On Courant and Pleijel theorems for sub-Riemannian Laplacians
[Sur les théorèmes de Courant et de Pleijel pour des laplaciens sous-riemanniens]
Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1083-1160.

We are interested in the number of nodal domains of eigenfunctions of sub-Laplacians on sub-Riemannian manifolds. Specifically, we investigate the validity of Pleijel’s theorem, which states that, as soon as the dimension is strictly larger than $1$, the number of nodal domains of an eigenfunction corresponding to the $k$-th eigenvalue is strictly (and uniformly, in a certain sense) smaller than $k$ for large $k$. In the first part of this paper we reduce this question from the case of general sub-Riemannian manifolds to that of nilpotent groups. In the second part, we analyze in detail the case where the nilpotent group is a Heisenberg group times a Euclidean space. Along the way, we improve known bounds on the optimal constants in the Faber–Krahn and isoperimetric inequalities on these groups.

Nous nous intéressons au comptage des ensembles nodaux des fonctions propres des sous-laplaciens dans le cadre des variétés sous-riemanniennes. Plus précisément, nous discutons la validité du théorème de Pleijel qui énonce qu’en dimension supérieure à $1$, le nombre d’ensembles nodaux d’une fonction propre associée à la $k$-ième valeur propre est strictement plus petit que $k$ pour $k$ assez grand. Dans la première partie de cet article, nous ramenons le cas général de cette question dans le cas sous-riemannien au cas des groupes nilpotents. Dans la deuxième partie, nous analysons en détail le cas où le groupe nilpotent est le produit du groupe de Heisenberg par un espace euclidien. En chemin, nous améliorons pour ces groupes certaines bornes connues des constantes optimales pour les inégalités isopérimétriques ou de Faber-Krahn.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.307
Classification : 35P15, 35P20, 53C17, 58C40
Keywords: Nodal domains, Pleijel theorem, Courant theorem, sub-Laplacians, Faber-Krahn inequality, Nilpotent groups, Heisenberg group, Weyl formula
Mots-clés : Ensembles nodaux, théorème de Courant, théorème de Pleijel, sous-laplaciens, inégalité de Faber-Krahn, groupes nilpotents, groupe de Heisenberg, formule de Weyl

Rupert L. Frank 1, 2, 3 ; Bernard Helffer 4

1 Mathematisches Institut, Ludwig-Maximilians Universität München, Theresienstr. 39, 80333 München, Germany
2 & Munich Center for Quantum Science and Technology, Schellingstr. 4, 80799 München, Germany
3 & Mathematics 253-37, Caltech, Pasadena, CA 91125, USA
4 Laboratoire de Mathématiques Jean Leray, CNRS, Nantes Université, F44000. Nantes, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2025__12__1083_0,
     author = {Rupert L. Frank and Bernard Helffer},
     title = {On {Courant} and {Pleijel} theorems for {sub-Riemannian} {Laplacians}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1083--1160},
     publisher = {\'Ecole polytechnique},
     volume = {12},
     year = {2025},
     doi = {10.5802/jep.307},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.307/}
}
TY  - JOUR
AU  - Rupert L. Frank
AU  - Bernard Helffer
TI  - On Courant and Pleijel theorems for sub-Riemannian Laplacians
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2025
SP  - 1083
EP  - 1160
VL  - 12
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.307/
DO  - 10.5802/jep.307
LA  - en
ID  - JEP_2025__12__1083_0
ER  - 
%0 Journal Article
%A Rupert L. Frank
%A Bernard Helffer
%T On Courant and Pleijel theorems for sub-Riemannian Laplacians
%J Journal de l’École polytechnique — Mathématiques
%D 2025
%P 1083-1160
%V 12
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.307/
%R 10.5802/jep.307
%G en
%F JEP_2025__12__1083_0
Rupert L. Frank; Bernard Helffer. On Courant and Pleijel theorems for sub-Riemannian Laplacians. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 1083-1160. doi : 10.5802/jep.307. https://jep.centre-mersenne.org/articles/10.5802/jep.307/

[1] M. Abramowitz & I. A. Stegun - Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Math. Series, vol. 55, U.S. Government Printing Office, Washington, D.C., 1964 | Zbl

[2] A. Agrachev, D. Barilari & U. Boscain - A comprehensive introduction to sub-Riemannian geometry, Cambridge Studies in Advanced Math., vol. 181, Cambridge University Press, Cambridge, 2020 | MR | Zbl

[3] C. Anné - “Bornes sur la multiplicité” (1992), Prépublications EPFL,http://www.math.sciences.univ-nantes.fr/~anne/preprints/Borne.ps.gz

