Holomorphic functions on geometrically finite quotients of the ball
[Fonctions holomorphes sur les quotients géométriquement finis de la boule]
Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 321-348

Let $\Gamma $ be a discrete and torsion-free subgroup of $\mathrm{PU}(n,1)$, the group of biholomorphisms of the unit ball in $\mathbb{C}^{n}$, denoted by $\mathbb{H}^{n}_{\mathbb{C}}$. We show that if $\Gamma $ is Abelian, then $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ is a Stein manifold. If the critical exponent $\delta (\Gamma )$ of $\Gamma $ is less than 2, a conjecture of Dey and Kapovich predicts that the quotient $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ is Stein. We confirm this conjecture in the case where $\Gamma $ is parabolic or geometrically finite. We also study the case of quotients with $\delta (\Gamma )=2$ that contain compact complex curves and confirm another conjecture of Dey and Kapovich. We finally show that $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ is Stein when $\Gamma $ is a parabolic or geometrically finite group preserving a totally real and totally geodesic submanifold of $\mathbb{H}^{n}_{\mathbb{C}}$, without any hypothesis on the critical exponent.

Soit $\Gamma $ un sous-groupe discret et sans torsion de $\mathrm{PU}(n,1)$, le groupe des biholomorphismes de la boule unité de $\mathbb{C}^{n}$, notée $\mathbb{H}^{n}_{\mathbb{C}}$. Nous montrons que si $\Gamma $ est abélien, alors $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ est une variété de Stein. Si l’exposant critique $\delta (\Gamma )$ de $\Gamma $ est inférieur à 2, une conjecture de Dey et Kapovich prédit que le quotient $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ est une variété de Stein. Nous confirmons cette conjecture dans le cas où $\Gamma $ est parabolique ou géométriquement fini. Nous étudions également le cas des quotients avec $\delta (\Gamma )=2$ qui contiennent des courbes complexes compactes, et confirmons une autre conjecture de Dey et Kapovich. Enfin, nous montrons que $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ est de Stein lorsque $\Gamma $ est un groupe parabolique ou géométriquement fini préservant une sous-variété totalement réelle et totalement géodésique de $\mathbb{H}^{n}_{\mathbb{C}}$, sans aucune hypothèse sur l’exposant critique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.328
Classification : 22E40, 32Q28
Keywords: Discrete subgroups, Stein manifolds, critical exponent, Patterson-Sullivan theory
Mots-clés : Sous-groupes discrets, variétés de Stein, exposant critique, théorie de Patterson-Sullivan

William Sarem  1

1 Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2026__13__321_0,
     author = {William Sarem},
     title = {Holomorphic functions on geometrically~finite quotients of the ball},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {321--348},
     year = {2026},
     publisher = {\'Ecole polytechnique},
     volume = {13},
     doi = {10.5802/jep.328},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.328/}
}
TY  - JOUR
AU  - William Sarem
TI  - Holomorphic functions on geometrically finite quotients of the ball
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2026
SP  - 321
EP  - 348
VL  - 13
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.328/
DO  - 10.5802/jep.328
LA  - en
ID  - JEP_2026__13__321_0
ER  - 
%0 Journal Article
%A William Sarem
%T Holomorphic functions on geometrically finite quotients of the ball
%J Journal de l’École polytechnique — Mathématiques
%D 2026
%P 321-348
%V 13
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.328/
%R 10.5802/jep.328
%G en
%F JEP_2026__13__321_0
William Sarem. Holomorphic functions on geometrically finite quotients of the ball. Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 321-348. doi: 10.5802/jep.328

[AK01] Y. Abe & K. Kopfermann - Toroidal groups, Lect. Notes in Math., Springer, Berlin, 2001 no. 1759 | Zbl | MR | DOI

[And83] M. T. Anderson - “The Dirichlet problem at infinity for manifolds of negative curvature”, J. Differential Geom. 18 (1983) no. 4, p. 701-721 | Zbl | MR | DOI

[BH99] M. R. Bridson & A. Haefliger - Metric spaces of non-positive curvature, Grundlehren Math. Wissen., vol. 319, Springer, Berlin, 1999 | DOI | Zbl | MR

[BH23] Y. Benoist & D. Hulin - “Harmonic quasi-isometric maps. III: quotients of Hadamard manifolds”, Geom. Dedicata 217 (2023) no. 3, article ID 52, 37 pages | Zbl | MR | DOI

[Bow93] B. H. Bowditch - “Discrete parabolic groups”, J. Differential Geom. 38 (1993) no. 3, p. 559-583 | Zbl | MR | DOI

