[Dynamique symbolique forte pour les flots géodésiques sur les espaces CAT
Nous montrons que le flot géodésique sur un espace compact localement
We prove that the geodesic flow on a locally
Accepté le :
Publié le :
DOI : 10.5802/jep.115
Keywords: Geodesic flows, CAT
Mots-clés : Flots géodésiques, espaces CAT
David Constantine 1 ; Jean-François Lafont 2 ; Daniel J. Thompson 2

@article{JEP_2020__7__201_0, author = {David Constantine and Jean-Fran\c{c}ois Lafont and Daniel J. Thompson}, title = {Strong symbolic dynamics for geodesic flows on {CAT}$(-1)$ spaces and other metric {Anosov} flows}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {201--231}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.115}, zbl = {07152735}, mrnumber = {4054334}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.115/} }
TY - JOUR AU - David Constantine AU - Jean-François Lafont AU - Daniel J. Thompson TI - Strong symbolic dynamics for geodesic flows on CAT$(-1)$ spaces and other metric Anosov flows JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 201 EP - 231 VL - 7 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.115/ DO - 10.5802/jep.115 LA - en ID - JEP_2020__7__201_0 ER -
%0 Journal Article %A David Constantine %A Jean-François Lafont %A Daniel J. Thompson %T Strong symbolic dynamics for geodesic flows on CAT$(-1)$ spaces and other metric Anosov flows %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 201-231 %V 7 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.115/ %R 10.5802/jep.115 %G en %F JEP_2020__7__201_0
David Constantine; Jean-François Lafont; Daniel J. Thompson. Strong symbolic dynamics for geodesic flows on CAT$(-1)$ spaces and other metric Anosov flows. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 201-231. doi : 10.5802/jep.115. https://jep.centre-mersenne.org/articles/10.5802/jep.115/
[BAPP19] - Equidistribution and counting under equilibrium states in negative curvature and trees, Progress in Math., vol. 329, Birkhauser, 2019 | MR | Zbl
[BCLS15] - “The pressure metric for Anosov representations”, Geom. Funct. Anal. 25 (2015), p. 1089-1179 | DOI | MR | Zbl
[BCLS18] - “Simple root flows for Hitchin representations”, Geom. Dedicata 192 (2018) no. 1, p. 57-86 | DOI | MR | Zbl
[BCS17] - “An introduction to pressure metrics for higher Teichmüller spaces”, Ergodic Theory Dynam. Systems (2017), p. 1-35 | Zbl
[BH99] - Metric spaces of non-positive curvature, Grundlehren Math. Wiss., vol. 319, Springer, Berlin, 1999 | MR | Zbl
[Bou95] - “Structure conforme au bord et flot géodésique d’un CAT(-1)-espace”, Enseign. Math. 41 (1995) no. 1-2, p. 63-102 | MR | Zbl
[Bow72] - “Periodic orbits for hyperbolic flows”, Amer. J. Math. 94 (1972) no. 1, p. 1-30 | DOI | MR | Zbl
[Bow73] - “Symbolic dynamics for hyperbolic flows”, Amer. J. Math. 95 (1973) no. 2, p. 429-460 | DOI | MR | Zbl
[BR75] - “The ergodic theory of Axiom A flows”, Invent. Math. 29 (1975) no. 3, p. 181-202 | DOI | MR | Zbl
[BW72] - “Expansive one-parameter flows”, J. Differential Equations 12 (1972), p. 180-193 | DOI | MR | Zbl
[Can84] - “The combinatorial structure of cocompact discrete hyperbolic groups”, Geom. Dedicata 16 (1984), p. 123-148 | MR | Zbl
[Cha94] - “Petite simplification dans les groupes hyperboliques”, Ann. Fac. Sci. Toulouse Math. (6) 3 (1994) no. 2, p. 161-221 | DOI | Numdam | MR | Zbl
[CLT19] - “The weak specification property for geodesic flows on CAT(-1) spaces”, 2019, to appear in Groups Geom. Dyn. | arXiv
[CP12] - “Symbolic coding for the geodesic flow associated to a word hyperbolic group”, Manuscripta Math. 109 (2012), p. 465-492 | DOI | MR | Zbl
[DP84] - “Approximation by Brownian motion for Gibbs measures and flows under a function”, Ergodic Theory Dynam. Systems 4 (1984) no. 4, p. 541-552 | DOI | MR | Zbl
[DSU17] - Geometry and dynamics in Gromov hyperbolic metric spaces, Math. Surveys and Monographs, vol. 218, American Mathematical Society, Providence, RI, 2017 | MR | Zbl
