Dans cet article, nous étudions la contrôlabilité exacte du système de Schrödinger-Poisson 2D, qui couple une équation de Schrödinger sur un ouvert borné 2D, avec une équation de Poisson pour le potentiel électrique. Le contrôle agit sur le système via une condition de Neumann sur le potentiel, localement distribuée sur le bord du domaine spatial. Nous démontrons plusieurs résultats, avec ou sans non-linéarité, avec différents types de conditions de bord sur la fonction d’onde, de type Dirichlet ou de type Neumann.
In this article, we investigate the exact controllability of the -Schrödinger-Poisson system, which couples a Schrödinger equation on a bounded domain of with a Poisson equation for the electrical potential. The control acts on the system through a Neumann boundary condition on the potential, locally distributed on the boundary of the space domain. We prove several results, with or without nonlinearity and with different boundary conditions on the wave function, of Dirichlet type or of Neumann type.
Accepté le :
Publié le :
DOI : 10.5802/jep.44
Keywords: Control of partial differential equations, Schrödinger-Poisson system, bilinear control
Mot clés : Contrôle d’équations aux dérivées partielles, système de Schrödinger-Poisson, contrôle bilinéaire
Karine Beauchard 1 ; Camille Laurent 2
@article{JEP_2017__4__287_0, author = {Karine Beauchard and Camille Laurent}, title = {Local exact controllability of the~$2${D-Schr\"odinger-Poisson} system}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {287--336}, publisher = {\'Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.44}, zbl = {1375.35419}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.44/} }
TY - JOUR AU - Karine Beauchard AU - Camille Laurent TI - Local exact controllability of the $2$D-Schrödinger-Poisson system JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 287 EP - 336 VL - 4 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.44/ DO - 10.5802/jep.44 LA - en ID - JEP_2017__4__287_0 ER -
%0 Journal Article %A Karine Beauchard %A Camille Laurent %T Local exact controllability of the $2$D-Schrödinger-Poisson system %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 287-336 %V 4 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.44/ %R 10.5802/jep.44 %G en %F JEP_2017__4__287_0
Karine Beauchard; Camille Laurent. Local exact controllability of the $2$D-Schrödinger-Poisson system. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 287-336. doi : 10.5802/jep.44. https://jep.centre-mersenne.org/articles/10.5802/jep.44/
[1] - “Wigner measures and observability for the Schrödinger equation on the disk”, Invent. Math. 206 (2016) no. 2, p. 485-599 | DOI | Zbl
[2] - “Internal null controllability of a linear Schrödinger-KdV system on a bounded interval”, J. Differential Equations 260 (2016) no. 1, p. 653-687 | DOI | Zbl
[3] - “Controllability for distributed bilinear systems”, SIAM J. Control Optim. 20 (1982) no. 4, p. 575-597 | DOI | MR | Zbl
[4] - “Local controllability of a 1-D Schrödinger equation”, J. Math. Pures Appl. (9) 84 (2005) no. 7, p. 851-956 | DOI | Zbl
[5] - “Local controllability of 1D linear and nonlinear Schrödinger equations”, J. Math. Pures Appl. (9) 94 (2010) no. 5, p. 520-554 | DOI | Zbl
[6] - “Bilinear control of high frequencies for a 1D Schrödinger equation”, Math. Control Signals Systems (to appear), hal-01333625 | Zbl
[7] - Interpolation spaces. An introduction, Grundlehren Math. Wiss., vol. 223, Springer-Verlag, Berlin-New York, 1976 | MR | Zbl
[8] - “A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule”, Comm. Math. Phys. 311 (2012) no. 2, p. 423-455 | DOI | Zbl
[9] - “Multi-input Schrödinger equation: controllability, tracking and application to the quantum angular momentum”, J. Differential Equations 256 (2014) no. 11, p. 3524-3551 | DOI | Zbl
[10] - “On some open questions in bilinear quantum control”, in Proceeding ECC (Zürich, 2013), IEEE, 2013, hal-00818216
