[Intégration de fonctions de classe motivique exponentielle, uniforme dans tous les corps locaux de caractéristique nulle]
Par une cascade de généralisations, nous développons une théorie de l’intégration motivique qui fonctionne uniformément dans tous les corps locaux non archimédiens de caractéristique nulle, en surmontant des difficultés reliées à la ramification et à la caractéristique résiduelle petite. Nous définissons une classe de fonctions – appelées fonctions de classe motivique exponentielle – dont nous démontrons qu’elle est stable par intégration et par transformation de Fourier, étendant des résultats et des définitions de [10], [11] et [5]. Nous démontrons des résultats uniformes reliés à la rationalité et à différents types de lieux. Un ingrédient clef est une forme raffinée de l’élimination des quantificateurs de Denef-Pas, qui nous permet de comprendre des ensembles définissables dans le groupe de valeur et dans le corps valué.
Through a cascade of generalizations, we develop a theory of motivic integration which works uniformly in all non-archimedean local fields of characteristic zero, overcoming some of the difficulties related to ramification and small residue field characteristics. We define a class of functions, called functions of motivic exponential class, which we show to be stable under integration and under Fourier transformation, extending results and definitions from [10], [11] and [5]. We prove uniform results related to rationality and to various kinds of loci. A key ingredient is a refined form of Denef-Pas quantifier elimination which allows us to understand definable sets in the value group and in the valued field.
Accepté le :
Publié le :
DOI : 10.5802/jep.63
Keywords: Motivic integration, motivic Fourier transforms, motivic exponential functions, $p$-adic integration, non-archimedean geometry, Denef-Pas cell decomposition, quantifier elimination, uniformity in all local fields
Mot clés : Intégration motivique, transformation de Fourier motivique, fonctions motiviques exponentielles, intégration $p$-adique, géométrie non archimédienne, décomposition cellulaire de Denef-Pas, élimination des quantificateurs, uniformité dans tous les corps locaux
Raf Cluckers 1 ; Immanuel Halupczok 2
@article{JEP_2018__5__45_0, author = {Raf Cluckers and Immanuel Halupczok}, title = {Integration of functions of~motivic~exponential~class, uniform~in~all~non-archimedean local fields of characteristic zero}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {45--78}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.63}, zbl = {06988573}, mrnumber = {3732692}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.63/} }
TY - JOUR AU - Raf Cluckers AU - Immanuel Halupczok TI - Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 45 EP - 78 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.63/ DO - 10.5802/jep.63 LA - en ID - JEP_2018__5__45_0 ER -
%0 Journal Article %A Raf Cluckers %A Immanuel Halupczok %T Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 45-78 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.63/ %R 10.5802/jep.63 %G en %F JEP_2018__5__45_0
Raf Cluckers; Immanuel Halupczok. Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 45-78. doi : 10.5802/jep.63. https://jep.centre-mersenne.org/articles/10.5802/jep.63/
[1] - “The wave front set of the Fourier transform of algebraic measures”, Israel J. Math. 207 (2015) no. 2, p. 527-580 | MR | Zbl
[2] - “Relative elimination of quantifiers for Henselian valued fields”, Ann. Pure Appl. Logic 53 (1991) no. 1, p. 51-74 | DOI | MR | Zbl
[3] - “Presburger sets and -minimal fields”, J. Symbolic Logic 68 (2003), p. 153-162 | DOI | MR | Zbl
