[Convergence des mesures pluricanoniques p-adiques vers des mesures de Lebesgue sur des squelettes dans les espaces de Berkovich]
Soient un corps local non-archimédien et un -schéma lisse et propre, et fixons une forme pluricanonique sur . Pour chaque extension finie de , la forme pluricanonique induit une mesure sur la -variété analytique . Nous démontrons que, lorsque parcourt toutes les extensions finies modérément ramifiées de , les normalisations appropriées des images directes de ces mesures sur l’analytifié de au sens de Berkovich convergent vers une mesure de type Lebesgue sur la partie tempérée du squelette de Kontsevich-Soibelman, en supposant l’existence d’un modèle à croisements normaux stricts de . Nous démontrons également un résultat similaire pour toutes les extensions finies en supposant que admet un modèle log lisse. Il s’agit d’une version non-archimédienne de résultats analogues pour les formes de volumes sur les familles dégénérées de variétés complexes de Calabi–Yau dus à Boucksom et au premier auteur. En cours de route, nous développons une théorie générale des mesures de Lebesgue sur les squelette de Berkovich sur des corps à valuation discrète.
Let be a non-archimedean local field, a smooth and proper -scheme, and fix a pluricanonical form on . For every finite extension of , the pluricanonical form induces a measure on the -analytic manifold . We prove that, when runs through all finite tame extensions of , suitable normalizations of the pushforwards of these measures to the Berkovich analytification of converge to a Lebesgue-type measure on the temperate part of the Kontsevich–Soibelman skeleton, assuming the existence of a strict normal crossings model for . We also prove a similar result for all finite extensions under the assumption that has a log smooth model. This is a non-archimedean counterpart of analogous results for volume forms on degenerating complex Calabi–Yau manifolds by Boucksom and the first-named author. Along the way, we develop a general theory of Lebesgue measures on Berkovich skeleta over discretely valued fields.
Accepté le :
Publié le :
DOI : 10.5802/jep.118
Keywords: Volume forms, local fields, Berkovich spaces
Mot clés : Formes volumes, corps locaux, espaces de Berkovich
Mattias Jonsson 1 ; Johannes Nicaise 2
@article{JEP_2020__7__287_0, author = {Mattias Jonsson and Johannes Nicaise}, title = {Convergence of $p$-adic pluricanonical measures to {Lebesgue} measures on skeleta {in~Berkovich} spaces}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {287--336}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.118}, zbl = {1430.14056}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.118/} }
TY - JOUR AU - Mattias Jonsson AU - Johannes Nicaise TI - Convergence of $p$-adic pluricanonical measures to Lebesgue measures on skeleta in Berkovich spaces JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 287 EP - 336 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.118/ DO - 10.5802/jep.118 LA - en ID - JEP_2020__7__287_0 ER -
%0 Journal Article %A Mattias Jonsson %A Johannes Nicaise %T Convergence of $p$-adic pluricanonical measures to Lebesgue measures on skeleta in Berkovich spaces %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 287-336 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.118/ %R 10.5802/jep.118 %G en %F JEP_2020__7__287_0
Mattias Jonsson; Johannes Nicaise. Convergence of $p$-adic pluricanonical measures to Lebesgue measures on skeleta in Berkovich spaces. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 287-336. doi : 10.5802/jep.118. https://jep.centre-mersenne.org/articles/10.5802/jep.118/
[Ber90] - Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990 | MR | Zbl
[Ber93] - “Étale cohomology for non-Archimedean analytic spaces”, Publ. Math. Inst. Hautes Études Sci. 78 (1993), p. 5-161 (1994) | DOI | Numdam | MR | Zbl
[Ber99] - “Smooth -adic analytic spaces are locally contractible”, Invent. Math. 137 (1999) no. 1, p. 1-84 | DOI | MR | Zbl
[BFJ16] - “Singular semipositive metrics in non-Archimedean geometry”, J. Algebraic Geom. 25 (2016) no. 1, p. 77-139 | DOI | MR | Zbl
[BJ17] - “Tropical and non-Archimedean limits of degenerating families of volume forms”, J. Éc. polytech. Math. 4 (2017), p. 87-139 | DOI | Numdam | MR | Zbl
[BLR90] - Néron models, Ergeb. Math. Grenzgeb. (3), vol. 21, Springer-Verlag, Berlin, 1990 | DOI | Zbl
