Nous étudions des variantes des modèles locaux introduits par le deuxième auteur et Zhu, et les modèles intégraux correspondants des variétés de Shimura de type abélien. Nous déterminons tous les cas de bonne réduction, resp. de réduction semi-stable, sous des hypothèses de ramification modérée.
We study variants of the local models constructed by the second author and Zhu and consider corresponding integral models of Shimura varieties of abelian type. We determine all cases of good, resp. of semi-stable, reduction under tame ramification hypotheses.
Accepté le :
Publié le :
Keywords: Shimura varieties, local models, Rapoport-Zink spaces, Schubert varieties
Mot clés : Variétés de Shimura, modèles locaux, espaces de Rapoport-Zink, variétés de Schubert
Xuhua He 1 ; Georgios Pappas 2 ; Michael Rapoport 3
@article{JEP_2020__7__497_0, author = {Xuhua He and Georgios Pappas and Michael Rapoport}, title = {Good and semi-stable reductions of {Shimura~varieties}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {497--571}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.123}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.123/} }
TY - JOUR AU - Xuhua He AU - Georgios Pappas AU - Michael Rapoport TI - Good and semi-stable reductions of Shimura varieties JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 497 EP - 571 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.123/ DO - 10.5802/jep.123 LA - en ID - JEP_2020__7__497_0 ER -
%0 Journal Article %A Xuhua He %A Georgios Pappas %A Michael Rapoport %T Good and semi-stable reductions of Shimura varieties %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 497-571 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.123/ %R 10.5802/jep.123 %G en %F JEP_2020__7__497_0
Xuhua He; Georgios Pappas; Michael Rapoport. Good and semi-stable reductions of Shimura varieties. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 497-571. doi : 10.5802/jep.123. https://jep.centre-mersenne.org/articles/10.5802/jep.123/
[1] - “On local models with special parahoric level structure”, Michigan Math. J. 58 (2009) no. 3, p. 683-710 | DOI | MR | Zbl
[2] - Singular loci of Schubert varieties, Progress in Math., vol. 182, Birkhäuser Boston, Inc., Boston, MA, 2000 | DOI | MR | Zbl
[3] - Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics, Springer-Verlag, Berlin, 2002 | DOI | Zbl
[4] - “Equivariant cohomology and equivariant intersection theory”, in Representation theories and algebraic geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, p. 1-37 | MR | Zbl
[5] - “Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée”, Publ. Math. Inst. Hautes Études Sci. 60 (1984), p. 197-376 | Zbl
[6] - “Groupes algébriques sur un corps local. III. Compléments et applications à la cohomologie galoisienne”, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) no. 3, p. 671-698 | Zbl
[7] - “The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties”, in Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), Proc. Sympos. Pure Math., vol. 56, American Mathematical Society, Providence, RI, 1994, p. 53-61 | MR | Zbl
[8] - “Reductive group schemes”, in Autour des schémas en groupes. Vol. I, Panoramas & Synthèses, vol. 42/43, Société Mathématique de France, Paris, 2014, p. 93-444 | MR | Zbl
[9] - “Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques”, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math.) XXXIII (1979), p. 247-289 | Zbl
[10] - “Coverings of -adic symmetric domains”, Funkcional. Anal. i Priložen. 10 (1976) no. 2, p. 29-40
[11] - “Characteristic cycles for the loop Grassmannian and nilpotent orbits”, Duke Math. J. 97 (1999) no. 1, p. 109-126 | DOI | MR | Zbl
[12] - “The category in the semistable case”, Izv. Ross. Akad. Nauk Ser. Mat. 80 (2016) no. 5, p. 41-60 | DOI
[13] - “Systèmes de Taylor-Wiles pour ”, in Formes automorphes. II. Le cas du groupe , Astérisque, vol. 302, Société Mathématique de France, Paris, 2005, p. 177-290
[14] - Basic quadratic forms, Graduate Studies in Math., vol. 90, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl
[15] - “On the flatness of models of certain Shimura varieties of PEL-type”, Math. Ann. 321 (2001) no. 3, p. 689-727 | DOI | MR | Zbl
[16] - “On the flatness of local models for the symplectic group”, Adv. Math. 176 (2003) no. 1, p. 89-115 | DOI | MR | Zbl
[17] - “Parahorics”, available at http://www.math.harvard.edu/~gross/eprints.html
[18] - “Introduction to Shimura varieties with bad reduction of parahoric type”, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, American Mathematical Society, Providence, RI, 2005, p. 583-642 | MR | Zbl
