Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit
[Étude asymptotique de l’équation de Vlasov en dimension $3$ pour un champ magnétique externe intense]
Journal de l’École polytechnique — Mathématiques, Tome 7 (2020) , pp. 1009-1067.

Nous étudions le comportement asymptotique des solutions de l’équation de Vlasov en présence d’un fort champ magnétique externe. En particulier, nous justifions rigoureusement l’obtention de l’approximation centre-guide dans un cadre général en dimension 3 pour un champ magnétique inhomogène. Les corrections d’ordre 1 sont également décrites et justifiées, y compris le terme E×B, les gradients du champ magnétique et les effets de courbure. En outre, nous traitons le comportement en temps long pour deux exemples spécifiques, le cas bidimensionnel en coordonnées cartésiennes (pour ses vertus pédagogiques) et une géométrie toroïdale axi-symétrique. Notre approche est essentiellement basée sur des manipulations algébriques, plutôt que sur une structure variationnelle particulière.

We study the asymptotic behavior of solutions to the Vlasov equation in the presence of a strong external magnetic field. In particular we provide a mathematically rigorous derivation of the guiding-center approximation in the general three-dimensional setting under the action of large inhomogeneous magnetic fields. First order corrections are computed and justified as well, including electric cross field, magnetic gradient and magnetic curvature drifts. We also treat long time behaviors on two specific examples, the two-dimensional case in cartesian coordinates and a toroidal axi-symmetric geometry, the former for expository purposes. Algebraic manipulations that underlie concrete computations make the most of the linearity of the stiffest part of the system of characteristics instead of relying on any particular variational structure. At last, we analyze a smoothed Vlasov-Poisson system, thus showing how our arguments may be extended to deal with the nonlinearity arising from self-consistent fields.

Reçu le : 2019-03-10
Accepté le : 2020-07-08
Publié le : 2020-07-16
DOI : https://doi.org/10.5802/jep.134
Classification : 35Q83,  78A35,  82D10,  35B40
Mots clés: Analyse asymptotique, équation de Vlasov, approximation centre-guide, gyro-cinétique
@article{JEP_2020__7__1009_0,
     author = {Francis Filbet and L. Miguel Rodrigues},
     title = {Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     pages = {1009-1067},
     doi = {10.5802/jep.134},
     language = {en},
     url = {jep.centre-mersenne.org/item/JEP_2020__7__1009_0/}
}
Francis Filbet; L. Miguel Rodrigues. Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020) , pp. 1009-1067. doi : 10.5802/jep.134. https://jep.centre-mersenne.org/item/JEP_2020__7__1009_0/

[1] P. M. Bellan - Fundamentals of plasma physics, Cambridge University Press, 2008

[2] G. Benettin & P. Sempio - “Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field”, Nonlinearity 7 (1994) no. 1, p. 281-303 | Article | MR 1260143 | Zbl 0856.70010

[3] N. N. Bogoliubov & Y. A. Mitropolsky - Asymptotic methods in the theory of non-linear oscillations, International Monographs on Advanced Math. and Physics, Hindustan Publishing Corp., Delhi, Gordon and Breach Science Publishers, New York, 1961

[4] M. Bostan - “Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation”, Multiscale Model. Simul. 8 (2010) no. 5, p. 1923-1957 | Article | MR 2769087

[5] M. Bostan - “Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics”, J. Differential Equations 249 (2010) no. 7, p. 1620-1663 | Article | MR 2677810 | Zbl 1229.35298

[6] M. Bostan - “Asymptotic behavior for the Vlasov-Poisson equations with strong external magnetic field. Straight magnetic field lines”, SIAM J. Math. Anal. 51 (2019) no. 3, p. 2713-2747 | Article | MR 3974032 | Zbl 1419.35188

[7] A. J. Brizard & T. S. Hahm - “Foundations of nonlinear gyrokinetic theory”, Rev. Modern Phys. 79 (2007) no. 2, p. 421-468 | Article | MR 2336960 | Zbl 1205.76309

[8] F. F. Chen - Introduction to plasma physics and controlled fusion, Springer, 2016

[9] C. Cheverry - “Anomalous transport”, J. Differential Equations 262 (2017) no. 3, p. 2987-3033 | Article | MR 3582249 | Zbl 1358.35194

[10] P. Degond & F. Filbet - “On the asymptotic limit of the three dimensional Vlasov–Poisson system for large magnetic field: formal derivation”, J. Statist. Phys. 165 (2016) no. 4, p. 765-784 | Article | MR 3568167 | Zbl 1360.35280

[11] M. V. Falessi - Gyrokinetic theory for particle transport in fusion plasmas, Ph. D. Thesis, Università di Roma Tre, 2017 | arXiv:1701.02202

[12] F. Filbet & L. M. Rodrigues - “Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field”, SIAM J. Numer. Anal. 54 (2016) no. 2, p. 1120-1146 | Article | MR 3485969 | Zbl 1342.35392

[13] F. Filbet & L. M. Rodrigues - “Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas”, SIAM J. Numer. Anal. 55 (2017) no. 5, p. 2416-2443 | Article | MR 3709891 | Zbl 1422.82006

