Rigidity of the hyperbolic marked energy spectrum and entropy for $k$-surfaces
[Rigidité du spectre marqué des énergies de la métrique hyperbolique et entropie pour les $k$-surfaces]
Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1197-1227.

Labourie raised the question of determining the possible asymptotics for the growth rate of compact $k$-surfaces, counted according to energy, in negatively curved $3$-manifolds, indicating the possibility of a theory of thermodynamical formalism for this class of surfaces. Motivated by this question and by analogous results for the geodesic flow, we prove a number of results concerning the asymptotic behavior of high energy $k$-surfaces, especially in relation to the curvature of the ambient space.

First, we determine a rigid upper bound for the growth rate of quasi-Fuchsian $k$-surfaces, counted according to energy, and with asymptotically round limit set, subject to a lower bound on the sectional curvature of the ambient space. We also study the marked energy spectrum for $k$-surfaces, proving a number of domination and rigidity theorems in this context. Finally, we show that the marked area and energy spectra for $k$-surfaces in $3$-dimensional manifolds of negative curvature are asymptotic if and only if the sectional curvature is constant.

Labourie a soulevé la question de déterminer les comportements asymptotiques possibles pour le taux de croissance des $k$-surfaces compactes, comptées selon leur énergie, dans les $3$-variétés de courbure négative, en suggérant la possibilité d’une théorie du formalisme thermodynamique pour cette classe de surfaces. Motivés par cette question et par des résultats analogues pour le flot géodésique, nous démontrons plusieurs résultats concernant le comportement asymptotique des $k$-surfaces de grande énergie, en particulier en lien avec la courbure de l’espace ambiant.

Premièrement, nous établissons une borne supérieure rigide pour le taux de croissance des $k$-surfaces quasi-fuchsiennes, comptées selon leur énergie et ayant un ensemble limite asymptotiquement circulaire, sujet à une borne inférieure pour la courbure sectionnelle de l’espace ambiant. Nous étudions également le spectre marqué des énergies des $k$-surfaces, en prouvant plusieurs théorèmes de domination et de rigidité dans ce contexte. Enfin, nous montrons que les spectres marqués des aires et des énergies des $k$-surfaces dans les $3$-variétés de courbure négative sont asymptotiques si et seulement si la courbure sectionnelle est constante.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.309
Classification : 37C85, 57M50, 53C42
Keywords: Geometric rigidity, equidistribution, surfaces of constant curvature, homogeneous actions of Lie groups
Mots-clés : Rigidité géométrique, équidistribution, surfaces de courbure constante, actions homogènes de groupes de Lie

Sébastien Alvarez 1 ; Ben Lowe 2 ; Graham Andrew Smith 3

1 CMAT, Facultad de Ciencias, Universidad de la República, & IRL-IFUMI (CNRS), Igua 4225 esq. Mataojo. Montevideo, Uruguay
2 Department of Mathematics, University of Chicago, Chicago IL 60637, USA
3 Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, Rio de Janeiro 225453-900, Brazil
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2025__12__1197_0,
     author = {S\'ebastien Alvarez and Ben Lowe and Graham Andrew Smith},
     title = {Rigidity of the hyperbolic marked energy spectrum and entropy for $k$-surfaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1197--1227},
     publisher = {\'Ecole polytechnique},
     volume = {12},
     year = {2025},
     doi = {10.5802/jep.309},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.309/}
}
TY  - JOUR
AU  - Sébastien Alvarez
AU  - Ben Lowe
AU  - Graham Andrew Smith
TI  - Rigidity of the hyperbolic marked energy spectrum and entropy for $k$-surfaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2025
SP  - 1197
EP  - 1227
VL  - 12
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.309/
DO  - 10.5802/jep.309
LA  - en
ID  - JEP_2025__12__1197_0
ER  - 
%0 Journal Article
%A Sébastien Alvarez
%A Ben Lowe
%A Graham Andrew Smith
%T Rigidity of the hyperbolic marked energy spectrum and entropy for $k$-surfaces
%J Journal de l’École polytechnique — Mathématiques
%D 2025
%P 1197-1227
%V 12
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.309/
%R 10.5802/jep.309
%G en
%F JEP_2025__12__1197_0
Sébastien Alvarez; Ben Lowe; Graham Andrew Smith. Rigidity of the hyperbolic marked energy spectrum and entropy for $k$-surfaces. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1197-1227. doi : 10.5802/jep.309. https://jep.centre-mersenne.org/articles/10.5802/jep.309/

