[Fonctions holomorphes sur les quotients géométriquement finis de la boule]
Let $\Gamma $ be a discrete and torsion-free subgroup of $\mathrm{PU}(n,1)$, the group of biholomorphisms of the unit ball in $\mathbb{C}^{n}$, denoted by $\mathbb{H}^{n}_{\mathbb{C}}$. We show that if $\Gamma $ is Abelian, then $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ is a Stein manifold. If the critical exponent $\delta (\Gamma )$ of $\Gamma $ is less than 2, a conjecture of Dey and Kapovich predicts that the quotient $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ is Stein. We confirm this conjecture in the case where $\Gamma $ is parabolic or geometrically finite. We also study the case of quotients with $\delta (\Gamma )=2$ that contain compact complex curves and confirm another conjecture of Dey and Kapovich. We finally show that $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ is Stein when $\Gamma $ is a parabolic or geometrically finite group preserving a totally real and totally geodesic submanifold of $\mathbb{H}^{n}_{\mathbb{C}}$, without any hypothesis on the critical exponent.
Soit $\Gamma $ un sous-groupe discret et sans torsion de $\mathrm{PU}(n,1)$, le groupe des biholomorphismes de la boule unité de $\mathbb{C}^{n}$, notée $\mathbb{H}^{n}_{\mathbb{C}}$. Nous montrons que si $\Gamma $ est abélien, alors $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ est une variété de Stein. Si l’exposant critique $\delta (\Gamma )$ de $\Gamma $ est inférieur à 2, une conjecture de Dey et Kapovich prédit que le quotient $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ est une variété de Stein. Nous confirmons cette conjecture dans le cas où $\Gamma $ est parabolique ou géométriquement fini. Nous étudions également le cas des quotients avec $\delta (\Gamma )=2$ qui contiennent des courbes complexes compactes, et confirmons une autre conjecture de Dey et Kapovich. Enfin, nous montrons que $\mathbb{H}^{n}_{\mathbb{C}}/\Gamma $ est de Stein lorsque $\Gamma $ est un groupe parabolique ou géométriquement fini préservant une sous-variété totalement réelle et totalement géodésique de $\mathbb{H}^{n}_{\mathbb{C}}$, sans aucune hypothèse sur l’exposant critique.
Accepté le :
Publié le :
Keywords: Discrete subgroups, Stein manifolds, critical exponent, Patterson-Sullivan theory
Mots-clés : Sous-groupes discrets, variétés de Stein, exposant critique, théorie de Patterson-Sullivan
William Sarem  1
CC-BY 4.0
@article{JEP_2026__13__321_0,
author = {William Sarem},
title = {Holomorphic functions on geometrically~finite quotients of the ball},
journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
pages = {321--348},
year = {2026},
publisher = {\'Ecole polytechnique},
volume = {13},
doi = {10.5802/jep.328},
language = {en},
url = {https://jep.centre-mersenne.org/articles/10.5802/jep.328/}
}
TY - JOUR AU - William Sarem TI - Holomorphic functions on geometrically finite quotients of the ball JO - Journal de l’École polytechnique — Mathématiques PY - 2026 SP - 321 EP - 348 VL - 13 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.328/ DO - 10.5802/jep.328 LA - en ID - JEP_2026__13__321_0 ER -
%0 Journal Article %A William Sarem %T Holomorphic functions on geometrically finite quotients of the ball %J Journal de l’École polytechnique — Mathématiques %D 2026 %P 321-348 %V 13 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.328/ %R 10.5802/jep.328 %G en %F JEP_2026__13__321_0
