[Ensembles de réels de petite somme : une version continue du théorème 3k-4, structure des ensembles critiques]
Nous démontrons un théorème
We prove a full continuous Freiman’s
Accepté le :
Publié le :
DOI : 10.5802/jep.67
Keywords: Sumsets, critical sets, Lebesgue measure, inverse theorems in additive combinatorics
Mots-clés : Ensembles sommes, ensembles critiques, mesure de Lebesgue, théorèmes inverses en combinatoire additive
Anne de Roton 1

@article{JEP_2018__5__177_0, author = {Anne de Roton}, title = {Small sumsets in $\protect \mathbb{R}$: full continuous $3k-4$ theorem, critical sets}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {177--196}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.67}, zbl = {06988577}, mrnumber = {3738512}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.67/} }
TY - JOUR AU - Anne de Roton TI - Small sumsets in $\protect \mathbb{R}$: full continuous $3k-4$ theorem, critical sets JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 177 EP - 196 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.67/ DO - 10.5802/jep.67 LA - en ID - JEP_2018__5__177_0 ER -
%0 Journal Article %A Anne de Roton %T Small sumsets in $\protect \mathbb{R}$: full continuous $3k-4$ theorem, critical sets %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 177-196 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.67/ %R 10.5802/jep.67 %G en %F JEP_2018__5__177_0
Anne de Roton. Small sumsets in $\protect \mathbb{R}$: full continuous $3k-4$ theorem, critical sets. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 177-196. doi : 10.5802/jep.67. https://jep.centre-mersenne.org/articles/10.5802/jep.67/
[BG10] - “Long arithmetic progressions in small sumsets”, Integers 10 (2010), p. 335-350 | DOI | MR | Zbl
[Bil98] - “The
[Chr11] - “An approximate inverse Riesz-Sobolev inequality” (2011), arXiv:1112.3715
[EGM14] - “Sets of integers with no large sum-free subset”, Ann. of Math. (2) 180 (2014) no. 2, p. 621-652 | DOI | MR | Zbl
[Fre59] - “The addition of finite sets. I”, Izv. Vysš. Učebn. Zaved. Matematika 1959 (1959) no. 6 (13), p. 202-213 | DOI | MR | Zbl
[Fre62] - “Inverse problems of additive number theory. VI. On the addition of finite sets. III”, Izv. Vysš. Učebn. Zaved. Matematika 1962 (1962) no. 3 (28), p. 151-157 | MR | Zbl
[Fre09] - “Inverse additive number theory. XI. Long arithmetic progressions in sets with small sumsets”, Acta Arith. 137 (2009) no. 4, p. 325-331 | MR | Zbl
[Gry13] - Structural additive theory, Developments in Mathematics, vol. 30, Springer, Cham, 2013 | MR
[Kne56] - “Summenmengen in lokalkompakten abelschen Gruppen”, Math. Z. 66 (1956), p. 88-110 | DOI | MR | Zbl
[LS95] - “On addition of two distinct sets of integers”, Acta Arith. 70 (1995) no. 1, p. 85-91 | DOI | MR | Zbl
[Nat96] - Additive number theory, Graduate Texts in Math., vol. 165, Springer-Verlag, New York, 1996 | MR | Zbl
[Rai39] - “On the addition of point-sets in the sense of Schnirelmann”, Mat. Sb. (N.S.) 5(47) (1939), p. 425-440 | MR | Zbl
[Ruz91] - “Diameter of sets and measure of sumsets”, Monatsh. Math. 112 (1991) no. 4, p. 323-328 | DOI | MR | Zbl
[Sta96] - “On addition of two distinct sets of integers”, Acta Arith. 75 (1996) no. 2, p. 191-194 | DOI | MR | Zbl
[TV06] - Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006 | MR | Zbl
Cité par Sources :