[FH18] - Hyperbolic Flows, Lect. Notes in Math. Sciences, vol. 16, University of Tokyo, 2018, available at https://www.ms.u-tokyo.ac.jp/publication_e/lecturenote_e.html | Zbl
[GM10] - “(Non)invariance of dynamical quantities for orbit equivalent flows”, Comm. Math. Phys. 300 (2010) no. 2, p. 411-433 | DOI | MR | Zbl
[Gro87] - “Hyperbolic groups”, in Essays in group theory (S. Gersten, ed.), MSRI Publications, vol. 8, Springer, 1987, p. 75-265 | DOI | MR
[KT19] - “Measures of maximal entropy for suspension flows over the full shift”, 2019, to appear in Math. Z. | arXiv | DOI
[Min05] - “Flows and joins of metric spaces”, Geom. Topol. 9 (2005), p. 403-482 | DOI | MR | Zbl
[MT04] - “Statistical limit theorems for suspension flows”, Israel J. Math. 144 (2004), p. 191-209 | DOI | MR | Zbl
[Pol87] - “Symbolic dynamics for Smale flows”, Amer. J. Math. 109 (1987) no. 1, p. 183-200 | DOI | MR | Zbl
[PP90] - Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, vol. 187-188, Société Mathématique de France, Paris, 1990 | Numdam | Zbl
[PS17] - “Eigenvalues and entropy of a Hitchin representation”, Invent. Math. 209 (2017) no. 3, p. 885-925 | DOI | MR | Zbl
[Put14] - A homology theory for Smale spaces, Mem. Amer. Math. Soc., vol. 232, no. 1094, American Mathematical Society, Providence, RI, 2014 | DOI | Zbl
[Rat73] - “The central limit theorem for geodesic flows on
[Rat74] - “Anosov flows with Gibbs measures are also Bernoullian”, Israel J. Math. 17 (1974), p. 380-391 | DOI | MR | Zbl
[Ric17] - “Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one CAT(0) spaces”, Ergodic Theory Dynam. Systems 37 (2017), p. 939-970 | DOI | MR | Zbl
[Rob03] - Ergodicité et équidistribution en courbure négative, vol. 95, Société Mathématique de France, Paris, 2003 | Numdam | MR | Zbl
[Rue76] - “A measure associated with Axiom-A attractors”, Amer. J. Math. 98 (1976) no. 3, p. 619-654 | DOI | MR | Zbl
[Sam16] - “On entropy, regularity and rigidity for convex representations of hyperbolic manifolds”, Math. Ann. 364 (2016) no. 1-2, p. 453-483 | DOI | MR | Zbl
[Tap11] - “A variation formula for the topological entropy of convex-cocompact manifolds”, Ergodic Theory Dynam. Systems 31 (2011), p. 1849-1864 | DOI | MR | Zbl
[Tro90] - “Espaces à courbure négative et groupes hyperboliques” (E. Ghys & P. de la Harpe, eds.), Progress in Math., vol. 83, Birkhäuser, 1990, p. 47-66
- - “A report on an ergodic dichotomy”, Ergodic Theory and Dynamical Systems 44 (2024) no. 1, p. 236 | DOI:10.1017/etds.2023.13
- - “Growth of Quadratic Forms Under Anosov Subgroups”, International Mathematics Research Notices 2023 (2023) no. 1, p. 785 | DOI:10.1093/imrn/rnab181
- - “Unique Equilibrium States for Geodesic Flows on Flat Surfaces with Singularities”, International Mathematics Research Notices 2023 (2023) no. 17, p. 15155 | DOI:10.1093/imrn/rnac247
- - “The Martin boundary of an extension by a hyperbolic group”, Israel Journal of Mathematics 255 (2023) no. 1, p. 1 | DOI:10.1007/s11856-023-2468-x
- - “Counting, equidistribution and entropy gaps at infinity with applications to cusped Hitchin representations”, Journal für die reine und angewandte Mathematik (Crelles Journal) 2022 (2022) no. 791, p. 1 | DOI:10.1515/crelle-2022-0035
- - “Topological flows for hyperbolic groups”, Ergodic Theory and Dynamical Systems 41 (2021) no. 11, p. 3474 | DOI:10.1017/etds.2020.101
- - “The conformal measures of a normal subgroup of a cocompact Fuchsian group”, Ergodic Theory and Dynamical Systems 41 (2021) no. 9, p. 2845 | DOI:10.1017/etds.2020.83
- - “Beyond Bowen’s Specification Property”, Thermodynamic Formalism 2290 (2021), p. 3 | DOI:10.1007/978-3-030-74863-0_1
- - “Topological flows for hyperbolic groups”, arXiv (2019) | DOI:10.48550/arxiv.1912.03808 | arXiv:1912.03808
- - “Counting problems for special-orthogonal Anosov representations”, arXiv (2018) | DOI:10.48550/arxiv.1812.00738 | arXiv:1812.00738
Cité par 10 documents. Sources : Crossref, NASA ADS