[Orbites périodiques et sections de Birkhoff des structures hamiltoniennes stables]
Les structures hamiltoniennes stables généralisent les formes de contact et définissent un champ de vecteurs préservant une forme de volume, connu sous le nom de champ de vecteurs de Reeb. Nous étudions deux aspects des champs de vecteurs de Reeb définis par des structures hamiltoniennes stables en dimension : d’une part, nous classons tous les exemples avec un nombre fini d’orbites périodiques sous une condition de non-dégénérescence ; d’autre part, nous donnons des conditions suffisantes pour l’existence d’une décomposition en livres brisés et pour l’existence d’une section de Birkhoff.
Stable Hamiltonian structures generalize contact forms and define a volume-preserving vector field known as the Reeb vector field. We study two aspects of Reeb vector fields defined by stable Hamiltonian structures on -manifolds: on the one hand, we classify all the examples with finitely many periodic orbits under a non-degeneracy condition; on the other, we give sufficient conditions for the existence of a supporting broken book decomposition and for the existence of a Birkhoff section.
Accepté le :
Publié le :
Keywords: Stable hamiltonian structure, Birkhoff section, periodic orbit, transverse section
Mots-clés : Structure hamiltonienne stable, section de Birkhoff, orbites périodiques, section transverse
Robert Cardona 1 ; Ana Rechtman 2

@article{JEP_2025__12__235_0, author = {Robert Cardona and Ana Rechtman}, title = {Periodic orbits and {Birkhoff} sections of stable {Hamiltonian} structures}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {235--286}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.289}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.289/} }
TY - JOUR AU - Robert Cardona AU - Ana Rechtman TI - Periodic orbits and Birkhoff sections of stable Hamiltonian structures JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 235 EP - 286 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.289/ DO - 10.5802/jep.289 LA - en ID - JEP_2025__12__235_0 ER -
%0 Journal Article %A Robert Cardona %A Ana Rechtman %T Periodic orbits and Birkhoff sections of stable Hamiltonian structures %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 235-286 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.289/ %R 10.5802/jep.289 %G en %F JEP_2025__12__235_0
Robert Cardona; Ana Rechtman. Periodic orbits and Birkhoff sections of stable Hamiltonian structures. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 235-286. doi : 10.5802/jep.289. https://jep.centre-mersenne.org/articles/10.5802/jep.289/
[1] - “Stable Hamiltonian structure and basic cohomology”, Ann. Mat. Pura Appl. (4) 201 (2022) no. 5, p. 2465-2470 | DOI | MR | Zbl
[2] - “Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz”, Nonlinearity 17 (2004) no. 4, p. 1427-1453 | DOI | MR | Zbl
[3] - “Compactness results in symplectic field theory”, Geom. Topol. 7 (2003), p. 799-888 | DOI | MR | Zbl
[4] - “The topology of Bott integrable fluids”, Discrete Contin. Dynam. Systems. Ser. A 42 (2022) no. 9, p. 4321-4345 | DOI | MR | Zbl
[5] - “Compactness for punctured holomorphic curves”, J. Symplectic Geom. 3 (2005) no. 4, p. 589-654, Conference on Symplectic Topology | DOI | MR | Zbl
[6] - “Stable Hamiltonian structures in dimension 3 are supported by open books”, J. Topology 7 (2014) no. 3, p. 727-770 | DOI | MR | Zbl
[7] - “A note on the stationary Euler equations of hydrodynamics”, Ergodic Theory Dynam. Systems 37 (2017) no. 2, p. 454-480 | DOI | MR | Zbl
[8] - “Stability is not open”, Ann. Inst. Fourier (Grenoble) 60 (2010) no. 7, p. 2449-2459 | DOI | Numdam | MR | Zbl
[9] - “Symplectic topology of Mañé’s critical values”, Geom. Topol. 14 (2010) no. 3, p. 1765-1870 | DOI | MR | Zbl
[10] - “First steps in stable Hamiltonian topology”, J. Eur. Math. Soc. (JEMS) 17 (2015) no. 2, p. 321-404 | DOI | MR | Zbl
[11] - “Generic properties of 3-dimensional Reeb flows: Birkhoff sections and entropy”, Comment. Math. Helv. 99 (2024) no. 3, p. 557-611 | DOI | MR | Zbl
[12] - “On the existence of supporting broken book decompositions for contact forms in dimension 3”, Invent. Math. 231 (2023) no. 3, p. 1489-1539 | DOI | MR | Zbl
[13] - “Existence of Birkhoff sections for Kupka-Smale Reeb flows of closed contact 3-manifolds”, Geom. Funct. Anal. 32 (2022) no. 5, p. 951-979 | DOI | MR | Zbl
[14] - “Torsion contact forms in three dimensions have two or infinitely many Reeb orbits”, Geom. Topol. 23 (2019) no. 7, p. 3601-3645 | DOI | MR | Zbl