[1] L. Ahlfors - Lectures on quasiconformal mappings, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987 | MR

[2] S. Alvarez, B. Lowe & G. Smith - “Foliated Plateau problems and asymptotic counting of surface subgroups”, Ann. Sci. École Norm. Sup. (4) (2025), to appear, arXiv:2212.13604

[3] S. Alvarez & G. Smith - “Prescription de courbure des feuilles des laminations: retour sur un théorème de Candel”, Ann. Inst. Fourier (Grenoble) 71 (2021) no. 6, p. 2549-2593 | DOI | Numdam | MR | Zbl

[4] S. Alvarez & J. Yang - “Physical measures for the geodesic flow tangent to a transversally conformal foliation”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019) no. 1, p. 27-51 | DOI | Numdam | MR | Zbl

[5] P. Barman & S. Gupta - “Dominating surface-group representations via Fock-Goncharov coordinates”, 2024 | arXiv

[6] B. Basilio, C. Lee & J. Malionek - “Totally geodesic surfaces in hyperbolic 3-manifolds: algorithms and examples”, 2024 | arXiv | Zbl

[7] G. Besson, G. Courtois & S. Gallot - “Entropies et rigidités des espaces localement symétriques de courbure strictement négative”, Geom. Funct. Anal. 5 (1995) no. 5, p. 731-799 | DOI | MR | Zbl

[8] G. Besson, G. Courtois & S. Gallot - “Minimal entropy and Mostow’s rigidity theorems”, Ergodic Theory Dynam. Systems 16 (1996) no. 4, p. 623-649 | DOI | MR | Zbl

[9] F. Bonahon - “Geodesic laminations with transverse Hölder distributions”, Ann. Sci. École Norm. Sup. (4) 30 (1997) no. 2, p. 205-240 | DOI | Numdam | MR | Zbl

[10] N. Brody & E. Reyes - “Approximating hyperbolic lattices by cubulations”, 2024 | arXiv | Zbl

[11] K. Burns & A. Katok - “Manifolds with nonpositive curvature”, Ergodic Theory Dynam. Systems 5 (1985) no. 2, p. 307-317 | DOI | MR | Zbl

[12] D. Calegari, F. Marques & A. Neves - “Counting minimal surfaces in negatively curved 3-manifolds”, Duke Math. J. 171 (2022) no. 8, p. 1615-1648 | DOI | MR | Zbl

[13] C. Croke - “Rigidity for surfaces of nonpositive curvature”, Comment. Math. Helv. 65 (1990) no. 1, p. 150-169 | DOI | MR | Zbl

[14] C. Croke & N. Dairbekov - “Lengths and volumes in Riemannian manifolds”, Duke Math. J. 125 (2004) no. 1, p. 1-14 | DOI | MR | Zbl

[15] C. Croke, N. Dairbekov & V. Sharafutdinov - “Local boundary rigidity of a compact Riemannian manifold with curvature bounded above”, Trans. Amer. Math. Soc. 352 (2000) no. 9, p. 3937-3956 | DOI | MR | Zbl

[16] S. Dai & Q. Li - “Domination results in n-Fuchsian fibers in the moduli space of Higgs bundles”, Proc. London Math. Soc. (3) 124 (2022) no. 4, p. 427-477 | DOI | MR | Zbl

[17] B. Deroin & N. Tholozan - “Dominating surface group representations by Fuchsian ones”, Internat. Math. Res. Notices (2016) no. 13, p. 4145-4166 | DOI | MR | Zbl