[4] V. Arnaiz & G. Rivière - “Quantum limits of perturbed sub-Riemannian contact Laplacians in dimension 3”, J. Éc. polytech. Math. 11 (2024), p. 909-956 | DOI | MR | Zbl

[5] H. Bahouri - “Sur la propriété de prolongement unique pour les opérateurs de Hörmander”, in Journées équations aux dérivées partielles, École polytechnique, Palaiseau, 1983, article ID 15, p. 1-7 | DOI | Numdam | Zbl

[6] H. Bahouri - “Non prolongement unique des solutions d’opérateurs ‘somme de carrés’”, Ann. Inst. Fourier (Grenoble) 36 (1986) no. 4, p. 137-155 | DOI | Numdam | MR | Zbl

[7] D. Bakry, T. Coulhon, M. Ledoux & L. Saloff-Coste - “Sobolev inequalities in disguise”, Indiana Univ. Math. J. 44 (1995) no. 4, p. 1033-1074 | DOI | MR | Zbl

[8] M. S. Baouendi & C. Goulaouic - “Nonanalytic-hypoellipticity for some degenerate elliptic operators”, Bull. Amer. Math. Soc. 78 (1972), p. 483-486 | DOI | MR | Zbl

[9] - Proc. conference ‘Journées non holonomes: géométrie sous-riemannienne, théorie du contrôle, robotique’ (Paris, June 30–July 1, 1992) (A. Bellaïche & J.-J. Risler, eds.), Progress in Math., Birkhäuser, Basel, 1996 | Zbl

[10] P. Bérard & D. Meyer - “Inégalités isopérimétriques et applications”, Ann. Sci. École Norm. Sup. (4) 15 (1982) no. 3, p. 513-541 | DOI | Numdam | Zbl

[11] J.-M. Bony - “Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés”, Ann. Inst. Fourier (Grenoble) 19 (1969), p. 277-304 | DOI | Numdam | MR | Zbl

[12] T. P. Branson, L. Fontana & C. Morpurgo - “Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere”, Ann. of Math. (2) 177 (2013) no. 1, p. 1-52 | DOI | MR | Zbl

[13] L. Capogna, D. Danielli, S. D. Pauls & J. T. Tyson - An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Math., vol. 259, Birkhäuser Verlag, Basel, 2007 | DOI | MR | Zbl

[14] G. Carron - “Inégalités isopérimétriques de Faber-Krahn et conséquences”, in Actes de la table ronde de géométrie différentielle (Luminy, 1992), Sémin. Congr., vol. 1, Société Mathématique de France, Paris, 1996, p. 205-232 | Zbl

[15] J.-H. Cheng, H.-L. Chiu, J.-F. Hwang & P. Yang - “Umbilicity and characterization of Pansu spheres in the Heisenberg group”, J. reine angew. Math. 738 (2018), p. 203-235 | DOI | MR | Zbl

[16] J.-H. Cheng, J.-F. Hwang, A. Malchiodi & P. Yang - “A Codazzi-like equation and the singular set for C 1 smooth surfaces in the Heisenberg group”, J. reine angew. Math. 671 (2012), p. 131-198 | DOI | MR | Zbl

[17] W. Choi & R. Ponge - “Privileged coordinates and nilpotent approximation for Carnot manifolds, I. General results”, J. Dynam. Control Systems 25 (2019) no. 1, p. 109-157 | DOI | Zbl

[18] W. Choi & R. Ponge - “Privileged coordinates and nilpotent approximation for Carnot manifolds, II. Carnot coordinates”, J. Dynam. Control Systems 25 (2019) no. 4, p. 631-670 | DOI | MR | Zbl

[19] W. S. Cohn & G. Lu - “Best constants for Moser-Trudinger inequalities on the Heisenberg group”, Indiana Univ. Math. J. 50 (2001) no. 4, p. 1567-1591 | DOI | MR | Zbl

[20] Y. Colin de Verdière, L. Hillairet & E. Trélat - “Spectral asymptotics for sub-Riemannian Laplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case”, Duke Math. J. 167 (2018) no. 1, p. 109-174 | DOI | MR | Zbl

[21] Y. Colin de Verdière, L. Hillairet & E. Trélat - “Small-time asymptotics of hypoelliptic heat kernels near the diagonal, nilpotentization and related results”, Ann. H. Lebesgue 4 (2021), p. 897-971 | DOI | Numdam | MR | Zbl