[Bow95] B. H. Bowditch - “Geometrical finiteness with variable negative curvature”, Duke Math. J. 77 (1995) no. 1, p. 229-274 | Zbl | MR | DOI

[BP92] R. Benedetti & C. Petronio - Lectures on hyperbolic geometry, Universitext, Springer, Berlin, Heidelberg, 1992 | Zbl | MR | DOI

[BW00] A. Borel & N. R. Wallach - Continuous cohomology, discrete subgroups, and representations of reductive groups, Math. Surv. Monogr., vol. 67, American Mathematical Society, Providence, RI, 2000 | DOI | Zbl | MR

[CCG + 10] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni - The Ricci flow: techniques and applications. Part III: Geometric-analytic aspects, Math. Surv. Monogr., American Mathematical Society, Providence, RI, 2010 no. 163 | DOI | Zbl | MR

[CD97] M. Coltoiu & K. Diederich - “Open sets with Stein hypersurface sections in Stein spaces”, Ann. of Math. (2) 145 (1997) no. 1, p. 175-182 | Zbl | MR | DOI

[Che13] B.-Y. Chen - “Discrete groups and holomorphic functions”, Math. Ann. 355 (2013) no. 3, p. 1025-1047 | Zbl | MR | DOI

[CI99] K. Corlette & A. Iozzi - “Limit sets of discrete groups of isometries of exotic hyperbolic spaces”, Trans. Amer. Math. Soc. 351 (1999) no. 4, p. 1507-1530 | Zbl | MR | DOI

[CKY17] D. I. Cartwright, V. Koziarz & S.-K. Yeung - “On the Cartwright-Steger surface”, J. Algebraic Geom. 26 (2017) no. 4, p. 655-689 | DOI | Zbl | MR

[CMW23] C. Connell, D. B. McReynolds & S. Wang - “The natural flow and the critical exponent”, 2023 | arXiv | Zbl

[Cou10] P. Cousin - “Sur les fonctions triplement périodiques de deux variables”, Acta Math. 33 (1910) no. 1, p. 105-232 | Zbl | MR | DOI

[Dem12] J.-P. Demailly - “Complex analytic and differential geometry” (2012), book available on https://www-fourier.univ-grenoble-alpes.fr/~demailly/documents.html

[dF98] C. de Fabritiis - “A family of complex manifolds covered by δ n , Complex Variables Theory Appl. 36 (1998) no. 3, p. 233-252 | Zbl | MR | DOI

[dFI01] C. de Fabritiis & A. Iannuzzi - “Quotients of the unit ball of n for a free action of , J. Anal. Math. 85 (2001) no. 1, p. 213-224 | Zbl | MR | DOI

[DK20] S. Dey & M. Kapovich - “A note on complex-hyperbolic Kleinian groups”, Arnold Math. J. 6 (2020) no. 3, p. 397-406 | Zbl | MR | DOI

[DOP00] F. Dal’bo, J.-P. Otal & M. Peigné - “Séries de Poincaré des groupes géométriquement finis”, Israel J. Math. 118 (2000) no. 1, p. 109-124 | Zbl | DOI

[EO73] P. Eberlein & B. O’Neill - “Visibility manifolds”, Pacific J. Math. 46 (1973) no. 1, p. 45-109 | DOI | Zbl | MR

[Eys18] P. Eyssidieux - “Orbifold Kähler groups related to arithmetic complex hyperbolic lattices”, 2018 | arXiv | Zbl

[FP03] E. Falbel & J. R. Parker - “The moduli space of the modular group in complex hyperbolic geometry”, Invent. Math. 152 (2003) no. 1, p. 57-88 | Zbl | MR | DOI

[GP92] W. M. Goldman & J. R. Parker - “Complex hyperbolic ideal triangle groups”, J. reine angew. Math. 425 (1992), p. 71-86 | Zbl | MR | DOI

[Gra58] H. Grauert - “On Levi’s problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2) 68 (1958) no. 2, p. 460-472 | Zbl | DOI | MR

[GW73] R. Greene & H. Wu - “On the subharmonicity and plurisubharmonicity of geodesically convex functions”, Indiana Univ. Math. J. 22 (1973) no. 7, p. 641-653 | Zbl | DOI | MR

[GW76] R. E. Greene & H. Wu - “C convex functions and manifolds of positive curvature”, Acta Math. 137 (1976), p. 209-245 | DOI | Zbl | MR

