Un théorème célèbre dû à Mañé-Sad-Sullivan et Lyubich affirme que les paramètres -stables forment un ouvert dense de toute famille holomorphe de systèmes dynamiques rationnels en dimension . Dans cet article nous montrons que ce résultat ne subsiste pas en dimension supérieure. Plus précisément nous construisons des ouverts contenus dans le lieu de bifurcation des applications holomorphes de degré de pour tout et .
A well-known theorem due to Mañé-Sad-Sullivan and Lyubich asserts that -stable maps are dense in any holomorphic family of rational maps in dimension . In this paper we show that the corresponding result fails in higher dimension. More precisely, we construct open subsets in the bifurcation locus in the space of holomorphic mappings of degree of for every and .
Accepté le :
Publié le :
DOI : 10.5802/jep.57
Keywords: Holomorphic dynamics in higher dimension, J-stability, bifurcations, blenders
Mot clés : Dynamique holomorphe en dimension supérieure, J-stabilité, bifurcations, mélangeurs
Romain Dujardin 1
@article{JEP_2017__4__813_0, author = {Romain Dujardin}, title = {Non-density of stability for holomorphic~mappings on~$\protect \mathbb{P}^k$}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {813--843}, publisher = {\'Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.57}, mrnumber = {3694096}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.57/} }
TY - JOUR AU - Romain Dujardin TI - Non-density of stability for holomorphic mappings on $\protect \mathbb{P}^k$ JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 813 EP - 843 VL - 4 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.57/ DO - 10.5802/jep.57 LA - en ID - JEP_2017__4__813_0 ER -
%0 Journal Article %A Romain Dujardin %T Non-density of stability for holomorphic mappings on $\protect \mathbb{P}^k$ %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 813-843 %V 4 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.57/ %R 10.5802/jep.57 %G en %F JEP_2017__4__813_0
Romain Dujardin. Non-density of stability for holomorphic mappings on $\protect \mathbb{P}^k$. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 813-843. doi : 10.5802/jep.57. https://jep.centre-mersenne.org/articles/10.5802/jep.57/
[BBD17] - “Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of ”, Ann. Sci. École Norm. Sup. (4) (2017), to appear | Zbl
[BD96] - “Persistent nonhyperbolic transitive diffeomorphisms”, Ann. of Math. (2) 143 (1996) no. 2, p. 357-396 | DOI
[BD01] - “Deux caractérisations de la mesure d’équilibre d’un endomorphisme de ”, Publ. Math. Inst. Hautes Études Sci. 93 (2001), p. 145-159, Erratum: Ibid, 109 (2009), p. 295–296 | DOI | MR | Zbl
[BDV05] - Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005 | MR | Zbl
[Bia16] - Motions of Julia sets and dynamical stability in several complex variables, Université de Toulouse, Sept. 2016, Ph. D. Thesis
[Bie16] - “Persistent homoclinic tangencies and infinitely many sinks for of automorphisms of low degree in ” (2016), arXiv:1611.02011
[BT17] - “Bifurcations in the elementary Desboves family”, Proc. Amer. Math. Soc. (2017), to appear | DOI | MR | Zbl
[Buz97] - “Infinitely many periodic attractors for holomorphic maps of variables”, Ann. of Math. (2) 145 (1997) no. 2, p. 389-417 | DOI | MR | Zbl
[Chi89] - Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989 | MR | Zbl
[DF08] - “Distribution of rational maps with a preperiodic critical point”, Amer. J. Math. 130 (2008) no. 4, p. 979-1032 | DOI | MR | Zbl
[DK88] - “Generalized number systems in the complex plane”, Acta Math. Hungar. 51 (1988) no. 3-4, p. 409-416 | DOI | MR | Zbl
[DL15] - “Stability and bifurcations for dissipative polynomial automorphisms of ”, Invent. Math. 200 (2015) no. 2, p. 439-511 | DOI | MR
[DS85] - “Un tour de valse”, in Étude dynamique des polynômes complexes. Partie II (A. Douady & J. H. Hubbard, eds.), Publications Mathématiques d’Orsay, vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985
[Duj14] - “Bifurcation currents and equidistribution in parameter space”, in Frontiers in complex dynamics (A. Bonifant, M. Lyubich & S. Sutherland, eds.), Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, p. 515-566 | MR
[Gav98] - “Attracting basins in ”, J. Geom. Anal. 8 (1998) no. 3, p. 433-440 | DOI | MR
[HP94] - “Superattractive fixed points in ”, Indian J. Math. 43 (1994) no. 1, p. 321-365 | DOI | MR | Zbl
[HS16] - “Two-dimensional self-affine sets with interior points, and the set of uniqueness”, Nonlinearity 29 (2016) no. 1, p. 1-26 | DOI | MR | Zbl
[Jon99] - “Dynamics of polynomial skew products on ”, Math. Ann. 314 (1999) no. 3, p. 403-447 | DOI | MR
[Lei98] - “Hausdorff dimension of subsets of the parameter space for families of rational maps. (A generalization of Shishikura’s result)”, Nonlinearity 11 (1998) no. 2, p. 233-246 | DOI | MR | Zbl
[Lyu83] - “Some typical properties of the dynamics of rational mappings”, Uspehi Mat. Nauk 38 (1983) no. 5(233), p. 197-198 | MR | Zbl
[Lyu84] - “Investigation of the stability of the dynamics of rational functions”, Teor. Funkciĭ Funkcional. Anal. i Priložen. (1984) no. 42, p. 72-91, Translated in Selecta Math. Soviet. 9 (1990), no. 1, p. 69–90 | MR | Zbl
[Mañ93] - “On a theorem of Fatou”, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993) no. 1, p. 1-11 | DOI | MR | Zbl
[McM00] - “The Mandelbrot set is universal”, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, p. 1-17 | MR | Zbl
[MS98] - “Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system”, Adv. Math. 135 (1998) no. 2, p. 351-395 | DOI | Zbl
[MSS83] - “On the dynamics of rational maps”, Ann. Sci. École Norm. Sup. (4) 16 (1983) no. 2, p. 193-217 | DOI | Numdam | MR | Zbl
[New70] - “Nondensity of axiom on ”, in Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., vol. XIV, American Mathematical Society, Providence, R.I., 1970, p. 191-202 | MR | Zbl
[PU10] - Conformal fractals: ergodic theory methods, London Math. Society Lect. Note Series, vol. 371, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[RY08] - “The boundary of bounded polynomial Fatou components”, Comptes Rendus Mathématique 346 (2008) no. 15-16, p. 877-880 | DOI | MR | Zbl
[Shi98] - “The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets”, Ann. of Math. (2) 147 (1998) no. 2, p. 225-267 | DOI | MR | Zbl
[Taf17] - “Blenders near polynomial product maps of ” (2017), arXiv:1702.02115
Cité par Sources :