[11] - “Regular propagators of bilinear quantum systems” (2014), hal-01016299
[12] - Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983 | Zbl
[13] - “Contrôle de l’équation des ondes dans des ouverts peu réguliers”, Asymptot. Anal. 14 (1997), p. 157-191 | Zbl
[14] - “Mesures semi-classiques et mesures de défaut”, in Séminaire Bourbaki, Vol. 1996/97, Astérisque, vol. 245, Société Mathématique de France, Paris, 1997, p. 167-195, Exp. No. 826 | Numdam | Zbl
[15] - “Geometric control in the presence of a black box”, J. Amer. Math. Soc. 17 (2004) no. 2, p. 443-471 | DOI | MR | Zbl
[16] - “Controllability of the discrete-spectrum Schrödinger equation driven by an external field”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) no. 1, p. 329-349 | DOI | Numdam | Zbl
[17] - Control and nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007 | MR
[18] - Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman, Boston, MA, 1985 | MR | Zbl
[19] - “Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire”, J. Math. Pures Appl. (9) 68 (1989) no. 4, p. 457-465 | Zbl
[20] - The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Grundlehren Math. Wiss., vol. 256, Springer-Verlag, Berlin, 1983 | Zbl
[21] - “Sharp regularity theory for second order hyperbolic equations of Neumann type. I. nonhomogeneous data”, Ann. Mat. Pura Appl. (4) 157 (1990), p. 285-367 | DOI | MR | Zbl
[22] - “Contrôle de l’équation de Schrödinger”, J. Math. Pures Appl. (9) 71 (1992) no. 3, p. 267-291 | Zbl
[23] - Non-homogeneous boundary value problems and applications. Vol. I, Grundlehren Math. Wiss., vol. 181, Springer-Verlag, New York-Heidelberg, 1972 | MR | Zbl
[24] - “On the controllability of quantum transport in an electronic nanostructure”, SIAM J. Appl. Math. 74 (2014) no. 6, p. 1870-1894 | DOI | MR | Zbl
[25] - “How violent are fast controls for Schrödinger and plate vibrations?”, Arch. Rational Mech. Anal. 172 (2004) no. 3, p. 429-456 | DOI | MR | Zbl
[26] - “Controllability cost of conservative systems: resolvent condition and transmutation”, J. Funct. Anal. 218 (2005) no. 2, p. 425-444 | DOI | MR | Zbl
[27] - “Simultaneous local exact controllability of 1D bilinear Schrödinger equations Morgan Morancey”, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) no. 3, p. 501-529 | DOI | MR | Zbl
[28] - “Global exact controllability of 1d Schrödinger equations with a polarizability term”, Comptes Rendus Mathématique 352 (2014) no. 5, p. 425-429 | DOI | Zbl
[29] - “Simultaneous global exact controllability of an arbitrary number of 1d bilinear Schrödinger equations”, J. Math. Pures Appl. (9) 103 (2015) no. 1, p. 228-254 | DOI | Zbl
[30] - “Growth of Sobolev norms and controllability of the Schrödinger equation”, Comm. Math. Phys. 290 (2009) no. 1, p. 371-387 | DOI | MR | Zbl
[31] - “Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications”, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010) no. 3, p. 901-915 | DOI | Numdam | MR | Zbl
[32] - “Global exact controllability in infinite time of Schrödinger equation: multidimensional case”, J. Math. Pures Appl. (9) 97 (2012) no. 4, p. 295-317 | DOI | Zbl
[33] - “The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent”, ESAIM Control Optim. Calc. Var. 16 (2010) no. 3, p. 794-805, Erratum: Ibid., p. 806–807 | DOI | Numdam | MR | Zbl
[34] - “A regularity property for Schrödinger equations on bounded domains”, Rev. Mat. Univ. Complut. Madrid 26 (2013) no. 1, p. 183-192 | DOI
[35] - “On the regularity of boundary traces for the wave equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998) no. 1, p. 185-206 | Numdam | MR | Zbl
[36] - “Fast and strongly localized observation for the Schrödinger equation”, Trans. Amer. Math. Soc. 361 (2009), p. 951-977 | DOI | Zbl
[37] - “On the controllability of bilinear quantum systems”, in Mathematical Models and Methods for Ab Initio Quantum Chemistry (C. Le Bris & M. Defranceschi, eds.), Lect. Notes in Chemistry, vol. 74, Springer, 2000 | DOI | MR
Cité par Sources :