Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing
[Espaces de modules de paires stables et fonctions zêta non abéliennes des courbes via le « wall-crossing »]
Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 117-146.

Dans cet article nous étudions et mettons en relation les fonctions zêta non abéliennes introduites par Weng et les invariants des espaces de modules de paires stables de rang arbitraire sur les courbes. Nous prouvons une formule « wall-crossing » pour ces invariants et obtenons une formule explicite pour ceux-ci en terme du motif de la courbe. Auparavant, des formules pour ces invariants n’étaient connues qu’en rang 2 par Thaddeus et en rang 3 par Muñoz. En utilisant ces résultats nous obtenons une formule explicite pour les fonctions zêta non abéliennes, nous vérifions la conjecture d’uniformité de Weng pour les rangs 2 et 3, et nous montrons sa conjecture de dénombrement miracle.

In this paper we study and relate the non-abelian zeta functions introduced by Weng and invariants of the moduli spaces of arbitrary rank stable pairs over curves. We prove a wall-crossing formula for the latter invariants and obtain an explicit formula for these invariants in terms of the motive of a curve. Previously, formulas for these invariants were known only for rank 2 due to Thaddeus and for rank 3 due to Muñoz. Using these results we obtain an explicit formula for the non-abelian zeta functions, we check the uniformity conjecture of Weng for the ranks 2 and 3, and we prove the counting miracle conjecture.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.6
Classification : 14H60, 14D20
Keywords: Stable pairs, vector bundles, wall-crossing formulas, higher zeta functions
Mot clés : Paires stables, fibrés vectoriels, formules « wall-crossing », fonctions zêta supérieures
Sergey Mozgovoy 1 ; Markus Reineke 2

1 School of Mathematics, Trinity College Dublin College Green, Dublin 2, Ireland
2 Fachbereich C, Mathematik und Naturwissenschaften, Bergische Universität Wuppertal Gaußstr. 20, D-42097 Wuppertal, Deutschland
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2014__1__117_0,
     author = {Sergey Mozgovoy and Markus Reineke},
     title = {Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {117--146},
     publisher = {\'Ecole polytechnique},
     volume = {1},
     year = {2014},
     doi = {10.5802/jep.6},
     mrnumber = {3322785},
     zbl = {1311.14036},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.6/}
}
TY  - JOUR
AU  - Sergey Mozgovoy
AU  - Markus Reineke
TI  - Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2014
SP  - 117
EP  - 146
VL  - 1
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.6/
DO  - 10.5802/jep.6
LA  - en
ID  - JEP_2014__1__117_0
ER  - 
%0 Journal Article
%A Sergey Mozgovoy
%A Markus Reineke
%T Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing
%J Journal de l’École polytechnique — Mathématiques
%D 2014
%P 117-146
%V 1
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.6/
%R 10.5802/jep.6
%G en
%F JEP_2014__1__117_0
Sergey Mozgovoy; Markus Reineke. Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing. Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 117-146. doi : 10.5802/jep.6. https://jep.centre-mersenne.org/articles/10.5802/jep.6/

[1] M. F. Atiyah & R. Bott - “The Yang-Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) no. 1505, p. 523-615 | DOI | MR | Zbl

[2] K. Behrend & A. Dhillon - “On the motivic class of the stack of bundles”, Adv. in Math. 212 (2007) no. 2, p. 617-644 | DOI | MR | Zbl

[3] A. Beligiannis & I. Reiten - Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc., vol. 188 no. 883, American Mathematical Society, Providence, RI, 2007 | DOI | Zbl

[4] S. B. Bradlow - “Special metrics and stability for holomorphic bundles with global sections”, J. Differential Geom. 33 (1991) no. 1, p. 169-213 | DOI | MR | Zbl

[5] S. B. Bradlow & O. García-Prada - “Stable triples, equivariant bundles and dimensional reduction”, Math. Ann. 304 (1996) no. 2, p. 225-252, arXiv:alg-geom/9401008 | DOI | MR | Zbl