[18] M. Einsiedler - “Ratner’s theorem on SL (2,)-invariant measures”, Jahresber. Deutsch. Math.-Verein. 108 (2006) no. 3, p. 143-164 | MR | Zbl

[19] L. Flaminio - “Local entropy rigidity for hyperbolic manifolds”, Comm. Anal. Geom. 3 (1995) no. 3-4, p. 555-596 | DOI | MR | Zbl

[20] A. Gogolev & J. Reber - “A counterexample to marked length spectrum semi-rigidity”, 2023 | arXiv | Zbl

[21] M. Gromov - “Foliated Plateau problem. I. Minimal varieties”, Geom. Funct. Anal. 1 (1991) no. 1, p. 14-79 | DOI | MR | Zbl

[22] M. Gromov - “Foliated Plateau problem. II. Harmonic maps of foliations”, Geom. Funct. Anal. 1 (1991) no. 3, p. 253-320 | DOI | MR | Zbl

[23] M. Gromov - “Three remarks on geodesic dynamics and fundamental group”, Enseign. Math. (2) 46 (2000) no. 3-4, p. 391-402 | MR | Zbl

[24] F. Guéritaud, F. Kassel & M. Wolff - “Compact anti–de Sitter 3-manifolds and folded hyperbolic structures on surfaces”, Pacific J. Math. 275 (2015) no. 2, p. 325-359 | DOI | MR | Zbl

[25] C. Guillarmou & T. Lefeuvre - “The marked length spectrum of Anosov manifolds”, Ann. of Math. (2) 190 (2019) no. 1, p. 321-344 | DOI | MR | Zbl

[26] V. Guillemin & D. Kazhdan - “Some inverse spectral results for negatively curved 2-manifolds”, Topology 19 (1980) no. 3, p. 301-312 | DOI | MR | Zbl

[27] U. Hamenstädt - “Cocycles, symplectic structures and intersection”, Geom. Funct. Anal. 9 (1999) no. 1, p. 90-140 | DOI | MR | Zbl

[28] U. Hamenstädt - “Incompressible surfaces in rank one locally symmetric spaces”, Geom. Funct. Anal. 25 (2015) no. 3, p. 815-859 | DOI | MR | Zbl

[29] T. Humbert - “Katok’s entropy conjecture near real and complex hyperbolic metrics”, 2024 | arXiv | Zbl

[30] J. Kahn, F. Labourie & S. Mozes - “Surface groups in uniform lattices of some semi-simple groups”, Acta Math. 232 (2024) no. 1, p. 79-220 | DOI | MR | Zbl

[31] J. Kahn & V. Marković - “Counting essential surfaces in a closed hyperbolic three-manifold”, Geom. Topol. 16 (2012) no. 1, p. 601-624 | DOI | MR | Zbl

[32] J. Kahn & V. Marković - “Immersing almost geodesic surfaces in a closed hyperbolic three manifold”, Ann. of Math. (2) 175 (2012) no. 3, p. 1127-1190 | DOI | MR | Zbl

[33] J. Kahn, V. Markovic & I. Smilga - “Geometrically and topologically random surfaces in a closed hyperbolic three manifold”, 2023 | arXiv | Zbl

[34] A. Katok - “Entropy and closed geodesics”, Ergodic Theory Dynam. Systems 2 (1982) no. 3-4, p. 339-365 | DOI | MR | Zbl

[35] A. Katok - “Four applications of conformal equivalence to geometry and dynamics”, Ergodic Theory Dynam. Systems 8 * (1988), p. 139-152 | DOI | MR | Zbl

[36] F. Labourie - “Problèmes de Monge-Ampère, courbes holomorphes et laminations”, Geom. Funct. Anal. 7 (1997) no. 3, p. 496-534 | DOI | MR | Zbl

[37] F. Labourie - “Un lemme de Morse pour les surfaces convexes”, Invent. Math. 141 (2000) no. 2, p. 239-297 | DOI | MR | Zbl