[14] J. P. Freidberg - Plasma physics and fusion energy, Cambridge University Press, 2008

[15] E. Frénod & M. Lutz - “On the geometrical gyro-kinetic theory”, Kinet. and Relat. Mod. 7 (2014) no. 4, p. 621-659 | Article | MR 3317576 | Zbl 1353.37147

[16] E. Frénod & É. Sonnendrücker - “Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field”, Asymptot. Anal. 18 (1998) no. 3-4, p. 193-213 | MR 1668938 | Zbl 0936.82032

[17] E. Frénod & É. Sonnendrücker - “Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field”, Math. Models Methods Appl. Sci. 10 (2000) no. 4, p. 539-553 | Article | MR 1758722

[18] X. Garbet, Y. Idomura, L. Villard & T. H. Watanabe - “Gyrokinetic simulations of turbulent transport”, Nuclear Fusion 50 (2010), 043002 pages | Article

[19] F. Golse & L. Saint-Raymond - “The Vlasov-Poisson system with strong magnetic field”, J. Math. Pures Appl. (9) 78 (1999) no. 8, p. 791-817 | Article | MR 1715342 | Zbl 0977.35108

[20] D. Han-Kwan - Contribution à l’étude mathématique des plasmas fortement magnétisés, Ph. D. Thesis, Université Pierre et Marie Curie-Paris VI, 2011 | theses.fr:2011PA066148

[21] R. D. Hazeltine & J. D. Meiss - Plasma confinement, Dover Publications, 2003

[22] M. Herda - “On massless electron limit for a multispecies kinetic system with external magnetic field”, J. Differential Equations 260 (2016) no. 11, p. 7861-7891 | Article | MR 3479195 | Zbl 1352.35186

[23] M. Herda - Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées, Ph. D. Thesis, Université Claude Bernard Lyon 1, 2017 | theses.fr:2017LYSE1165

[24] M. Herda & L. M. Rodrigues - “Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations”, Kinet. and Relat. Mod. 12 (2019) no. 3, 593–636 pages | Article | MR 3928123 | Zbl 1420.35413

[25] J. A. Krommes - “The gyrokinetic description of microturbulence in magnetized plasmas”, Annu. Rev. Fluid Mech. 44 (2012), p. 175-201 | Article | MR 2882594 | Zbl 1354.76231

[26] W. Lee - “Gyrokinetic approach in particle simulation”, Phys. Fluids 26 (1983) no. 2, p. 556-562 | Article | Zbl 0576.76120

[27] D. Li - “On Kato-Ponce and fractional Leibniz”, Rev. Mat. Iberoamericana 35 (2019) no. 1, p. 23-100 | Article | MR 3914540 | Zbl 1412.35261

[28] R. G. Littlejohn - “A guiding center Hamiltonian: A new approach”, J. Math. Phys. 20 (1979), p. 2445-2458 | Article | MR 553507 | Zbl 0444.70020

[29] R. G. Littlejohn - “Hamiltonian formulation of guiding center motion”, Phys. Fluids 24 (1981), p. 1730-1749 | Article | MR 628941 | Zbl 0473.76123

[30] R. G. Littlejohn - “Variational principles of guiding center motion”, J. Plasma Physics 29 (1983), p. 111-124 | Article

[31] M. Lutz - Étude mathématique et numérique d’un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d’un plasma de Tokamak, Ph. D. Thesis, Université de Strasbourg, 2013 | theses.fr:2013STRAD036

[32] É. Miot - “On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system”, 2016 | arXiv:1603.04502

[33] K. Miyamoto - Plasma physics and controlled nuclear fusion, Springer Series on Atomic, Optical, and Plasma Physics, vol. 38, Springer-Verlag, Berlin-Heidelberg, 2006 | Zbl 1276.81126

[34] A. Piel - Plasma physics: An introduction to laboratory, space, and fusion plasmas, Springer, Berlin, Heidelberg, 2010 | Zbl 1222.82003

[35] S. Possanner - “Gyrokinetics from variational averaging: Existence and error bounds”, J. Math. Phys. 59 (2018) no. 8, 082702, 34 pages | Article | MR 3843633 | Zbl 1395.78024

[36] L. Saint-Raymond - “Control of large velocities in the two-dimensional gyrokinetic approximation”, J. Math. Pures Appl. (9) 81 (2002) no. 4, p. 379-399 | Article | MR 1967354 | Zbl 1134.76745

[37] J. A. Sanders, F. Verhulst & J. Murdock - Averaging methods in nonlinear dynamical systems, Applied Math. Sciences, vol. 59, Springer, New York, 2007 | MR 2316999 | Zbl 1128.34001

[38] B. D. Scott - “Gyrokinetic field theory as a gauge transform or: gyrokinetic theory without Lie transforms”, 2017 | arXiv:1708.06265

[39] E. Sonnendrücker, F. Filbet, A. Friedman, E. Oudet & J.-L. Vay - “Vlasov simulations of beams with a moving grid”, Comput. Phys. Comm. 164 (2004) no. 1-3, p. 390-395 | Article