[BM19] - “The essential skeleton of a product of degenerations”, Compositio Math. 155 (2019) no. 7, p. 1259-1300 | DOI | MR | Zbl
[BN16] - “Weight functions on Berkovich curves”, Algebra Number Theory 10 (2016) no. 10, p. 2053-2079 | DOI | MR | Zbl
[BN19] - “Computing motivic zeta functions on log smooth models”, Math. Z. (2019), published online | DOI
[BS17] - “Logarithmic good reduction of abelian varieties”, Math. Ann. 369 (2017) no. 3-4, p. 1435-1442 | DOI | MR | Zbl
[Cha00] - “Néron models for semiabelian varieties: congruence and change of base field”, Asian J. Math. 4 (2000) no. 4, p. 715-736 | DOI | MR | Zbl
[CJS09] - “Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes”, 2009 | arXiv
[CLNS18] - Motivic integration, Progress in Math., vol. 325, Birkhäuser/Springer, New York, 2018 | DOI | MR | Zbl
[CLT10] - “Igusa integrals and volume asymptotics in analytic and adelic geometry”, Confluentes Math. 2 (2010) no. 3, p. 351-429 | DOI | MR | Zbl
[CP19] - “Resolution of singularities of arithmetical threefolds”, J. Algebra 529 (2019), p. 268-535 | DOI | MR | Zbl
[CY01] - “Congruences of Néron models for tori and the Artin conductor (with an appendix by E. de Shalit)”, Ann. of Math. (2) 154 (2001) no. 2, p. 347-382 | DOI | Zbl
[dJ96] - “Smoothness, semi-stability and alterations”, Publ. Math. Inst. Hautes Études Sci. 83 (1996), p. 51-93 | DOI | Numdam | Zbl
[Edi92] - “Néron models and tame ramification”, Compositio Math. 81 (1992) no. 3, p. 291-306 | Numdam | MR | Zbl
[EHN15] - “A logarithmic interpretation of Edixhoven’s jumps for Jacobians”, Adv. Math. 279 (2015), p. 532-574 | DOI | MR | Zbl
[HN18] - “Motivic zeta functions of degenerating Calabi-Yau varieties”, Math. Ann. 370 (2018) no. 3-4, p. 1277-1320 | DOI | MR | Zbl
[Kat89] - “Logarithmic structures of Fontaine-Illusie”, in Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, p. 191-224 | Zbl
[Kat94] - “Toric singularities”, Amer. J. Math. 116 (1994) no. 5, p. 1073-1099 | DOI | MR | Zbl
[Kat96] - “Log smooth deformation theory”, Tôhoku Math. J. (2) 48 (1996) no. 3, p. 317-354 | DOI | MR | Zbl
[KKMSD73] - Toroidal embeddings. I, Lect. Notes in Math., vol. 339, Springer-Verlag, Berlin-New York, 1973 | MR | Zbl
[KM76] - “The projectivity of the moduli space of stable curves. I. Preliminaries on ‘det’ and ‘Div’”, Math. Scand. 39 (1976) no. 1, p. 19-55 | DOI | MR | Zbl
[KNX18] - “Semi-stable extensions over 1-dimensional bases”, Acta Math. Sinica (N.S.) 34 (2018) no. 1, p. 103-113 | DOI | MR | Zbl
[KS04] - “On the conductor formula of Bloch”, Publ. Math. Inst. Hautes Études Sci. 100 (2004), p. 5-151 | DOI | Numdam | MR | Zbl
[KS06] - “Affine structures and non-Archimedean analytic spaces”, in The unity of mathematics, Progress in Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, p. 321-385 | DOI | MR | Zbl
[Lor10] - “Models of curves and wild ramification”, Pure Appl. Math. Q 6 (2010) no. 1, p. 41-82 | DOI | MR | Zbl
[LS03] - “Motivic integration on smooth rigid varieties and invariants of degenerations”, Duke Math. J. 119 (2003) no. 2, p. 315-344 | DOI | MR | Zbl
[MN15] - “Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton”, Algebraic Geom. 2 (2015) no. 3, p. 365-404 | DOI | MR | Zbl
[MS17] - “Logarithmic good reduction and the index”, 2017 | arXiv
[Nak97] - “Logarithmic étale cohomology”, Math. Ann. 308 (1997) no. 3, p. 365-404 | DOI | Zbl
[Nak98] - “Nearby cycles for log smooth families”, Compositio Math. 112 (1998) no. 1, p. 45-75 | DOI | MR | Zbl
[NS07] - “Motivic Serre invariants, ramification, and the analytic Milnor fiber”, Invent. Math. 168 (2007) no. 1, p. 133-173 | DOI | MR | Zbl
[NX16] - “The essential skeleton of a degeneration of algebraic varieties”, Amer. J. Math. 138 (2016) no. 6, p. 1645-1667 | DOI | MR | Zbl
[Phi94] - “Sur des hauteurs alternatives. II”, Ann. Inst. Fourier (Grenoble) 44 (1994) no. 4, p. 1043-1065 | DOI | Numdam | MR | Zbl
[Sai04] - “Log smooth extension of a family of curves and semi-stable reduction”, J. Algebraic Geom. 13 (2004) no. 2, p. 287-321 | DOI | MR | Zbl
[Shi19] - “Convergence of volume forms on a family of log-Calabi-Yau varieties to a non-Archimedean measure”, 2019 | arXiv
[Sti05] - “A logarithmic view towards semistable reduction”, J. Algebraic Geom. 14 (2005) no. 1, p. 119-136 | DOI | MR | Zbl
[Tem16] - “Metrization of differential pluriforms on Berkovich analytic spaces”, in Nonarchimedean and tropical geometry, Simons Symp., Springer, 2016, p. 195-285 | DOI | MR | Zbl
Cité par Sources :