[15] - “Contact three-manifolds with exactly two simple Reeb orbits”, Geom. Topol. 27 (2023) no. 9, p. 3801-3831 | DOI | MR | Zbl
[16] - Invariants topologiques des orbites périodiques d’un champ de vecteurs, Ph. D. Thesis, École normale supérieure, Lyon, 2011
[17] - “Geodesic flow, left-handedness and templates”, Algebraic Geom. Topol. 15 (2015) no. 3, p. 1525-1597 | DOI | MR | Zbl
[18] - “Introduction to symplectic field theory”, Geom. Funct. Anal. (2000), p. 560-673, GAFA 2000 (Tel Aviv, 1999) | DOI | MR | Zbl
[19] - “Geometry of contact transformations and domains: orderability versus squeezing”, Geom. Topol. 10 (2006), p. 1635-1747, Erratum: Ibid. 13 (2009), no. 2, p. 1175–1176 | DOI | MR | Zbl
[20] - Travaux de Thurston sur les surfaces (A. Fathi, F. Laudenbach & V. Poenaru, eds.), Astérisque, vol. 66-67, Société Mathématique de France, Paris, 1991
[21] - “Some questions around quasi-periodic dynamics”, in Proceedings of the I.C.M.—Rio de Janeiro 2018. Vol. III, World Sci. Publ., Hackensack, NJ, 2018, p. 1909-1932 | MR | Zbl
[22] - “Anosov diffeomorphisms”, in Global Analysis, (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., vol. XIV-XVI, American Mathematical Society, Providence, RI, 1970, p. 61-93 | MR | Zbl
[23] - “Recurrence and fixed points of surface homeomorphisms”, Ergodic Theory Dynam. Systems 8 * (1988), p. 99-107 | DOI | MR | Zbl
[24] - “Geodesics on and periodic points of annulus homeomorphisms”, Invent. Math. 108 (1992) no. 2, p. 403-418 | DOI | MR | Zbl
[25] - “The geometry of cross sections to flows”, Topology 21 (1982) no. 4, p. 353-371 | DOI | MR | Zbl
[26] - “Global shadowing of pseudo-Anosov homeomorphisms”, Ergodic Theory Dynam. Systems 5 (1985) no. 3, p. 373-377 | DOI | MR | Zbl
[27] - “The dynamics on three-dimensional strictly convex energy surfaces”, Ann. of Math. (2) 148 (1998) no. 1, p. 197-289 | DOI | MR | Zbl
[28] - “Finite energy foliations of tight three-spheres and Hamiltonian dynamics”, Ann. of Math. (2) 157 (2003) no. 1, p. 125-255 | DOI | MR | Zbl
[29] - Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 1994 | DOI | MR
[30] - “The Weinstein conjecture for stable Hamiltonian structures”, Geom. Topol. 13 (2009) no. 2, p. 901-941 | DOI | MR | Zbl
[31] - “A priori degeneracy of one-dimensional rotation sets for periodic point free torus maps”, Trans. Amer. Math. Soc. 354 (2002) no. 7, p. 2865-2895 | DOI | MR | Zbl
[32] - “Algebraic torsion in contact manifolds”, Geom. Funct. Anal. 21 (2011) no. 5, p. 1144-1195, With an appendix by Michael Hutchings | DOI | MR | Zbl
[33] - “Conservative surface homeomorphisms with finitely many periodic points”, J. Fixed Point Theory Appl. 24 (2022) no. 2, article ID 20, 36 pages | DOI | MR
[34] - “Weak and strong fillability of higher dimensional contact manifolds”, Invent. Math. 192 (2013) no. 2, p. 287-373 | DOI | MR | Zbl
[35] - “Stability of Anosov Hamiltonian structures”, J. Topol. Anal. 2 (2010) no. 4, p. 419-451 | DOI | MR | Zbl
[36] - “Holomorphic curves in the presence of holomorphic hypersurface foliations”, 2019 | arXiv
[37] - “Weak symplectic fillings and holomorphic curves”, Ann. Sci. École Norm. Sup. (4) 44 (2011) no. 5, p. 801-853 | DOI | Numdam | MR | Zbl
[38] - “On an approximation theorem of Kupka and Smale”, J. Differential Equations 3 (1967), p. 214-227 | DOI | MR | Zbl
[39] - “Existence of periodic orbits for geodesible vector fields on closed 3-manifolds”, Ergodic Theory Dynam. Systems 30 (2010) no. 6, p. 1817-1841 | DOI | MR | Zbl
[40] - “Generic properties of conservative systems. II”, Amer. J. Math. 92 (1970), p. 897-906 | DOI | MR | Zbl
[41] - “A foliation of geodesics is characterized by having no ‘tangent homologies’”, J. Pure Appl. Algebra 13 (1978) no. 1, p. 101-104 | DOI | Zbl
[42] - “On periodic points of area preserving torus homeomorphisms”, Far East J. Math. Sci. 9 (2007) no. 3, p. 371-378 | Zbl
[43] - “The Seiberg-Witten equations and the Weinstein conjecture”, Geom. Topol. 11 (2007), p. 2117-2202 | DOI | MR | Zbl
[44] - “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.) 19 (1988) no. 2, p. 417-431 | DOI | MR | Zbl
[45] - “On fibering certain foliated manifolds over ”, Topology 9 (1970), p. 153-154 | DOI | MR | Zbl
[46] - Constructions of open book decompositions, Ph. D. Thesis, The University of Texas at Austin, 2007
[47] - “Open book decompositions and stable Hamiltonian structures”, Exposition. Math. 28 (2010) no. 2, p. 187-199 | DOI | MR | Zbl
Cité par Sources :