[22] Y. Colin de Verdière, L. Hillairet & E. Trélat - “Spectral asymptotics for sub-Riemannian Laplacians”, 2022 | arXiv | Zbl

[23] R. Courant & D. Hilbert - Methods of mathematical physics. Vol. II: Partial differential equations, Interscience Publishers, New York-London, 1962 | MR | Zbl

[24] H. L. Cycon, R. G. Froese, W. Kirsch & B. Simon - Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987 | MR | Zbl

[25] D. Danielli, N. Garofalo & D.-M. Nhieu - Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, Mem. Amer. Math. Soc., vol. 182, no.  857, American Mathematical Society, Providence, RI, 2006 | DOI | Zbl

[26] D. Danielli, N. Garofalo & D.-M. Nhieu - “A partial solution of the isoperimetric problem for the Heisenberg group”, Forum Math. 20 (2008) no. 1, p. 99-143 | DOI | MR | Zbl

[27] N. De Ponti, S. Farinelli & I. Y. Violo - “Pleijel nodal domain theorem in non-smooth setting”, Trans. Amer. Math. Soc. Ser. B 11 (2024), p. 1138-1182 | DOI | MR | Zbl

[28] M. Derridj - “Un problème aux limites pour une classe d’opérateurs du second ordre hypoelliptiques”, Ann. Inst. Fourier (Grenoble) 21 (1971) no. 4, p. 99-148 | DOI | Numdam | MR | Zbl

[29] S. Eswarathasan & C. Letrouit - “Nodal sets of eigenfunctions of sub-Laplacians”, Internat. Math. Res. Notices (2023) no. 23, p. 20670-20700 | DOI | MR | Zbl

[30] G. B. Folland - “A fundamental solution for a subelliptic operator”, Bull. Amer. Math. Soc. 79 (1973), p. 373-376 | DOI | MR | Zbl

[31] G. B. Folland - “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat. 13 (1975) no. 2, p. 161-207 | DOI | MR | Zbl

[32] G. B. Folland & E. M. Stein - “Estimates for the ¯ b complex and analysis on the Heisenberg group”, Comm. Pure Appl. Math. 27 (1974), p. 429-522 | DOI | MR | Zbl

[33] B. Franchi, R. Serapioni & F. Serra Cassano - “Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields”, Houston J. Math. 22 (1996) no. 4, p. 859-890 | MR | Zbl

[34] R. L. Frank, D. Gontier & M. Lewin - “The nonlinear Schrödinger equation for orthonormal functions II: Application to Lieb-Thirring inequalities”, Comm. Math. Phys. 384 (2021) no. 3, p. 1783-1828 | DOI | MR | Zbl

[35] R. L. Frank & B. Helffer - “On Courant and Pleijel theorems for sub-Riemannian Laplacians”, 2024 | arXiv

[36] R. L. Frank & B. Helffer - “On Courant and Pleijel theorems for sub-Riemannian Laplacians”, in Pseudo-differential operators and related topics, Trends Math., Birkhäuser/Springer, Cham, 2025, p. 9-23 | DOI

[37] R. L. Frank, A. Laptev & T. Weidl - Schrödinger operators: eigenvalues and Lieb-Thirring inequalities, Cambridge Studies in Advanced Math., vol. 200, Cambridge University Press, Cambridge, 2023 | DOI | MR | Zbl

[38] R. L. Frank & E. H. Lieb - “Sharp constants in several inequalities on the Heisenberg group”, Ann. of Math. (2) 176 (2012) no. 1, p. 349-381 | DOI | MR | Zbl

[39] N. Garofalo & D.-M. Nhieu - “Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces”, Comm. Pure Appl. Math. 49 (1996) no. 10, p. 1081-1144 | DOI | MR | Zbl

[40] R. W. Goodman - Nilpotent Lie groups: structure and applications to analysis, Lect. Notes in Math., vol. 562, Springer-Verlag, Berlin-New York, 1976 | DOI | MR | Zbl

[41] P. Hajłasz & P. Koskela - Sobolev met Poincaré, Mem. Amer. Math. Soc., vol. 145, no. 688, American Mathematical Society, Providence, RI, 2000 | DOI | Zbl

[42] A. M. Hansson & A. Laptev - “Sharp spectral inequalities for the Heisenberg Laplacian”, in Groups and analysis, London Math. Soc. Lecture Note Ser., vol. 354, Cambridge University Press, Cambridge, 2008, p. 100-115 | DOI | Zbl