[38] F. Labourie - “The phase space of k-surfaces”, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, Berlin, 2002, p. 295-307 | DOI | MR | Zbl

[39] F. Labourie - “Random k-surfaces”, Ann. of Math. (2) 161 (2005) no. 1, p. 105-140 | DOI | MR | Zbl

[40] F. Labourie - “Asymptotic counting of minimal surfaces and of surface groups in hyperbolic 3-manifolds”, in Séminaire Bourbaki, 2019/2021, Astérisque, vol. 430, Société Mathématique de France, Paris, 2021, p. 425-457, Exp. No. 1179 | DOI | MR | Zbl

[41] F. Ledrappier - “Harmonic measures and Bowen-Margulis measures”, Israel J. Math. 71 (1990) no. 3, p. 275-287 | DOI | MR | Zbl

[42] F. Ledrappier - “Structure au bord des variétés à courbure négative”, in Séminaire de Théorie Spectrale et Géométrie, 1994–1995, vol. 13, Univ. Grenoble I, Saint-Martin-d’Hères, 1995, p. 97-122 | DOI | Numdam | Zbl

[43] D. Leung & K. Nomizu - “The axiom of spheres in Riemannian geometry”, J. Differential Geom. 5 (1971), p. 487-489 | MR | Zbl

[44] Q. Li - “Harmonic maps for Hitchin representations”, Geom. Funct. Anal. 29 (2019) no. 2, p. 539-560 | DOI | MR | Zbl

[45] A. N. Livšic - “Certain properties of the homology of Y-systems”, Mat. Zametki 10 (1971), p. 555-564 | MR | Zbl

[46] B. Lowe - “Deformations of totally geodesic foliations and minimal surfaces in negatively curved 3-manifolds”, Geom. Funct. Anal. 31 (2021) no. 4, p. 895-929 | DOI | MR | Zbl

[47] B. Lowe & A. Neves - “Minimal surface entropy and average area ratio”, J. Differential Geom. 130 (2025) no. 2, p. 443-475 | DOI | MR | Zbl

[48] C. Maclachlan & A. Reid - The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Math., vol. 219, Springer-Verlag, New York, 2003 | DOI | MR | Zbl

[49] F. Marques & A. Neves - “Conformal currents and the entropy of negatively curved three-manifolds”, 2024 | arXiv | Zbl

[50] G. D. Mostow - “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms”, Publ. Math. Inst. Hautes Études Sci. (1968) no. 34, p. 53-104 | DOI | Numdam | MR | Zbl

[51] T. Müller & J.-C. Puchta - “Character theory of symmetric groups and subgroup growth of surface groups”, J. London Math. Soc. (2) 66 (2002) no. 3, p. 623-640 | DOI | MR | Zbl

[52] J.-P. Otal - “Le spectre marqué des longueurs des surfaces à courbure négative”, Ann. of Math. (2) 131 (1990) no. 1, p. 151-162 | DOI | MR | Zbl

[53] M. Ratner - “Raghunathan’s topological conjecture and distributions of unipotent flows”, Duke Math. J. 63 (1991) no. 1, p. 235-280 | DOI | MR | Zbl

[54] A. Reid - “Totally geodesic surfaces in hyperbolic 3-manifolds”, Proc. Edinburgh Math. Soc. (2) 34 (1991) no. 1, p. 77-88 | DOI | MR | Zbl

[55] N. Sagman - “Infinite energy equivariant harmonic maps, domination, and anti–de Sitter 3-manifolds”, J. Differential Geom. 124 (2023) no. 3, p. 553-598 | DOI | MR | Zbl

[56] A. Seppi - “Minimal discs in hyperbolic space bounded by a quasicircle at infinity”, Comment. Math. Helv. 91 (2016) no. 4, p. 807-839 | DOI | MR | Zbl

[57] G. Smith - “On the asymptotic Plateau problem in Cartan–Hadamard manifolds”, 2021 | arXiv

Cité par Sources :