On the stability of global solutions to the three-dimensional Navier-Stokes equations
[Sur la stabilité de solutions globales aux équations de Navier-Stokes tridimensionnelles]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 843-911.

On démontre un résultat de stabilité faible pour les équations de Navier-Stokes tridimensionnelles, incompressibles et homogènes. Plus précisément on étudie le problème suivant : si une suite de données initiales (u 0,n ) n , bornée dans un espace invariant d’échelle, converge faiblement vers une donnée u 0 qui engendre une solution globale régulière, est-ce que u 0,n engendre une solution globale régulière ? Une réponse affirmative à cette question en général aurait pour conséquence la régularité globale pour toute donnée initiale, via les exemples u 0,n =nϕ 0 (n·) ou u 0,n =ϕ 0 (·-x n ) avec |x n |. On introduit donc un nouveau concept de convergence faible (convergence faible remise à l’échelle) sous lequel on peut donner une réponse affirmative. La démonstration repose sur des décompositions en profils dans des espaces de régularité anisotrope, et leur propagation par les équations de Navier-Stokes.

We prove a weak stability result for the three-dimensional homogeneous incompressible Navier-Stokes system. More precisely, we investigate the following problem: if a sequence (u 0,n ) n of initial data, bounded in some scaling invariant space, converges weakly to an initial data u 0 which generates a global smooth solution, does u 0,n generate a global smooth solution? A positive answer in general to this question would imply global regularity for any data, through the following examples u 0,n =nϕ 0 (n·) or u 0,n =ϕ 0 (·-x n ) with |x n |. We therefore introduce a new concept of weak convergence (rescaled weak convergence) under which we are able to give a positive answer. The proof relies on profile decompositions in anisotropic spaces and their propagation by the Navier-Stokes equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.84
Classification : 35Q30, 42B37
Keywords: Navier-Stokes equations, anisotropy, Besov spaces, profile decomposition
Mot clés : Équations de Navier-Stokes, anisotropie, espaces de Besov, décompositions en profils
Hajer Bahouri 1 ; Jean-Yves Chemin 2 ; Isabelle Gallagher 3

1 Laboratoire d’Analyse et de Mathématiques Appliquées UMR 8050, Université Paris-Est Créteil 61, avenue du Général de Gaulle, 94010 Créteil Cedex, France
2 Laboratoire Jacques Louis Lions - UMR 7598, Sorbonne Université Boîte courrier 187, 4 place Jussieu, 75252 Paris Cedex 05, France
3 DMA, École normale supérieure, CNRS, PSL Research University 75005 Paris and UFR de mathématiques, Université Paris-Diderot, Sorbonne Paris-Cité 75013 Paris, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2018__5__843_0,
     author = {Hajer Bahouri and Jean-Yves Chemin and Isabelle Gallagher},
     title = {On the stability of global solutions to the three-dimensional {Navier-Stokes} equations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {843--911},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.84},
     zbl = {06988594},
     mrnumber = {3877168},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.84/}
}
TY  - JOUR
AU  - Hajer Bahouri
AU  - Jean-Yves Chemin
AU  - Isabelle Gallagher
TI  - On the stability of global solutions to the three-dimensional Navier-Stokes equations
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 843
EP  - 911
VL  - 5
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.84/
DO  - 10.5802/jep.84
LA  - en
ID  - JEP_2018__5__843_0
ER  - 
%0 Journal Article
%A Hajer Bahouri
%A Jean-Yves Chemin
%A Isabelle Gallagher
%T On the stability of global solutions to the three-dimensional Navier-Stokes equations
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 843-911
%V 5
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.84/
%R 10.5802/jep.84
%G en
%F JEP_2018__5__843_0
Hajer Bahouri; Jean-Yves Chemin; Isabelle Gallagher. On the stability of global solutions to the three-dimensional Navier-Stokes equations. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 843-911. doi : 10.5802/jep.84. https://jep.centre-mersenne.org/articles/10.5802/jep.84/

[1] P. Auscher, S. Dubois & P. Tchamitchian - “On the stability of global solutions to Navier-Stokes equations in the space”, J. Math. Pures Appl. (9) 83 (2004) no. 6, p. 673-697 | DOI | MR | Zbl

[2] H. Bahouri, J.-Y. Chemin & R. Danchin - Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wiss., vol. 343, Springer, Heidelberg, 2011 | MR | Zbl

[3] H. Bahouri, A. Cohen & G. Koch - “A general wavelet-based profile decomposition in the critical embedding of function spaces”, Confluentes Math. 3 (2011) no. 3, p. 387-411 | DOI | MR | Zbl

[4] H. Bahouri & I. Gallagher - “On the stability in weak topology of the set of global solutions to the Navier-Stokes equations”, Arch. Rational Mech. Anal. 209 (2013) no. 2, p. 569-629 | DOI | MR | Zbl

[5] H. Bahouri & P. Gérard - “High frequency approximation of solutions to critical nonlinear wave equations”, Amer. J. Math. 121 (1999) no. 1, p. 131-175 | DOI | MR | Zbl

