Central invariants revisited
[Les invariants centraux revisités]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 149-175.

Nous utilisons des arguments raffinés de suite spectrale pour calculer des groupes de cohomologie bihamiltonienne, certains déjà connus et d’autres non, qui gouvernent la théorie des déformations de pinceaux bihamiltoniens semi-simples de type hydrodynamique avec une variable indépendante et N variables dépendantes. En particulier, nous retrouvons le résultat de Dubrovin-Liu-Zhang disant que ces déformations sont paramétrées par les invariants centraux, qui sont N fonctions lisses d’une variable.

We use refined spectral sequence arguments to calculate known and previously unknown bi-Hamiltonian cohomology groups, which govern the deformation theory of semi-simple bi-Hamiltonian pencils of hydrodynamic type with one independent and N dependent variables. In particular, we rederive the result of Dubrovin-Liu-Zhang that these deformations are parametrized by the so-called central invariants, which are N smooth functions of one variable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.66
Classification : 37K10, 53D17, 58A20
Keywords: Poisson structures of hydrodynamic type, deformations of bi-Hamiltonian structures, bi-Hamiltonian cohomology, central invariants
Mot clés : Structures de Poisson de type hydrodynamique, déformations de structures bihamiltoniennes, cohomologie bihamiltonienne, invariants centraux

Guido Carlet 1 ; Reinier Kramer 2 ; Sergey Shadrin 2

1 Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université de Bourgogne Franche-Comté 21000 Dijon, France
2 Korteweg-de Vries Instituut voor Wiskunde, Universiteit van Amsterdam Postbus 94248, 1090GE Amsterdam, Nederland
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2018__5__149_0,
     author = {Guido Carlet and Reinier Kramer and Sergey Shadrin},
     title = {Central invariants revisited},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {149--175},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.66},
     zbl = {06988576},
     mrnumber = {3738511},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.66/}
}
TY  - JOUR
AU  - Guido Carlet
AU  - Reinier Kramer
AU  - Sergey Shadrin
TI  - Central invariants revisited
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 149
EP  - 175
VL  - 5
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.66/
DO  - 10.5802/jep.66
LA  - en
ID  - JEP_2018__5__149_0
ER  - 
%0 Journal Article
%A Guido Carlet
%A Reinier Kramer
%A Sergey Shadrin
%T Central invariants revisited
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 149-175
%V 5
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.66/
%R 10.5802/jep.66
%G en
%F JEP_2018__5__149_0
Guido Carlet; Reinier Kramer; Sergey Shadrin. Central invariants revisited. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 149-175. doi : 10.5802/jep.66. https://jep.centre-mersenne.org/articles/10.5802/jep.66/

[Bar08] A. Barakat - “On the moduli space of deformations of bihamiltonian hierarchies of hydrodynamic type”, Adv. Math. 219 (2008) no. 2, p. 604-632 | DOI | MR

[CPS15] G. Carlet, H. Posthuma & S. Shadrin - “Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed” (2015), arXiv:1501.04295 | Zbl

[CPS16a] G. Carlet, H. Posthuma & S. Shadrin - “Bihamiltonian cohomology of KdV brackets”, Comm. Math. Phys. 341 (2016) no. 3, p. 805-819 | DOI | MR | Zbl

[CPS16b] G. Carlet, H. Posthuma & S. Shadrin - “The bi-Hamiltonian cohomology of a scalar Poisson pencil”, Bull. London Math. Soc. 48 (2016) no. 4, p. 617-627 | DOI | MR | Zbl

[DLZ06] B. Dubrovin, S.-Q. Liu & Y. Zhang - “On Hamiltonian perturbations of hyperbolic systems of conservation laws. I. Quasi-triviality of bi-Hamiltonian perturbations”, Comm. Pure Appl. Math. 59 (2006) no. 4, p. 559-615 | DOI | MR | Zbl

[DMS05] L. Degiovanni, F. Magri & V. Sciacca - “On deformation of Poisson manifolds of hydrodynamic type”, Comm. Math. Phys. 253 (2005) no. 1, p. 1-24 | MR | Zbl

[DN83] B. Dubrovin & S. Novikov - “Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method”, Dokl. Akad. Nauk SSSR 270 (1983) no. 4, p. 781-785 | MR | Zbl

[DVLS16] A. Della Vedova, P. Lorenzoni & A. Savoldi - “Deformations of non-semisimple Poisson pencils of hydrodynamic type”, Nonlinearity 29 (2016) no. 9, p. 2715-2754 | DOI | MR | Zbl

[DZ01] B. Dubrovin & Y. Zhang - “Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants” (2001), arXiv:math/0108160

[Fer01] E. V. Ferapontov - “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A 34 (2001), p. 2377-2388 | DOI | MR | Zbl

[Get02] E. Getzler - “A Darboux theorem for Hamiltonian operators in the formal calculus of variations”, Duke Math. J. 111 (2002) no. 3, p. 535-560 | DOI | MR | Zbl

[Lor02] P. Lorenzoni - “Deformations of bihamiltonian structures of hydrodynamic type”, J. Geom. Phys. 44 (2002) no. 2-3, p. 331-375 | DOI | MR

[LZ05] S.-Q. Liu & Y. Zhang - “Deformations of semisimple bihamiltonian structures of hydrodynamic type”, J. Geom. Phys. 54 (2005) no. 4, p. 427-453 | DOI | MR | Zbl

[LZ13] S.-Q. Liu & Y. Zhang - “Bihamiltonian cohomologies and integrable hierarchies I: A special case”, Comm. Math. Phys. 324 (2013) no. 3, p. 897-935 | MR | Zbl

[Mag78] F. Magri - “A simple model of the integrable Hamiltonian equation”, J. Math. Phys. 19 (1978) no. 5, p. 1156-1162 | DOI | MR | Zbl

[Zha02] Y. Zhang - “Deformations of the bihamiltonian structures on the loop space of Frobenius manifolds”, J. Nonlinear Math. Phys. 9 (2002) no. sup1, p. 243-257 | DOI | MR | Zbl

Cité par Sources :