Maximal representations of cocompact complex hyperbolic lattices, a uniform approach
Pierre-Emmanuel Chaput; Julien Maubon
Journal de l'École polytechnique — Mathématiques, Volume 6 (2019), p. 231-281

We complete the classification of maximal representations of cocompact complex hyperbolic lattices in Hermitian Lie groups by dealing with the exceptional groups E 6(-14) and E 7(-25) . We prove that if ρ is a maximal representation of a cocompact complex hyperbolic lattice ΓSU(1,n), n>1, in an exceptional Hermitian group G , then n=2 and G =E 6(-14) , and we describe completely the representation ρ. The case of classical Hermitian target groups was treated by Vincent Koziarz and the second named author [KM17]. However we do not focus immediately on the exceptional cases and instead we provide a more unified perspective, as independent as possible of the classification of the simple Hermitian Lie groups. This relies on the study of the cominuscule representation of the complexification G of the target group G . As a by-product of our methods, when the target Hermitian group G has tube type, we obtain an inequality on the Toledo invariant of the representation ρ:ΓG which is stronger than the Milnor-Wood inequality (thereby excluding maximal representations in such groups).

Nous complétons la classification des représentations maximales des réseaux hyperboliques complexes dans les groupes de Lie hermitiens en traitant le cas des groupes exceptionnels E 6(-14) et E 7(-25) . Nous montrons que si ρ est une représentation maximale d’un réseau hyperbolique complexe cocompact ΓSU(1,n), avec n>1, dans un groupe hermitien G de type exceptionnel, alors n=2 et G =E 6(-14) , et nous décrivons complètement la représentation ρ. Le cas des groupes hermitiens classiques avait été traité par Vincent Koziarz et le deuxième auteur cité [KM17]. Cependant, nous ne nous restreignons pas immédiatement aux groupes exceptionnels : nous proposons au contraire une approche unifiée, aussi indépendante que possible de la classification des groupes de Lie hermitiens simples. Cette approche repose sur une étude de la représentation cominuscule de la complexification du groupe d’arrivée G . Dans le cas où G est de type tube, nos méthodes permettent en particulier d’établir une inégalité sur l’invariant de Toledo de la représentation ρ:ΓG qui est plus forte que l’inégalité de Milnor-Wood et qui exclut donc la possibilité d’une représentation maximale pour de tels groupes.

Received : 2017-04-28
Accepted : 2019-04-17
Published online : 2019-05-10
DOI : https://doi.org/10.5802/jep.93
Classification:  53C35,  22E40,  32L05,  32Q15,  17B10,  20G05
Keywords: Complex hyperbolic lattices, Milnor-Wood inequality, maximal representations, cominuscule representations, exceptional Lie groups, harmonic Higgs bundles, holomorphic foliations
@article{JEP_2019__6__231_0,
     author = {Pierre-Emmanuel Chaput and Julien Maubon},
     title = {Maximal representations of cocompact complex hyperbolic lattices, a uniform approach},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     pages = {231-281},
     doi = {10.5802/jep.93},
     language = {en},
     url = {https://jep.centre-mersenne.org/item/JEP_2019__6__231_0}
}
Maximal representations of cocompact complex hyperbolic lattices, a uniform approach. Journal de l'École polytechnique — Mathématiques, Volume 6 (2019) pp. 231-281. doi : 10.5802/jep.93. https://jep.centre-mersenne.org/item/JEP_2019__6__231_0/

[AMRT10] A. Ash, D. Mumford, M. Rapoport & Y.-S. Tai - Smooth compactifications of locally symmetric varieties, Cambridge University Press, Cambridge, 2010 | Zbl 1209.14001

[BGPG03] S. B. Bradlow, O. Garcia-Prada & P. B. Gothen - “Surface group representations and U(p,q)-Higgs bundles”, J. Differential Geom. 64 (2003), p. 111-170 | Article | MR 2015045 | Zbl 1070.53054

[BGPG06] S. B. Bradlow, O. Garcia-Prada & P. B. Gothen - “Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces”, Geom. Dedicata 122 (2006), p. 185-213 | Article | MR 2295550 | Zbl 1132.14029

[BGPR17] O. Biquard, O. García-Prada & R. Rubio - “Higgs bundles, the Toledo invariant and the Cayley correspondence”, J. Topology 10 (2017) no. 3, p. 795-826 | Article | MR 3797597 | Zbl 1393.14032

[BH99] M. R. Bridson & A. Haefliger - Metric spaces of non-positive curvature, Grundlehren Math. Wiss., vol. 319, Springer-Verlag, Berlin, 1999 | MR 1744486 | Zbl 0988.53001