[6] H. Bahouri, M. Majdoub & N. Masmoudi - “On the lack of compactness in the 2D critical Sobolev embedding”, J. Funct. Anal. 260 (2011) no. 1, p. 208-252 | DOI | MR | Zbl

[7] H. Bahouri, M. Majdoub & N. Masmoudi - “Lack of compactness in the 2D critical Sobolev embedding, the general case”, J. Math. Pures Appl. (9) 101 (2014) no. 4, p. 415-457 | DOI | MR | Zbl

[8] H. Bahouri & G. Perelman - “A Fourier approach to the profile decomposition in Orlicz spaces”, Math. Res. Lett. 21 (2014) no. 1, p. 33-54 | DOI | MR | Zbl

[9] G. Bourdaud - “La propriété de Fatou dans les espaces de Besov homogènes”, Comptes Rendus Mathématique 349 (2011) no. 15-16, p. 837-840 | DOI | Zbl

[10] J. Bourgain & N. Pavlović - “Ill-posedness of the Navier-Stokes equations in a critical space in 3D”, J. Funct. Anal. 255 (2008) no. 9, p. 2233-2247 | DOI | MR | Zbl

[11] H. Brezis & J.-M. Coron - “Convergence of solutions of H-systems or how to blow bubbles”, Arch. Rational Mech. Anal. 89 (1985) no. 1, p. 21-56 | DOI | MR | Zbl

[12] J.-Y. Chemin - “Remarques sur l’existence globale pour le système de Navier-Stokes incompressible”, SIAM J. Math. Anal. 23 (1992) no. 1, p. 20-28 | DOI | Zbl

[13] J.-Y. Chemin - “Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel”, J. Anal. Math. 77 (1999), p. 27-50 | DOI | Zbl

[14] J.-Y. Chemin & I. Gallagher - “Large, global solutions to the Navier-Stokes equations, slowly varying in one direction”, Trans. Amer. Math. Soc. 362 (2010) no. 6, p. 2859-2873 | DOI | MR | Zbl

[15] J.-Y. Chemin, I. Gallagher & C. Mullaert - “The role of spectral anisotropy in the resolution of the three-dimensional Navier-Stokes equations”, in Studies in phase space analysis with applications to PDEs, Progr. Nonlinear Differential Equations Appl., vol. 84, Birkhäuser/Springer, New York, 2013, p. 53-79 | DOI | MR | Zbl

[16] J.-Y. Chemin, I. Gallagher & P. Zhang - “Sums of large global solutions to the incompressible Navier-Stokes equations”, J. reine angew. Math. 681 (2013), p. 65-82 | MR

[17] J.-Y. Chemin & N. Lerner - “Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes”, J. Differential Equations 121 (1995) no. 2, p. 314-328 | Zbl

[18] J.-Y. Chemin & P. Zhang - “On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations”, Comm. Math. Phys. 272 (2007) no. 2, p. 529-566 | MR | Zbl

[19] H. Fujita & T. Kato - “On the Navier-Stokes initial value problem. I”, Arch. Rational Mech. Anal. 16 (1964), p. 269-315 | DOI | MR | Zbl

[20] I. Gallagher - “Profile decomposition for solutions of the Navier-Stokes equations”, Bull. Soc. math. France 129 (2001) no. 2, p. 285-316 | DOI | Numdam | MR | Zbl

[21] I. Gallagher, D. Iftimie & F. Planchon - “Asymptotics and stability for global solutions to the Navier-Stokes equations”, Ann. Inst. Fourier (Grenoble) 53 (2003) no. 5, p. 1387-1424 | DOI | Numdam | MR | Zbl

[22] I. Gallagher, G. S. Koch & F. Planchon - “A profile decomposition approach to the L t (L x 3 ) Navier-Stokes regularity criterion”, Math. Ann. 355 (2013) no. 4, p. 1527-1559 | DOI | Zbl

[23] P. Gérard - “Microlocal defect measures”, Comm. Partial Differential Equations 16 (1991) no. 11, p. 1761-1794 | DOI | MR | Zbl

[24] P. Gérard - “Description du défaut de compacité de l’injection de Sobolev”, ESAIM Contrôle Optim. Calc. Var. 3 (1998), p. 213-233

[25] P. Germain - “The second iterate for the Navier-Stokes equation”, J. Funct. Anal. 255 (2008) no. 9, p. 2248-2264 | DOI | MR | Zbl

[26] Y. Giga & T. Miyakawa - “Solutions in L r of the Navier-Stokes initial value problem”, Arch. Rational Mech. Anal. 89 (1985) no. 3, p. 267-281 | DOI | MR

[27] G. Gui, J. Huang & P. Zhang - “Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable”, J. Funct. Anal. 261 (2011) no. 11, p. 3181-3210 | DOI | MR | Zbl

[28] G. Gui & P. Zhang - “Stability to the global large solutions of 3-D Navier-Stokes equations”, Adv. in Math. 225 (2010) no. 3, p. 1248-1284 | DOI | MR

[29] J. Guillot & V. Šverák - “Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces” (2017), arXiv:1704.00560

