[Sur le couplage d’Arratia et la loi de Dirichlet pour les facteurs d’un entier aléatoire]
Let $x\ge 2$, let $N_x$ be an integer chosen uniformly at random from the set $\mathbb{Z} \cap [1, x]$, and let $(V_1, V_2, \ldots )$ be a Poisson–Dirichlet process of parameter $1$. We prove that there exists a coupling of these two random objects such that
\[ \mathbb{E}\, \sum _{i \ge 1} \big |{\log P_i- V_i\log x}\big | \asymp 1, \] |
where the implied constants are absolute and $N_x = P_1P_2 \cdots $ is the unique factorization of $N_x$ into primes or ones with the $P_i$’s being non-increasing. This establishes a 2002 conjecture of Arratia, who constructed a coupling for which the left-hand side in the above estimate is $\ll \log \!\log x$, and who also proved that the left-hand side is $\ge 1-o(1)$ for all couplings. In addition, we use our refined coupling to give a probabilistic proof of the Dirichlet law for the average distribution of the integer factorization into $k$ parts proved in 2023 by Leung and we improve on its error term.
Soit $x\ge 2$, soit $N_x$ un entier choisi uniformément au hasard dans l’ensemble $\mathbb{Z} \cap [1, x]$, et soit $(V_1, V_2, \ldots )$ un processus de Poisson-Dirichlet de paramètre $1$. Nous montrons l’existence d’un couplage de ces deux objets aléatoires satisfaisant à
\[ \mathbb{E}\, \sum _{i \ge 1} \big |{\log P_i- V_i\log x}\big | \asymp 1, \] |
où les constantes implicites sont absolues et où $(P_i)_{i \ge 1}$ est l’unique suite décroissante de nombres premiers ou de uns qui satisfait à $N_x = P_1P_2 \cdots $. Ce résultat établit une conjecture d’Arratia (2002), qui avait auparavant construit un couplage dont l’espérance ci-dessus satisfaisait à $\ll \log \!\log x$, et montré que cette espérance est toujours $\ge 1-o(1)$ pour tout couplage. De plus, nous utilisons le couplage pour fournir une preuve probabiliste de la loi de Dirichlet pour la distribution moyenne des factorisations en $k$ parties d’un entier, résultat initialement établi en 2023 par Leung, et nous en améliorons le terme d’erreur.
Accepté le :
Publié le :
Keywords: Arratia’s coupling, Poisson–Dirichlet process, Wasserstein distance, random integer, prime factorization, divisors, Dirichlet law
Mots-clés : Couplage d’Arratia, processus de Poisson-Dirichlet, distance de Wasserstein, entier aléatoire, factorisation en nombres premiers, diviseurs, loi de Dirichlet
Tony Haddad 1 ; Dimitris Koukoulopoulos 1

@article{JEP_2025__12__1565_0, author = {Tony Haddad and Dimitris Koukoulopoulos}, title = {On {Arratia{\textquoteright}s} coupling and the {Dirichlet} law for the factors of a random integer}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1565--1604}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.317}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.317/} }
TY - JOUR AU - Tony Haddad AU - Dimitris Koukoulopoulos TI - On Arratia’s coupling and the Dirichlet law for the factors of a random integer JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 1565 EP - 1604 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.317/ DO - 10.5802/jep.317 LA - en ID - JEP_2025__12__1565_0 ER -
%0 Journal Article %A Tony Haddad %A Dimitris Koukoulopoulos %T On Arratia’s coupling and the Dirichlet law for the factors of a random integer %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 1565-1604 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.317/ %R 10.5802/jep.317 %G en %F JEP_2025__12__1565_0
Tony Haddad; Dimitris Koukoulopoulos. On Arratia’s coupling and the Dirichlet law for the factors of a random integer. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1565-1604. doi: 10.5802/jep.317
[1] - “On the central role of scale invariant Poisson processes on ”, in Microsurveys in discrete probability (Princeton, NJ, 1997), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 41, American Mathematical Society, Providence, RI, 1998, p. 21-41 | MR | Zbl | DOI
[2] - “On the amount of dependence in the prime factorization of a uniform random integer”, in Contemporary combinatorics, Bolyai Soc. Math. Stud., vol. 10, János Bolyai Math. Soc., Budapest, 2002, p. 29-91 | Zbl
[3] - “A tale of three couplings: Poisson-Dirichlet and GEM approximations for random permutations”, Combin. Probab. Comput. 15 (2006) no. 1-2, p. 31-62 | MR | Zbl | DOI
[4] - “On the DDT theorem”, Acta Arith. 126 (2007) no. 2, p. 155-168 | MR | Zbl | DOI
[5] - “On the distribution of large prime divisors”, Period. Math. Hungar. 2 (1972), p. 283-289 | MR | Zbl | DOI
[6] - “Sur les processus arithmétiques liés aux diviseurs”, Adv. in Appl. Probab. 48 (2016) no. A, p. 63-76 | MR | Zbl | DOI
[7] - “Lois de répartition des diviseurs. I”, Acta Arith. 34 (1979) no. 4, p. 273-285 (loose errata) | MR | Zbl | DOI
[8] - “The population genealogy of the infinitely-many neutral alleles model”, J. Math. Biol. 25 (1987) no. 4, p. 381-391 | MR | Zbl | DOI
[9] - The Poisson-Dirichlet distribution and related topics. Models and asymptotic behaviors, Probability and its Appl., Springer, Heidelberg, 2010 | MR | Zbl | DOI
[10] - Discrete multivariate distributions, Wiley Series in Probab. and Stat.: Applied Probab. and Stat., John Wiley & Sons, Inc., New York, 1997 | Zbl
[11] - Poisson processes, Oxford Studies in Probab., vol. 3, The Clarendon Press, Oxford University Press, New York, 1993 | MR | Zbl
[12] - Continuous multivariate distributions. Vol. 1. Models and applications, Wiley Series in Probab. and Stat.: Applied Probab. and Stat., Wiley-Interscience, New York, 2000 | Zbl | DOI
[13] - The distribution of prime numbers, Graduate Studies in Math., vol. 203, American Mathematical Society, Providence, RI, 2019 | Zbl | DOI
[14] - Lectures on the Poisson process, Institute of Math. Stat. Textbooks, vol. 7, Cambridge University Press, Cambridge, 2018 | MR | Zbl
[15] - “Dirichlet law for factorisation of integers, polynomials and permutations”, Math. Proc. Cambridge Philos. Soc. 175 (2023) no. 3, p. 649-676 | MR | Zbl | DOI
[16] - “Dirichlet law with arbitrary parameters for factorizations of integers” (2025), Retrieved on 24 August 2025 from https://sites.google.com/view/sunkaileung/miscellaneous
[17] - Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Math., vol. 97, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[18] - “Distribution laws of pairs of divisors”, Integers 13 (2013), article ID A13, 13 pages | MR | Zbl
[19] - “A rate estimate in Billingsley’s theorem for the size distribution of large prime factors”, Q. J. Math. 51 (2000) no. 3, p. 385-403 | MR | Zbl | DOI
Cité par Sources :