William Sarem. Holomorphic functions on geometrically finite quotients of the ball. Journal de l’École polytechnique — Mathématiques, Tome 13 (2026), pp. 321-348. doi: 10.5802/jep.328
[AK01] - Toroidal groups, Lect. Notes in Math., Springer, Berlin, 2001 no. 1759 | Zbl | MR | DOI
[And83] - “The Dirichlet problem at infinity for manifolds of negative curvature”, J. Differential Geom. 18 (1983) no. 4, p. 701-721 | Zbl | MR | DOI
[BH99] - Metric spaces of non-positive curvature, Grundlehren Math. Wissen., vol. 319, Springer, Berlin, 1999 | DOI | Zbl | MR
[BH23] - “Harmonic quasi-isometric maps. III: quotients of Hadamard manifolds”, Geom. Dedicata 217 (2023) no. 3, article ID 52, 37 pages | Zbl | MR | DOI
[Bow93] - “Discrete parabolic groups”, J. Differential Geom. 38 (1993) no. 3, p. 559-583 | Zbl | MR | DOI
[Bow95] - “Geometrical finiteness with variable negative curvature”, Duke Math. J. 77 (1995) no. 1, p. 229-274 | Zbl | MR | DOI
[BP92] - Lectures on hyperbolic geometry, Universitext, Springer, Berlin, Heidelberg, 1992 | Zbl | MR | DOI
[BW00] - Continuous cohomology, discrete subgroups, and representations of reductive groups, Math. Surv. Monogr., vol. 67, American Mathematical Society, Providence, RI, 2000 | DOI | Zbl | MR
[CCG + 10] - The Ricci flow: techniques and applications. Part III: Geometric-analytic aspects, Math. Surv. Monogr., American Mathematical Society, Providence, RI, 2010 no. 163 | DOI | Zbl | MR
[CD97] - “Open sets with Stein hypersurface sections in Stein spaces”, Ann. of Math. (2) 145 (1997) no. 1, p. 175-182 | Zbl | MR | DOI
[Che13] - “Discrete groups and holomorphic functions”, Math. Ann. 355 (2013) no. 3, p. 1025-1047 | Zbl | MR | DOI
[CI99] - “Limit sets of discrete groups of isometries of exotic hyperbolic spaces”, Trans. Amer. Math. Soc. 351 (1999) no. 4, p. 1507-1530 | Zbl | MR | DOI
[CKY17] - “On the Cartwright-Steger surface”, J. Algebraic Geom. 26 (2017) no. 4, p. 655-689 | DOI | Zbl | MR
[CMW23] - “The natural flow and the critical exponent”, 2023 | arXiv | Zbl
[Cou10] - “Sur les fonctions triplement périodiques de deux variables”, Acta Math. 33 (1910) no. 1, p. 105-232 | Zbl | MR | DOI
[Dem12] - “Complex analytic and differential geometry” (2012), book available on https://www-fourier.univ-grenoble-alpes.fr/~demailly/documents.html
[dF98] - “A family of complex manifolds covered by ”, Complex Variables Theory Appl. 36 (1998) no. 3, p. 233-252 | Zbl | MR | DOI
[dFI01] - “Quotients of the unit ball of for a free action of ”, J. Anal. Math. 85 (2001) no. 1, p. 213-224 | Zbl | MR | DOI
[DK20] - “A note on complex-hyperbolic Kleinian groups”, Arnold Math. J. 6 (2020) no. 3, p. 397-406 | Zbl | MR | DOI
[DOP00] - “Séries de Poincaré des groupes géométriquement finis”, Israel J. Math. 118 (2000) no. 1, p. 109-124 | Zbl | DOI
[EO73] - “Visibility manifolds”, Pacific J. Math. 46 (1973) no. 1, p. 45-109 | DOI | Zbl | MR
[Eys18] - “Orbifold Kähler groups related to arithmetic complex hyperbolic lattices”, 2018 | arXiv | Zbl
[FP03] - “The moduli space of the modular group in complex hyperbolic geometry”, Invent. Math. 152 (2003) no. 1, p. 57-88 | Zbl | MR | DOI
[GP92] - “Complex hyperbolic ideal triangle groups”, J. reine angew. Math. 425 (1992), p. 71-86 | Zbl | MR | DOI
[Gra58] - “On Levi’s problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2) 68 (1958) no. 2, p. 460-472 | Zbl | DOI | MR
[GW73] - “On the subharmonicity and plurisubharmonicity of geodesically convex functions”, Indiana Univ. Math. J. 22 (1973) no. 7, p. 641-653 | Zbl | DOI | MR