[BI07] M. Burger & A. Iozzi - “Bounded differential forms, generalized Milnor-Wood inequality and an application to deformation rigidity”, Geom. Dedicata 125 (2007), p. 1-23 | Article | MR 2322535 | Zbl 1134.53020

[BIW09] M. Burger, A. Iozzi & A. Wienhard - “Tight homomorphisms and Hermitian symmetric spaces”, Geom. Funct. Anal. 19 (2009) no. 3, p. 678-721 | MR 2563767 | Zbl 1188.53050

[BIW10] M. Burger, A. Iozzi & A. Wienhard - “Surface group representations with maximal Toledo invariant”, Ann. of Math. (2) 172 (2010), p. 517-566 | Article | MR 2680425 | Zbl 1208.32014

[BM15] A. S. Buch & L. C. Mihalcea - “Curve neighborhoods of Schubert varieties”, J. Differential Geom. 99 (2015) no. 2, p. 255-283 | MR 3302040 | Zbl 06423472

[Bor69] A. Borel - Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969 | Zbl 0186.33201

[Bou68] N. Bourbaki - Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, vol. 1337, Hermann, Paris, 1968 | Zbl 0186.33001

[Che97] C. Chevalley - The algebraic theory of spinors and Clifford algebras, Collected works, vol. 2, Springer-Verlag, Berlin, 1997 | MR 1636473 | Zbl 0899.01032

[Cor88] K. Corlette - “Flat G-bundles with canonical metrics”, J. Differential Geom. 28 (1988), p. 361-382 | Article | MR 965220 | Zbl 0676.58007

[Del80] P. Deligne - “La conjecture de Weil. II”, Publ. Math. Inst. Hautes Études Sci. 52 (1980), p. 137-252 | Article | Numdam | Zbl 0456.14014

[FH91] W. Fulton & J. Harris - Representation theory. A first course, Graduate Texts in Math., vol. 129, Springer-Verlag, New York, 1991 | Zbl 0744.22001

[Gro94] B. H. Gross - “A remark on tube domains”, Math. Res. Lett. 1 (1994) no. 1, p. 1-9 | MR 1258484 | Zbl 0873.32032

[GW12] O. Guichard & A. Wienhard - “Anosov representations: domains of discontinuity and applications”, Invent. Math. 190 (2012), p. 357-438 | Article | MR 2981818 | Zbl 1270.20049

[Ham13] O. Hamlet - “Tight holomorphic maps, a classification”, J. Lie Theory 23 (2013) no. 3, p. 639-654 | MR 3115169 | Zbl 1277.32021

[HC56] Harish-Chandra - “Representations of semisimple Lie groups. VI. Integrable and square-integrable representations”, Amer. J. Math. 78 (1956), p. 564-628 | Article | MR 82056 | Zbl 0072.01702

[Hel01] S. Helgason - Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Math., vol. 34, American Mathematical Society, Providence, RI, 2001, Corrected reprint of the 1978 original | MR 1834454 | Zbl 0993.53002

[Her91] L. Hernández - “Maximal representations of surface groups in bounded symmetric domains”, Trans. Amer. Math. Soc. 324 (1991), p. 405-420 | Article | MR 1033234 | Zbl 0733.32024

[Hit87] N. Hitchin - “The self-duality equations on a Riemann surface”, Proc. London Math. Soc. 55 (1987), 59–126 pages | MR 887284 | Zbl 0634.53045

[Hit92] N. Hitchin - “Lie groups and Teichmüller space”, Topology 31 (1992), 449–473 pages | Zbl 0769.32008

[Hum75] J. E. Humphreys - Linear algebraic groups, Graduate Texts in Math., vol. 21, Springer, New York, 1975 | MR 396773 | Zbl 0325.20039

[Igu70] J.-I. Igusa - “A classification of spinors up to dimension twelve”, Amer. J. Math. 92 (1970), p. 997-1028 | Article | MR 277558 | Zbl 0217.36203

[Iha67] S.-I. Ihara - “Holomorphic imbeddings of symmetric domains”, J. Math. Soc. Japan 19 (1967), p. 261-302 | Article | MR 214807 | Zbl 0159.11102

[KM08] V. Koziarz & J. Maubon - “Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type”, Geom. Dedicata 137 (2008), p. 85-111 | Article | MR 2449147 | Zbl 1159.22006

[KM10] V. Koziarz & J. Maubon - “The Toledo invariant on smooth varieties of general type”, J. reine angew. Math. 649 (2010), p. 207-230 | MR 2746471 | Zbl 1227.22012

[KM17] V. Koziarz & J. Maubon - “Maximal representations of uniform complex hyperbolic lattices”, Ann. of Math. (2) 185 (2017), p. 493-540 | Article | MR 3612003 | Zbl 1367.22004