[30] T. Hmidi & S. Keraani - “Blowup theory for the critical nonlinear Schrödinger equations revisited”, Internat. Math. Res. Notices (2005) no. 46, p. 2815-2828 | DOI | Zbl

[31] D. Iftimie - “The resolution of the Navier-Stokes equations in anisotropic spaces”, Rev. Mat. Iberoamericana 15 (1999) no. 1, p. 1-36 | DOI | MR | Zbl

[32] S. Jaffard - “Analysis of the lack of compactness in the critical Sobolev embeddings”, J. Funct. Anal. 161 (1999) no. 2, p. 384-396 | DOI | MR | Zbl

[33] H. Jia & V. Šverák - “Minimal L 3 -initial data for potential Navier-Stokes singularities” (2012), arXiv:1201.1592 | Zbl

[34] H. Jia & V. Šverák - “Minimal L 3 -initial data for potential Navier-Stokes singularities”, SIAM J. Math. Anal. 45 (2013) no. 3, p. 1448-1459 | DOI | MR | Zbl

[35] T. Kato - “Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions”, Math. Z. 187 (1984) no. 4, p. 471-480 | DOI | MR

[36] C. E. Kenig & G. S. Koch - “An alternative approach to regularity for the Navier-Stokes equations in critical spaces”, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) no. 2, p. 159-187 | DOI | Numdam | MR | Zbl

[37] C. E. Kenig & F. Merle - “Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation”, Acta Math. 201 (2008) no. 2, p. 147-212 | MR | Zbl

[38] S. Keraani - “On the defect of compactness for the Strichartz estimates of the Schrödinger equations”, J. Differential Equations 175 (2001) no. 2, p. 353-392 | MR | Zbl

[39] G. S. Koch - “Profile decompositions for critical Lebesgue and Besov space embeddings”, Indiana Univ. Math. J. 59 (2010) no. 5, p. 1801-1830 | DOI | MR | Numdam | Zbl

[40] H. Koch & D. Tataru - “Well-posedness for the Navier-Stokes equations”, Adv. in Math. 157 (2001) no. 1, p. 22-35 | MR | Zbl

[41] P. G. Lemarié-Rieusset - Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002 | MR | Zbl

[42] J. Leray - “Essai sur le mouvement d’un liquide visqueux emplissant l’espace”, Acta Math. 63 (1933), p. 193-248 | DOI | Zbl

[43] J. Leray - “Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique”, J. Math. Pures Appl. 12 (1933), p. 1-82 | Zbl

[44] P.-L. Lions - “The concentration-compactness principle in the calculus of variations. The limit case. I”, Rev. Mat. Iberoamericana 1 (1985) no. 1, p. 145-201 | DOI | MR | Zbl

[45] P.-L. Lions - “The concentration-compactness principle in the calculus of variations. The limit case. II”, Rev. Mat. Iberoamericana 1 (1985) no. 2, p. 45-121 | DOI | MR | Zbl

[46] F. Merle & L. Vega - “Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D”, Internat. Math. Res. Notices (1998) no. 8, p. 399-425 | DOI | Zbl

[47] Y. Meyer - “Wavelets, paraproducts, and Navier-Stokes equations”, in Current developments in mathematics, 1996 (Cambridge, MA), Int. Press, Boston, MA, 1997, p. 105-212 | Zbl

[48] M. Paicu - “Équation anisotrope de Navier-Stokes dans des espaces critiques”, Rev. Mat. Iberoamericana 21 (2005) no. 1, p. 179-235 | DOI | Zbl

[49] F. Planchon - “Asymptotic behavior of global solutions to the Navier-Stokes equations in R 3 , Rev. Mat. Iberoamericana 14 (1998) no. 1, p. 71-93 | DOI | MR

[50] E. Poulon - “Behaviour of Navier-Stokes solutions with data in H s with 1/2<s<3/2, in progress

[51] T. Runst & W. Sickel - Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 3, Walter de Gruyter & Co., Berlin, 1996 | MR | Zbl

[52] W. Rusin & V. Šverák - “Minimal initial data for potential Navier-Stokes singularities”, J. Funct. Anal. 260 (2011) no. 3, p. 879-891 | DOI | MR | Zbl

[53] M. Struwe - “A global compactness result for elliptic boundary value problems involving limiting nonlinearities”, Math. Z. 187 (1984) no. 4, p. 511-517 | DOI | MR | Zbl

[54] L. Tartar - “H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations”, Proc. Edinburgh Math. Soc. 115 (1990) no. 3-4, p. 193-230 | DOI | MR | Zbl

[55] K. Tintarev & K.-H. Fieseler - Concentration compactness. Functional-analytic grounds and applications, Imperial College Press, London, 2007 | Zbl

[56] H. Triebel - Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983 | MR | Zbl

[57] H. Triebel - Interpolation theory, function spaces, differential operators, Johann Ambrosius Barth, Heidelberg, 1995 | Zbl

[58] F. B. Weissler - “The Navier-Stokes initial value problem in L p , Arch. Rational Mech. Anal. 74 (1980) no. 3, p. 219-230 | DOI | MR | Zbl

Cité par Sources :