[GW79] R. E. Greene & H. Wu - Function theory on manifolds which possess a pole, Lect. Notes in Math., Springer, Berlin, 1979 no. 699 | Zbl | DOI | MR

[HH77] E. Heintze & H.-C. I. Hof - “Geometry of horospheres”, J. Differential Geom. 12 (1977) no. 4, p. 481-491 | DOI | Zbl | MR

[IMM23] G. Italiano, B. Martelli & M. Migliorini - “Hyperbolic 5-manifolds that fiber over 𝕊 1 , Invent. Math. 231 (2023) no. 1, p. 1-38 | DOI | Zbl | MR

[Kap22] M. Kapovich - “A survey of complex hyperbolic Kleinian groups”, in In the tradition of Thurston II: Geometry and groups (K. Ohshika & A. Papadopoulos, eds.), Springer, Cham, 2022, p. 7-51 | DOI | Zbl

[Kop64] K. Kopfermann - Maximale Untergruppen Abelscher komplexer Liescher Gruppen, Univ., Math. Inst., Münster, 1964, https://eudml.org/doc/204249 | Zbl

[KS93] N. J. Korevaar & R. M. Schoen - “Sobolev spaces and harmonic maps for metric space targets”, Comm. Anal. Geom. 1 (1993) no. 4, p. 561-659 | DOI | Zbl | MR

[LIP24] C. Llosa Isenrich & P. Py - “Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices”, Invent. Math. 235 (2024) no. 1, p. 233-254 | DOI | Zbl | MR

[Mie10] C. Miebach - “Quotients of bounded homogeneous domains by cyclic groups”, Osaka J. Math. 47 (2010) no. 2, p. 331-352 | Zbl | MR

[Mie24] C. Miebach - “On quotients of bounded homogeneous domains by unipotent discrete groups”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 25 (2024) no. 4, p. 2101-2123 | MR | DOI | Zbl

[MO18] C. Miebach & K. Oeljeklaus - “Schottky group actions in complex geometry”, in Geometric complex analysis. In honor of Kang-Tae Kim’s 60th birthday (J. Byun, H. R. Cho, S. Y. Kim, K.-H. Lee & J.-D. Park, eds.), Springer, Singapore, 2018, p. 257-268 | Zbl

[Nap90] T. Napier - “Convexity properties of coverings of smooth projective varieties”, Math. Ann. 286 (1990) no. 1–3, p. 433-479 | DOI | Zbl | MR

[Nar62] R. Narasimhan - “The Levi problem for complex spaces II”, Math. Ann. 146 (1962) no. 3, p. 195-216 | DOI | Zbl | MR

[Nic89] P. J. Nicholls - The ergodic theory of discrete groups, London Math. Soc. Lect. Note Series, Cambridge University Press, Cambridge, 1989 no. 143 | DOI | Zbl | MR

[Osi06] D. V. Osin - Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc., vol. 179 no. 843, American Mathematical Society, Providence, RI, 2006 | Zbl

[Pat76] S. J. Patterson - “The limit set of a Fuchsian group”, Acta Math. 136 (1976) no. 1, p. 241-273 | DOI | Zbl | MR

[Pet94] T. Peternell - “Pseudoconvexity, the Levi problem and vanishing theorems”, in Several Complex Variables VII (H. Grauert, T. Peternell & R. Remmert, eds.), Encyclopaedia of Math. Sciences, Springer, Berlin, 1994 no. 74, p. 221-257 | DOI | Zbl

[Rob03] T. Roblin - Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. France (N.S.), vol. 95, Société Mathématique de France, Paris, 2003 | DOI | Numdam | Zbl

[Ste56] K. Stein - “Überlagerungen holomorph-vollständiger komplexer Räume”, Arch. Math. (Basel) 7 (1956) no. 5, p. 354-361 | DOI | Zbl | MR

[Sul79] D. Sullivan - “The density at infinity of a discrete group of hyperbolic motions”, Publ. Math. Inst. Hautes Études Sci. 50 (1979), p. 171-202 | Numdam | DOI | Zbl | MR

[SY82] Y. T. Siu & S. T. Yau - “Compactification of negatively curved complete Kähler manifolds of finite volume”, in Seminar on differential geometry, Annals of Math. Studies, vol. 102, Princeton University Press, Princeton, NJ, 1982, p. 363-380 | Zbl

[Tam10] L.-F. Tam - “Exhaustion functions on complete manifolds”, in Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, p. 211-215 | Zbl

[Voi02] C. Voisin - Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Société Mathématique de France, Paris, 2002 | Zbl | MR

Cité par Sources :