[19] - “Smooth Schubert varieties in twisted affine Grassmannians”, 2018 | arXiv
[20] - “Normality and Cohen-Macaulayness of parahoric local models”, 2019 | arXiv
[21] - “Regular models of certain Shimura varieties”, Asian J. Math. 6 (2002) no. 1, p. 61-94 | DOI | MR | Zbl
[22] - “Stratifications in the reduction of Shimura varieties”, Manuscripta Math. 152 (2017) no. 3-4, p. 317-343 | DOI | MR | Zbl
[23] - “Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 5, p. 1125-1141 | DOI | MR | Zbl
[24] - “On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups”, Publ. Math. Inst. Hautes Études Sci. 25 (1965), p. 5-48
[25] - “Representations of Coxeter groups and Hecke algebras”, Invent. Math. 53 (1979) no. 2, p. 165-184 | DOI | MR | Zbl
[26] - “Integral models of Shimura varieties with parahoric level structure”, Publ. Math. Inst. Hautes Études Sci. 128 (2018), p. 121-218 | DOI | MR | Zbl
[27] - “Local models for ramified unitary groups”, Abh. Math. Sem. Univ. Hamburg 73 (2003), p. 67-80 | DOI | MR | Zbl
[28] - “The nil Hecke ring and singularity of Schubert varieties”, Invent. Math. 123 (1996) no. 3, p. 471-506 | DOI | MR | Zbl
[29] - Kac-Moody groups, their flag varieties and representation theory, Progress in Math., vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002 | DOI | MR | Zbl
[30] - “Local models for Weil-restricted groups”, Compositio Math. 152 (2016) no. 12, p. 2563-2601 | DOI | MR | Zbl
[31] - “The minimal degeneration singularities in the affine Grassmannians”, Duke Math. J. 126 (2005) no. 2, p. 233-249 | DOI | MR | Zbl
[32] - “The points on a Shimura variety modulo a prime of good reduction”, in The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, p. 151-253 | MR | Zbl
[33] - “Langlands’s construction of the Taniyama group”, in Hodge cycles, motives, and Shimura varieties, Lect. Notes in Math., vol. 900, Springer-Verlag, Berlin-New York, 1982, p. 229-260 | DOI | Zbl
[34] - “On the arithmetic moduli schemes of PEL Shimura varieties”, J. Algebraic Geom. 9 (2000) no. 3, p. 577-605 | MR | Zbl
[35] - “Arithmetic models for Shimura varieties”, Proceedings of the International Congress of Mathematicians (Rio de Janeiro, 2018). Vol. II (2018), p. 377-398 | Zbl
[36] - “On integral models of Shimura varieties”, preprint | Zbl
[37] - “Local models in the ramified case. I. The EL-case”, J. Algebraic Geom. 12 (2003) no. 1, p. 107-145 | DOI | MR | Zbl
[38] - “Twisted loop groups and their affine flag varieties”, Adv. Math. 219 (2008) no. 1, p. 118-198, With an appendix by T. Haines and M. Rapoport | DOI | MR | Zbl
[39] - “Local models in the ramified case. III. Unitary groups”, J. Inst. Math. Jussieu 8 (2009) no. 3, p. 507-564 | DOI | MR | Zbl
[40] - “Local models of Shimura varieties, I. Geometry and combinatorics”, in Handbook of moduli. Vol. III, Adv. Lect. Math. (ALM), vol. 26, Int. Press, Somerville, MA, 2013, p. 135-217 | MR | Zbl
[41] - “Local models of Shimura varieties and a conjecture of Kottwitz”, Invent. Math. 194 (2013) no. 1, p. 147-254, Erratum: Ibid. p. 255 | DOI | MR | Zbl
[42] - “A guide to the reduction modulo of Shimura varieties”, in Automorphic forms. I, Astérisque, vol. 298, Société Mathématique de France, Paris, 2005, p. 271-318
[43] - “Towards a theory of local Shimura varieties”, Münster J. Math. 7 (2014) no. 1, p. 273-326 | MR | Zbl
[44] - Period spaces for -divisible groups, Annals of Math. Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996 | DOI
[45] - “Berkeley lectures on -adic geometry”, 2017, preprint, http://www.math.uni-bonn.de/people/scholze/Berkeley.pdf
[46] - “The Stacks Project”, 2019, https://stacks.math.columbia.edu
[47] - “Reductive groups over local fields”, in Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., vol. XXXIII, American Mathematical Society, Providence, RI, 1979, p. 29-69 | Zbl
[48] - “Purity results for -divisible groups and abelian schemes over regular bases of mixed characteristic”, Doc. Math. 15 (2010), p. 571-599
[49] - “Mod- isogeny classes on Shimura varieties with parahoric level structure”, 2017 | arXiv
[50] - “Affine Demazure modules and -fixed point subschemes in the affine Grassmannian”, Adv. Math. 221 (2009) no. 2, p. 570-600 | DOI | MR
[51] - “On the coherence conjecture of Pappas and Rapoport”, Ann. of Math. (2) 180 (2014) no. 1, p. 1-85 | DOI | MR | Zbl
[52] - “The geometric Satake correspondence for ramified groups”, Ann. Sci. École Norm. Sup. (4) 48 (2015) no. 2, p. 409-451 | DOI | MR | Zbl
Cité par Sources :