[Kna02] A. W. Knapp - Lie groups beyond an introduction, Progress in Math., vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002 | MR 1920389 | Zbl 1075.22501

[Kos12] B. Kostant - “The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group”, Moscow Math. J. 12 (2012) no. 3, p. 605-620 | MR 3024825 | Zbl 1260.14058

[Man06] L. Manivel - “Configurations of lines and models of Lie algebras”, J. Algebra 304 (2006) no. 1, p. 457-486 | Article | MR 2256401 | Zbl 1167.17001

[McG02] W. M. Mcgovern - “The adjoint representation and the adjoint action”, in Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia Math. Sci., vol. 131, Springer, Berlin, 2002, p. 159-238 | MR 1925831 | Zbl 1036.17007

[Mok89] N. Mok - Metric rigidity theorems on Hermitian locally symmetric manifolds, Series in Pure Mathematics, vol. 6, World Scientific, Teaneck, NJ, 1989 | MR 1081948 | Zbl 0912.32026

[Mur59] S. Murakami - “Sur certains espaces fibrés principaux différentiables et holomorphes”, Nagoya Math. J. 15 (1959), p. 171-199 | Article

[MX02] E. Markman & E. Z. Xia - “The moduli of flat PU(p,p)-structures with large Toledo invariants”, Math. Z. 240 (2002), p. 95-109 | Article | Zbl 1008.32006

[NT76] H. Nakagawa & R. Takagi - “On locally symmetric Kaehler submanifolds in a complex projective space”, J. Math. Soc. Japan 28 (1976) no. 4, p. 638-667 | Article | MR 417463

[PS69] I. Piatetski-Shapiro - Automorphic functions and the geometry of classical domains, Mathematics and its applications, vol. 8, Gordon and Breach Science Publishers, New York-London-Paris, 1969 | MR 252690 | Zbl 0196.09901

[Rat06] J. Ratcliffe - Foundations of hyperbolic manifolds, Springer, New York, 2006 | Zbl 1106.51009

[Roy80] H. L. Royden - “The Ahlfors-Schwarz lemma in several complex variables”, Comment. Math. Helv. 55 (1980) no. 4, p. 547-558 | Article | MR 604712 | Zbl 0484.53053

[RRS92] R. Richardson, G. Röhrle & R. Steinberg - “Parabolic subgroups with abelian unipotent radical”, Invent. Math. 110 (1992) no. 3, p. 649-671 | MR 1189494 | Zbl 0786.20029

[Sam78] J. H. Sampson - “Some properties and applications of harmonic mappings”, Ann. Sci. École Norm. Sup. (4) 11 (1978), p. 211-228 | Article | Numdam | MR 510549 | Zbl 0392.31009

[Sat80] I. Satake - Algebraic structures of symmetric domains, Kanô Memorial Lectures, vol. 4, Princeton University Press, Princeton, NJ, 1980 | MR 591460 | Zbl 0483.32017

[Sel60] A. Selberg - “On discontinuous groups in higher-dimensional symmetric spaces”, in Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, p. 147-164 | Zbl 0201.36603

[Sim88] C. Simpson - “Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization”, J. Amer. Math. Soc. 1 (1988), p. 867-918 | Article | MR 944577 | Zbl 0669.58008

[Sim92] C. Simpson - “Higgs bundles and local systems”, Publ. Math. Inst. Hautes Études Sci. 75 (1992), p. 5-95 | Article | Numdam | Zbl 0814.32003

[Siu80] Y.-T. Siu - “The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds”, Ann. of Math. (2) 112 (1980), p. 73-111 | Zbl 0517.53058

[SV00] T. A. Springer & F. D. Veldkamp - Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000 | Zbl 1087.17001

[SZ10] M. Sheng & K. Zuo - “Polarized variation of Hodge structures of Calabi-Yau type and characteristic subvarieties over bounded symmetric domains”, Math. Ann. 348 (2010) no. 1, p. 211-236 | MR 2657440 | Zbl 1213.14018

[SZ85] J. Steenbrink & S. Zucker - “Variation of mixed Hodge structure. I”, Invent. Math. 80 (1985), p. 489-542 | Article | Zbl 0626.14007

[Wol72] J. A. Wolf - “Fine structure of Hermitian symmetric spaces”, in Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and App. Math., vol. 8, Dekker, New York, 1972, p. 271-357 | MR 404716 | Zbl 0257.32014

[Xia00] E. Z. Xia - “The moduli of flat PU(2,1) structures on Riemann surfaces”, Pacific J. Math. 195 (2000), p. 231-256 | MR 1781622 | Zbl 1014.32010