[6] U. V. Desale & S. Ramanan - “Poincaré polynomials of the variety of stable bundles”, Math. Ann. 216 (1975) no. 3, p. 233-244 | DOI | Zbl

[7] O. García-Prada - “Dimensional reduction of stable bundles, vortices and stable pairs”, Internat. J. Math. 5 (1994) no. 1, p. 1-52 | DOI | MR | Zbl

[8] O. García-Prada & J. Heinloth - “The y-genus of the moduli space of PGL n -Higgs bundles on a curve (for degree coprime to n)”, Duke Math. J. 162 (2013) no. 14, p. 2731-2749, arXiv:1207.5614 | DOI | MR | Zbl

[9] O. Garcia-Prada, H. J. & A. Schmitt - “On the motives of moduli of chains and Higgs bundles” (2011), arXiv:1104.5558 | Zbl

[10] P. B. Gothen & A. D. King - “Homological algebra of twisted quiver bundles”, J. London Math. Soc. (2) 71 (2005) no. 1, p. 85-99, arXiv:math/0202033 | DOI | MR | Zbl

[11] G. Harder & M. S. Narasimhan - “On the cohomology groups of moduli spaces of vector bundles on curves”, Math. Ann. 212 (1974/75), p. 215-248 | DOI | MR | Zbl

[12] D. Huybrechts & M. Lehn - “Stable pairs on curves and surfaces”, J. Algebraic Geom. 4 (1995) no. 1, p. 67-104, arXiv:alg-geom/9211001 | MR | Zbl

[13] M. Kontsevich & Y. Soibelman - “Stability structures, motivic Donaldson-Thomas invariants and cluster transformations” (2008), arXiv:0811.2435

[14] G. Laumon & M. Rapoport - “The Langlands lemma and the Betti numbers of stacks of G-bundles on a curve”, Internat. J. Math. 7 (1996) no. 1, p. 29-45, arXiv:alg-geom/9503006 | DOI | MR | Zbl

[15] S. Mozgovoy - “Poincaré polynomials of moduli spaces of stable bundles over curves”, Manuscripta Math. 131 (2010) no. 1-2, p. 63-86, arXiv:0711.0634 | DOI | MR | Zbl

[16] V. Muñoz - “Hodge polynomials of the moduli spaces of rank 3 pairs”, Geometriae Dedicata 136 (2008), p. 17-46, arXiv:0706.0593 | DOI | MR | Zbl

[17] V. Muñoz, A. Oliveira & J. Sánchez - “Motives and the Hodge Conjecture for moduli spaces of pairs” (2012), arXiv:1207.5120 | Zbl

[18] V. Muñoz, D. Ortega & M.-J. Vázquez-Gallo - “Hodge polynomials of the moduli spaces of pairs”, Internat. J. Math. 18 (2007) no. 6, p. 695-721, arXiv:math/0606676 | DOI | MR | Zbl

[19] M. Reineke - “The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli”, Invent. Math. 152 (2003) no. 2, p. 349-368, arXiv:math/0204059 | DOI | MR | Zbl

[20] M. Reineke - “Counting rational points of quiver moduli”, Internat. Math. Res. Notices 17 (2006), ID 70456, arXiv:math/0505389 | DOI | MR | Zbl

[21] A. Schmitt - “Moduli problems of sheaves associated with oriented trees”, Algebr. Represent. Theory 6 (2003) no. 1, p. 1-32 | DOI | MR | Zbl

[22] M. Thaddeus - “Stable pairs, linear systems and the Verlinde formula”, Invent. Math. 117 (1994) no. 2, p. 317-353, arXiv:alg-geom/9210007 | DOI | MR | Zbl

[23] L. Weng - “Special Uniformity of Zeta Functions I. Geometric Aspect” (2012), arXiv:1203.2305

[24] L. Weng - “Zeta Functions for Elliptic Curves I. Counting Bundles” (2012), arXiv:1202.0870

[25] L. Weng - “Zeta functions for function fields” (2012), arXiv:1202.3183

[26] D. Zagier - “Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula”, in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, p. 445-462 | MR | Zbl

Cité par Sources :