[43] A. Hassannezhad & D. Sher - “On Pleijel’s nodal domain theorem for the Robin problem”, Bull. London Math. Soc. 56 (2024) no. 4, p. 1449-1467 | DOI | MR | Zbl

[44] J. Heinonen, T. Kilpeläinen & O. Martio - Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006, Unabridged republication of the 1993 original | MR | Zbl

[45] B. Helffer & J. F. Nourrigat - “Approximation d’un système de champs de vecteurs et applications à l’hypoellipticité”, Ark. Mat. 17 (1979) no. 2, p. 237-254 | DOI | MR | Zbl

[46] B. Helffer - “Conditions nécessaires d’hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué”, J. Differential Equations 44 (1982) no. 3, p. 460-481 | DOI | MR | Zbl

[47] B. Helffer & J. Nourrigat - Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Math., vol. 58, Birkhäuser Boston, Inc., Boston, MA, 1985 | MR | Zbl

[48] B. Helffer & M. Persson Sundqvist - “On nodal domains in Euclidean balls”, Proc. Amer. Math. Soc. 144 (2016) no. 11, p. 4777-4791 | DOI | MR | Zbl

[49] J. G. Heywood, E. S. Noussair & C. A. Swanson - “On the zeros of solutions of elliptic inequalities in bounded domains”, J. Differential Equations 28 (1978) no. 3, p. 345-353 | DOI | MR | Zbl

[50] L. Hörmander - “Hypoelliptic second order differential equations”, Acta Math. 119 (1967), p. 147-171 | DOI | MR | Zbl

[51] F. Jean - Control of nonholonomic systems: from sub-Riemannian geometry to motion planning, SpringerBriefs in Math., Springer, Cham, 2014 | DOI | MR | Zbl

[52] D. Jerison & J. M. Lee - “Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem”, J. Amer. Math. Soc. 1 (1988) no. 1, p. 1-13 | DOI | MR | Zbl

[53] D. S. Jerison - “The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I”, J. Functional Analysis 43 (1981) no. 1, p. 97-142 | DOI | Zbl

[54] A. Laptev & T. Weidl - “Sharp Lieb-Thirring inequalities in high dimensions”, Acta Math. 184 (2000) no. 1, p. 87-111 | DOI | MR | Zbl

[55] C. Léna - “Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions”, Ann. Inst. Fourier (Grenoble) 69 (2019) no. 1, p. 283-301 | DOI | Numdam | MR | Zbl

[56] G. P. Leonardi & S. Rigot - “Isoperimetric sets on Carnot groups”, Houston J. Math. 29 (2003) no. 3, p. 609-637 | MR | Zbl

[57] G. P. Leonardi & S. Masnou - “On the isoperimetric problem in the Heisenberg group n , Ann. Mat. Pura Appl. (4) 184 (2005) no. 4, p. 533-553 | DOI | MR | Zbl

[58] G. Leoni - A first course in Sobolev spaces, Graduate Studies in Math., vol. 181, American Mathematical Society, Providence, RI, 2017 | DOI | MR | Zbl

[59] M. Levitin, D. Mangoubi & I. Polterovich - Topics in spectral geometry, Graduate Studies in Mathematics, vol. 237, American Mathematical Society, Providence, RI, 2023 | DOI | MR | Zbl

[60] E. H. Lieb & M. Loss - Analysis, Graduate Studies in Math., vol. 14, American Mathematical Society, Providence, RI, 2001 | DOI | MR | Zbl

[61] E. H. Lieb & W. E. Thirring - “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Stud. math. Phys. (1976), p. 269-303, Essays honor Valentine Bargmann | MR | Zbl

[62] F. Maggi - Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory, Cambridge Studies in Advanced Math., vol. 135, Cambridge University Press, Cambridge, 2012 | DOI | MR | Zbl

[63] W. Magnus, F. Oberhettinger & R. P. Soni - Formulas and theorems for the special functions of mathematical physics, Grundlehren Math. Wissen., vol. 52, Springer-Verlag New York, Inc., New York, 1966 | DOI | MR | Zbl

[64] A. Menikoff & J. Sjöstrand - “On the eigenvalues of a class of hypoelliptic operators”, Math. Ann. 235 (1978) no. 1, p. 55-85 | DOI | MR | Zbl

[65] A. Menikoff & J. Sjöstrand - “On the eigenvalues of a class of hypoelliptic operators. II”, in Global analysis (Proc. Biennial Sem. Canad. Math. Congr., Univ. Calgary, Calgary, Alta., 1978), Lect. Notes in Math., vol. 755, Springer, Berlin, 1979, p. 201-247 | Zbl

