Quantitative De Giorgi methods in kinetic theory
[Méthodes à la De Giorgi quantitatives en théorie cinétique]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1159-1181.

Nous considérons des équations hypoelliptiques de type Fokker-Planck cinétique, également appelées équations de Kolmogorov ou ultraparaboliques, avec des coefficients sans régularité dans l’opérateur de dérive-diffusion. Nous donnons de nouvelles preuves quantitatives du lemme des valeurs intermédiaires de De Giorgi ainsi que des inégalités de Harnack faibles et fortes. Cela implique la continuité höldérienne avec bornes explicites. L’article ne fait pas appel à des résultats précédents.

We consider hypoelliptic equations of kinetic Fokker-Planck type, also known as Kolmogorov or ultraparabolic equations, with rough coefficients in the drift-diffusion operator. We give novel short quantitative proofs of the De Giorgi intermediate-value Lemma as well as weak Harnack and Harnack inequalities. This implies Hölder continuity with quantitative estimates. The paper is self-contained.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.203
Classification : 35K70, 35Q84, 35R09, 35B45, 35B65
Keywords: Hypoelliptic equations, kinetic theory, Fokker-Planck equation, ultraparabolic equations, Kolmogorov equation, Hölder continuity, De Giorgi method, Moser iteration, averaging lemma, weak Harnack inequality, trajectories
Mot clés : Équations hypoelliptiques, théorie cinétique, équation de Fokker-Planck, équations ultraparaboliques, équation de Kolmogorov, continuité höldérienne, méthode de De Giorgi, itération de Moser, lemme de moyenne, inégalité de Harnack faible, trajectoires

Jessica Guerand 1 ; Clément Mouhot 2

1 Université de Montpellier, IMAG 499-554 rue du Truel, 34090 Montpellier, France
2 University of Cambridge, Department of Pure Mathematics and Mathematical Statistics Wilberforce Road, Cambridge CB3 0WA, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2022__9__1159_0,
     author = {Jessica Guerand and Cl\'ement Mouhot},
     title = {Quantitative {De~Giorgi} methods in kinetic theory},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1159--1181},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.203},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.203/}
}
TY  - JOUR
AU  - Jessica Guerand
AU  - Clément Mouhot
TI  - Quantitative De Giorgi methods in kinetic theory
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 1159
EP  - 1181
VL  - 9
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.203/
DO  - 10.5802/jep.203
LA  - en
ID  - JEP_2022__9__1159_0
ER  - 
%0 Journal Article
%A Jessica Guerand
%A Clément Mouhot
%T Quantitative De Giorgi methods in kinetic theory
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 1159-1181
%V 9
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.203/
%R 10.5802/jep.203
%G en
%F JEP_2022__9__1159_0
Jessica Guerand; Clément Mouhot. Quantitative De Giorgi methods in kinetic theory. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1159-1181. doi : 10.5802/jep.203. https://jep.centre-mersenne.org/articles/10.5802/jep.203/

[AP20] F. Anceschi & S. Polidoro - “A survey on the classical theory for Kolmogorov equation”, Matematiche (Catania) 75 (2020) no. 1, p. 221-258 | DOI | MR | Zbl

[BDM + 20] E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot & C. Schmeiser - “Hypocoercivity without confinement”, Pure Appl. Anal. 2 (2020) no. 2, p. 203-232 | DOI | MR | Zbl

[DG56] E. De Giorgi - “Sull’analiticità delle estremali degli integrali multipli”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 20 (1956), p. 438-441 | MR | Zbl

[DG57] E. De Giorgi - “Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 3 (1957), p. 25-43 | Zbl

[EG15] L. C. Evans & R. F. Gariepy - Measure theory and fine properties of functions, Textbooks in Math., CRC Press, Boca Raton, FL, 2015 | DOI

[GI21] J. Guerand & C. Imbert - “Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations”, 2021 | arXiv

[GIMV19] F. Golse, C. Imbert, C. Mouhot & A. F. Vasseur - “Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to Landau equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (2019) no. 5, p. 253-295 | MR | Zbl

[Gue20] J. Guerand - “Quantitative regularity for parabolic De Giorgi classes”, 2020 | HAL

[GV15] F. Golse & A. Vasseur - “Hölder regularity for hypoelliptic kinetic equations with rough diffusion coefficients”, 2015 | arXiv

[Hör67] L. Hörmander - “Hypoelliptic second order differential equations”, Acta Math. 119 (1967), p. 147-171 | DOI | MR | Zbl

[IS20] C. Imbert & L. Silvestre - “The weak Harnack inequality for the Boltzmann equation without cut-off”, J. Eur. Math. Soc. (JEMS) 22 (2020) no. 2, p. 507-592 | DOI | MR | Zbl

[Kol34] A. N. Kolmogoroff - “Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)”, Ann. of Math. (2) 35 (1934) no. 1, p. 116-117 | DOI | Zbl

[Kru63] S. N. Kružkov - “A priori bounds for generalized solutions of second-order elliptic and parabolic equations”, Dokl. Akad. Nauk SSSR 150 (1963), p. 748-751 | MR

[Kru64] S. N. Kružkov - “A priori bounds and some properties of solutions of elliptic and parabolic equations”, Mat. Sb. (N.S.) 65 (1964), p. 522-570 | MR

[LZ17] D. Li & K. Zhang - “A note on the Harnack inequality for elliptic equations in divergence form”, Proc. Amer. Math. Soc. 145 (2017) no. 1, p. 135-137 | DOI | MR | Zbl

[Mos64] J. Moser - “A Harnack inequality for parabolic differential equations”, Comm. Math. Phys. 17 (1964), p. 101-134 | MR | Zbl

[PP04] A. Pascucci & S. Polidoro - “The Moser’s iterative method for a class of ultraparabolic equations”, Commun. Contemp. Math. 6 (2004) no. 3, p. 395-417 | DOI | MR | Zbl

[Vas16] A. F. Vasseur - “The De Giorgi method for elliptic and parabolic equations and some applications”, in Lectures on the analysis of nonlinear partial differential equations. Part 4, Morningside Lect. Math., vol. 4, Int. Press, Somerville, MA, 2016, p. 195-222 | MR | Zbl

[WZ09] W. Wang & L. Zhang - “The C α regularity of a class of non-homogeneous ultraparabolic equations”, Sci. China Ser. A 52 (2009) no. 8, p. 1589-1606 | DOI | MR | Zbl

[WZ11] W. Wang & L. Zhang - “The C α regularity of weak solutions of ultraparabolic equations”, Discrete Contin. Dynam. Systems 29 (2011) no. 3, p. 1261-1275 | DOI | MR | Zbl

Cité par Sources :