[4] - “Orbital integrals for linear groups”, J. Inst. Math. Jussieu 7 (2008) no. 2, p. 269-289 | MR | Zbl
[5] - “Integrability of oscillatory functions on local fields: transfer principles”, Duke Math. J. 163 (2014) no. 8, p. 1549-1600 | DOI | MR | Zbl
[6] - “Uniform analysis on local fields and applications to orbital integrals” (2017), arXiv:1703.03381
[7] - “Fields with analytic structure”, J. Eur. Math. Soc. (JEMS) 13 (2011), p. 1147-1223 | DOI | MR | Zbl
[8] - “-minimality”, J. Math. Logic 7 (2007) no. 2, p. 195-227 | MR | Zbl
[9] - “Constructible motivic functions and motivic integration”, Invent. Math. 173 (2008) no. 1, p. 23-121 | MR | Zbl
[10] - “Constructible exponential functions, motivic Fourier transform and transfer principle”, Ann. of Math. (2) 171 (2010), p. 1011-1065 | DOI | MR | Zbl
[11] - “Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero”, J. reine angew. Math. 701 (2015), p. 1-31 | MR | Zbl
[12] - “Decision procedures for real and -adic fields”, Comm. Pure Appl. Math. 22 (1969), p. 131-151 | DOI | MR | Zbl
[13] - “The rationality of the Poincaré series associated to the -adic points on a variety”, Invent. Math. 77 (1984), p. 1-23 | DOI | Zbl
[14] - “-adic semialgebraic sets and cell decomposition”, J. reine angew. Math. 369 (1986), p. 154-166
[15] - “On the Degree of Igusa’s local zeta function”, Amer. J. Math. 109 (1987), p. 991-1008 | DOI | MR | Zbl
[16] - “Report on Igusa’s local zeta function”, in Séminaire Bourbaki, Astérisque, vol. 201-203, Société Mathématique de France, 1991, p. 359-386 | Zbl
[17] - “Arithmetic and geometric applications of quantifier elimination for valued fields”, in Model theory, algebra, and geometry (D. Haskell, A. Pillay & C. Steinhorn, eds.), MSRI Publications, vol. 39, Cambridge University Press, 2000, p. 173-198 | MR
[18] - “Definable sets, motives and -adic integrals”, J. Amer. Math. Soc. 14 (2001) no. 2, p. 429-469 | DOI | MR | Zbl
[19] - “Relative decidability and definability in henselian valued fields”, J. Symbolic Logic 76 (2011) no. 4, p. 1240-1260 | DOI | MR | Zbl
[20] - “Resolution of singularities of an algebraic variety over a field of characteristic zero. I”, Ann. of Math. (2) 79 (1964) no. 1, p. 109-203 | MR | Zbl
[21] - “Integration in valued fields”, in Algebraic geometry and number theory, Progress in Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, p. 261-405 | DOI | MR | Zbl
[22] - An introduction to the theory of local zeta functions, Studies in advanced mathematics, American Mathematical Society, Providence, RI, 2000 | Zbl
[23] - “Motivic integration on smooth rigid varieties and invariants of degenerations”, Duke Math. J. 119 (2003) no. 2, p. 315-344 | MR | Zbl
[24] - “On definable subsets of -adic fields”, J. Symbolic Logic 41 (1976), p. 605-610 | DOI | MR | Zbl
[25] - “Invariant de Serre et fibre de Milnor analytique”, Comptes Rendus Mathématique 341 (2005) no. 1, p. 21-24 | DOI | MR | Zbl
[26] - “Motivic Serre invariants, ramification, and the analytic Milnor fiber”, Invent. Math. 168 (2007) no. 1, p. 133-173 | MR | Zbl
[27] - “Uniform -adic cell decomposition and local zeta functions”, J. reine angew. Math. 399 (1989), p. 137-172 | MR | Zbl
[28] - “Cell decomposition and local zeta functions in a tower of unramified extensions of a -adic field”, Proc. London Math. Soc. (3) 60 (1990) no. 1, p. 37-67 | DOI | MR | Zbl
[29] - “Some properties of analytic difference valued fields”, J. Inst. Math. Jussieu 16 (2017) no. 3, p. 447-499 | DOI | MR | Zbl
[30] - “Intégration motivique sur les schémas formels”, Bull. Soc. math. France 132 (2004) no. 1, p. 1-54 | DOI | Numdam | Zbl
Cité par Sources :