “W-algebras from Heisenberg categories”, J. Inst. Math. Jussieu (2016), online, doi:10.1017/S1474748016000189 | Zbl
[CR08] - “Derived equivalences for symmetric groups and -categorification”, Ann. of Math. (2) 167 (2008) no. 1, p. 245-298 | MR | Zbl
[FH91] - Representation theory, Graduate Texts in Math., vol. 129, Springer-Verlag, New York, 1991
[Kac90] - Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990 | Zbl
[Kho14] - “Heisenberg algebra and a graphical calculus”, Fund. Math. 225 (2014) no. 1, p. 169-210 | DOI | MR | Zbl
[KL10] - “A categorification of quantum ”, Quantum Topol. 1 (2010) no. 1, p. 1-92 | MR | Zbl
[Kle05] - Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[Kle14] - “Modular representation theory of symmetric groups”, arXiv:1405.3326, 2014 | Zbl
[Lem16] - “Geometric realizations of the basic representation of ”, Selecta Math. (N.S.) 22 (2016) no. 1, p. 341-387 | DOI | MR
[LRS] - “Categorification and Heisenberg doubles arising from towers of algebras”, J. Combinatorial Theory Ser. A, to appear, arXiv:1610.01862 | MR
[LS10] - “Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves”, Selecta Math. (N.S.) 16 (2010) no. 2, p. 201-240 | DOI | MR | Zbl
[LS13] - “Hecke algebras, finite general linear groups, and Heisenberg categorification”, Quantum Topol. 4 (2013) no. 2, p. 125-185 | DOI | MR | Zbl
[MS17] - “Degenerate cyclotomic Hecke algebras and higher level Heisenberg categorification”, arXiv:1705.03066, 2017 | Zbl
[MSV13] - “A diagrammatic categorification of the -Schur algebra”, Quantum Topol. 4 (2013) no. 1, p. 1-75 | MR | Zbl
[Nag09] - “Quiver varieties and Frenkel-Kac construction”, J. Algebra 321 (2009) no. 12, p. 3764-3789 | DOI | MR | Zbl
[Nak98] - “Quiver varieties and Kac-Moody algebras”, Duke Math. J. 91 (1998) no. 3, p. 515-560 | DOI | MR | Zbl
[QR16] - “The foam 2-category: A combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality”, Adv. Math. 302 (2016), p. 1251-1339 | DOI | MR | Zbl
[Rou08] - “2-Kac-Moody algebras”, arXiv:0812.5023v1, 2008
[RS17] - “A general approach to Heisenberg categorification via wreath product algebras”, Math. Z. 286 (2017) no. 1-2, p. 603-655 | DOI | MR | Zbl
[Sav06] - “A geometric boson-fermion correspondence”, C. R. Math. Rep. Acad. Sci. Canada 28 (2006) no. 3, p. 65-84 | MR | Zbl
[SVV17] - “On the center of quiver Hecke algebras”, Duke Math. J. 166 (2017) no. 6, p. 1005-1101 | DOI | MR | Zbl
[VV11] - “Canonical bases and KLR-algebras”, J. reine angew. Math. 659 (2011), p. 67-100 | MR | Zbl
[Web12] - “A categorical action on quantized quiver varieties”, arXiv:1208.5957, 2012
[Zhe14] - “Categorification of integrable representations of quantum groups”, Acta Mech. Sinica (English Ed.) 30 (2014) no. 6, p. 899-932 | DOI | MR | Zbl
Cité par Sources :