[66] G. Métivier - “Fonction spectrale et valeurs propres d’une classe d’opérateurs non elliptiques”, Comm. Partial Differential Equations 1 (1976) no. 5, p. 467-519 | DOI | MR | Zbl

[67] G. Métivier - “Hypoellipticité analytique sur des groupes nilpotents de rang 2, Duke Math. J. 47 (1980) no. 1, p. 195-221 | MR | Zbl

[68] J. W. Milnor - Topology from the differentiable viewpoint, Princeton Landmarks in Math., Princeton University Press, Princeton, NJ, 1997 | MR | Zbl

[69] A. Mohamed - “Étude spectrale d’opérateurs hypoelliptiques à caractéristiques multiples. I”, Ann. Inst. Fourier (Grenoble) 32 (1982) no. 3, p. 39-90 | DOI | Numdam | MR | Zbl

[70] R. Monti - “Heisenberg isoperimetric problem. The axial case”, Adv. Calc. Var. 1 (2008) no. 1, p. 93-121 | DOI | MR | Zbl

[71] R. Monti & D. Morbidelli - “Non-tangentially accessible domains for vector fields”, Indiana Univ. Math. J. 54 (2005) no. 2, p. 473-498 | DOI | MR | Zbl

[72] R. Monti & M. Rickly - “Convex isoperimetric sets in the Heisenberg group”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 8 (2009) no. 2, p. 391-415 | Numdam | MR | Zbl

[73] E. Müller-Pfeiffer - “On the number of nodal domains for eigenfunctions of elliptic differential operators”, J. London Math. Soc. (2) 31 (1985) no. 1, p. 91-100 | DOI | MR | Zbl

[74] P. Pansu - “An isoperimetric inequality on the Heisenberg group”, Rend. Sem. Mat. Univ. e Politec. Torino (1983), p. 159-174, Conference on differential geometry on homogeneous spaces (Turin, 1983) | MR | Zbl

[75] P. Pansu - “Une inégalité isopérimétrique sur le groupe de Heisenberg”, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982) no. 2, p. 127-130 | MR | Zbl

[76] Å. Pleijel - “Remarks on Courant’s nodal line theorem”, Comm. Pure Appl. Math. 9 (1956), p. 543-550 | DOI | MR | Zbl

[77] I. Polterovich - “Pleijel’s nodal domain theorem for free membranes”, Proc. Amer. Math. Soc. 137 (2009) no. 3, p. 1021-1024 | DOI | MR | Zbl

[78] M. Ritoré - “A proof by calibration of an isoperimetric inequality in the Heisenberg group n , Calc. Var. Partial Differential Equations 44 (2012) no. 1-2, p. 47-60 | DOI | MR | Zbl

[79] M. Ritoré & C. Rosales - “Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group n , J. Geom. Anal. 16 (2006) no. 4, p. 703-720 | DOI | MR | Zbl

[80] M. Ritoré & C. Rosales - “Area-stationary surfaces in the Heisenberg group 1 , Adv. Math. 219 (2008) no. 2, p. 633-671 | DOI | MR | Zbl

[81] L. P. Rothschild - “A criterion for hypoellipticity of operators constructed from vector fields”, Comm. Partial Differential Equations 4 (1979) no. 6, p. 645-699 | DOI | MR | Zbl

[82] L. P. Rothschild & E. M. Stein - “Hypoelliptic differential operators and nilpotent groups”, Acta Math. 137 (1976) no. 3-4, p. 247-320 | DOI | MR | Zbl

[83] R. S. Strichartz - “Sub-Riemannian geometry”, J. Differential Geom. 24 (1986) no. 2, p. 221-263 | MR | Zbl

[84] R. S. Strichartz - “Estimates for sums of eigenvalues for domains in homogeneous spaces”, J. Functional Analysis 137 (1996) no. 1, p. 152-190 | DOI | MR | Zbl

[85] B. v. Sz. Nagy - “Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung”, Acta Sci. Math. (Szeged) 10 (1941), p. 64-74 | Zbl

[86] G. Talenti - “The standard isoperimetric theorem”, in Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, p. 73-123 | DOI | Zbl

[87] N. T. Varopoulos - “Analysis on nilpotent groups”, J. Functional Analysis 66 (1986) no. 3, p. 406-431 | DOI | MR | Zbl

[88] K. Watanabe - “Sur l’unicité du prolongement des solutions des équations elliptiques dégénérées”, Tohoku Math. J. (2) 34 (1982) no. 2, p. 239-249 | DOI | MR | Zbl

Cité par Sources :