[GW76] - “ convex functions and manifolds of positive curvature”, Acta Math. 137 (1976), p. 209-245 | DOI | Zbl | MR
[GW79] - Function theory on manifolds which possess a pole, Lect. Notes in Math., Springer, Berlin, 1979 no. 699 | Zbl | DOI | MR
[HH77] - “Geometry of horospheres”, J. Differential Geom. 12 (1977) no. 4, p. 481-491 | DOI | Zbl | MR
[IMM23] - “Hyperbolic 5-manifolds that fiber over ”, Invent. Math. 231 (2023) no. 1, p. 1-38 | DOI | Zbl | MR
[Kap22] - “A survey of complex hyperbolic Kleinian groups”, in In the tradition of Thurston II: Geometry and groups (K. Ohshika & A. Papadopoulos, eds.), Springer, Cham, 2022, p. 7-51 | DOI | Zbl
[Kop64] - Maximale Untergruppen Abelscher komplexer Liescher Gruppen, Univ., Math. Inst., Münster, 1964, https://eudml.org/doc/204249 | Zbl
[KS93] - “Sobolev spaces and harmonic maps for metric space targets”, Comm. Anal. Geom. 1 (1993) no. 4, p. 561-659 | DOI | Zbl | MR
[LIP24] - “Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices”, Invent. Math. 235 (2024) no. 1, p. 233-254 | DOI | Zbl | MR
[Mie10] - “Quotients of bounded homogeneous domains by cyclic groups”, Osaka J. Math. 47 (2010) no. 2, p. 331-352 | Zbl | MR
[Mie24] - “On quotients of bounded homogeneous domains by unipotent discrete groups”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 25 (2024) no. 4, p. 2101-2123 | MR | DOI | Zbl
[MO18] - “Schottky group actions in complex geometry”, in Geometric complex analysis. In honor of Kang-Tae Kim’s 60th birthday (J. Byun, H. R. Cho, S. Y. Kim, K.-H. Lee & J.-D. Park, eds.), Springer, Singapore, 2018, p. 257-268 | Zbl
[Nap90] - “Convexity properties of coverings of smooth projective varieties”, Math. Ann. 286 (1990) no. 1–3, p. 433-479 | DOI | Zbl | MR
[Nar62] - “The Levi problem for complex spaces II”, Math. Ann. 146 (1962) no. 3, p. 195-216 | DOI | Zbl | MR
[Nic89] - The ergodic theory of discrete groups, London Math. Soc. Lect. Note Series, Cambridge University Press, Cambridge, 1989 no. 143 | DOI | Zbl | MR
[Osi06] - Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc., vol. 179 no. 843, American Mathematical Society, Providence, RI, 2006 | Zbl
[Pat76] - “The limit set of a Fuchsian group”, Acta Math. 136 (1976) no. 1, p. 241-273 | DOI | Zbl | MR
[Pet94] - “Pseudoconvexity, the Levi problem and vanishing theorems”, in Several Complex Variables VII (H. Grauert, T. Peternell & R. Remmert, eds.), Encyclopaedia of Math. Sciences, Springer, Berlin, 1994 no. 74, p. 221-257 | DOI | Zbl
[Rob03] - Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. France (N.S.), vol. 95, Société Mathématique de France, Paris, 2003 | DOI | Numdam | Zbl
[Ste56] - “Überlagerungen holomorph-vollständiger komplexer Räume”, Arch. Math. (Basel) 7 (1956) no. 5, p. 354-361 | DOI | Zbl | MR
[Sul79] - “The density at infinity of a discrete group of hyperbolic motions”, Publ. Math. Inst. Hautes Études Sci. 50 (1979), p. 171-202 | Numdam | DOI | Zbl | MR
[SY82] - “Compactification of negatively curved complete Kähler manifolds of finite volume”, in Seminar on differential geometry, Annals of Math. Studies, vol. 102, Princeton University Press, Princeton, NJ, 1982, p. 363-380 | Zbl
[Tam10] - “Exhaustion functions on complete manifolds”, in Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, p. 211-215 | Zbl
[Voi02] - Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Société Mathématique de France, Paris, 2002 | Zbl | MR
Cité par Sources :