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ARTHUR’S MULTIPLICITY FORMULA FOR GSp4 AND

RESTRICTION TO Sp4

by Toby Gee & Olivier Taïbi

Abstract. — We prove the classification of discrete automorphic representations of GSp4

explained in [Art04], as well as a compatibility between the local Langlands correspondences
for GSp4 and Sp4.

Résumé (La formule de multiplicité d’Arthur pour GSp4 et restriction à Sp4)
Nous donnons une preuve de la classification des représentations automorphes discrètes

de GSp4 expliquée dans [Art04], ainsi que de la compatibilité avec les correspondances de
Langlands locales pour GSp4 et Sp4.
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1. Introduction

1.1. — In the paper [Art04], Arthur explained his classification of the discrete au-
tomorphic spectrum for classical groups in the particular case of GSp4

∼= GSpin5.
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Later, in [Art13] he proved this classification for quasi-split special orthogonal and
symplectic groups of arbitrary rank, but now with trivial similitude factor. The clas-
sification stated in [Art04] is important for applications of the Langlands program
to arithmetic. In particular, it is used in [Mok14] to associate Galois representations
to Hilbert–Siegel modular forms, and these Galois representations have been used to
prove modularity lifting theorems relating to abelian surfaces, for example in [BCGP].
It is therefore desirable to have an unconditional proof of this classification. While
it is expected that the methods of [Art13] could be used to handle GSpin groups,
the proofs involve a very complicated induction, which even in the case of GSpin5

would involve the use of groups of much higher rank, so there does not seem to be
any way to give a (short) direct proof of the classification of [Art04] by following the
arguments of [Art13].

In this paper, we fill this gap in the literature by giving a proof of the classification
announced in [Art04]. We also prove some new results concerning the compatibility
of the local Langlands correspondences for Sp4 and GSp4. While, like Arthur, our
main technique is the stable (twisted) trace formula, and we make substantial use
of the results of [Art04] for the group Sp4, we also rely on a number of additional
ingredients that are only available in the particular case of GSp4; in particular, we
crucially use:

– the exterior square functoriality for GL4 proved in [Kim03] (and completed
in [Hen09]);

– the results of [GT11a]: the local Langlands correspondence for GSp4 (established
using theta correspondences), and the generic transfer to GSp4 (with local-global
compatibility at all places) for essentially self dual cuspidal automorphic representa-
tions of GL4 of symplectic type;

– the results of [CG15], which check the compatibility of the local Langlands cor-
respondence of [GT11b] with the predicted twisted endoscopic character relations
of [Art04] in the tempered case.

We now briefly explain the strategy of our proof, and the structure of the paper.
We begin in Section 2 with a precise statement of the results of [Art13] and of their
conjectural extension to GSpin groups. Roughly speaking, these statements con-
sist of:

(1) An assignment of global parameters (formal sums of essentially self-dual dis-
crete automorphic representations of GLn) to discrete automorphic representations
of classical groups.

(2) A description of packets of local representations in terms of local versions of
the global parameters (which in particular gives the local Langlands correspondence
for classical groups).

(3) A multiplicity formula, precisely describing which elements of global packets are
automorphic, and the multiplicities with which they appear in the discrete spectrum.

In Arthur’s work these statements are all proved together as part of a complicated
induction, but in this paper (which of course uses Arthur’s results for Sp4) we are
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able to prove the first two statements independently, and then use them as inputs to
the proof of the third statement.

In Section 3 we study the local packets. In the tempered case, the work has already
been done in [CG15], and by again using that [Art13] has taken care of the cases where
the similitude character is a square, we are reduced to constructing the local packets
in two special non-tempered cases. We do this “by hand”, following the much more
general results proved in [MW06] and [AMR18].

As a consequence of the stabilisation of the twisted trace formula [MW16a,
MW16b], we can apply the twisted trace formula for GL4×GL1 to associate a global
parameter to any discrete automorphic representation of GSpin5 (which is a twisted
endoscopic group for GL4 × GL1 endowed with the automorphism g 7→ tg−1). We
recall the details of this twisted trace formula in section 4, which we hope can serve
as an introduction to the results of [MW16a, MW16b] for the reader not already
familiar with them. In section 5 we briefly recall results about the restriction of
representations to subgroups, which we apply to the case of restriction from GSp4

to Sp4.
In section 6 we show that the global parameter associated to a discrete automorphic

representation of GSp4 by the stable twisted trace formula is of the form predicted by
Arthur, by making use of the symplectic/orthogonal alternative for GL2 and GL4, the
(known) description of automorphic representations of quasi-split forms of GSpin4 in
terms of Asai representations, and the tensor product functoriality GL2×GL2 → GL4

of [Ram00]. We also make use of [Art13] in two ways: if the similitude character is
a square, then by twisting we can immediately reduce to the results of [Art13]. If
the similitude character is not a square, then the possibilities for the parameter are
somewhat constrained, and we are able to further constrain them by using the fact
that by restricting to Sp4 and applying the results of [Art13], we know the possible
forms of the exterior square of the parameter.

In section 7, we prove the global multiplicity formula in much the same way
as [Art13], as a consequence of the stable (twisted) trace formulas for GL4 ×GL1

and GSpin5, together with the twisted endoscopic character relations already estab-
lished.

Finally, in section 8 we show that the local Langlands correspondences for Sp4

established in [GT10] and [Art13] coincide. The correspondence of [GT10] was con-
structed by restricting the correspondence for GSp4 of [GT11a] to Sp4, which by
the results of [CG15] is characterised using twisted endoscopy for GL4 ×GL1. The
correspondence for Sp4 obtained in [Art13] is characterised using twisted endoscopy
for GL5.

We postpone to the appendix two basic results concerning twisted endoscopy for
GLN ×GL1 which are slight generalisations of results of Arthur for GLN : the clas-
sification of endoscopic data and the surjectivity of geometric endoscopic transfer for
“simple” endoscopic data.
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In the discrete case we prove this by a global argument, by realising the parameter
as a local factor of a cuspidal automorphic representation, and using the exterior
square functoriality for GL4 of [Kim03] and [Hen09]. In the remaining cases the
parameter arises via parabolic induction, and we are able to treat it by hand. We are
also able to use these arguments to give a precise description in terms of Arthur para-
meters of the restrictions to Sp4 of irreducible admissible tempered representations
of GSp4 over a p-adic field.

We end this introduction with a small disclosure, and a comparison to other work.
While we have said that the results of this paper are unconditional, they are only
as unconditional as the results of [Art13] and [MW16a, MW16b]. In particular, they
depend on cases of the twisted weighted fundamental lemma that were announced
in [CL10], but whose proofs have not yet appeared in print, as well as on the references
[A24], [A25], [A26] and [A27] in [Art13], which at the time of writing have not appeared
publicly.

The strategy of using restriction to compare the representation theory of reductive
groups related by a central isogeny is not a new one; indeed it goes back at least as
far to the comparison of GL2 and SL2 in [LL79]. In the case of symplectic groups,
there is the paper [GT10] mentioned above; while this does not make any use of
trace formula techniques, we use some of its ideas in Section 8, when we compare the
different constructions of the local Langlands correspondence.

More recently, there is the work of Xu, in particular [Xu18, Xu16], which also builds
on [Art13], using the groups GSpn and GOn where we use the groups GSpinn
(of course, these cases overlap for GSp4). However, the emphasis of Xu’s work is
rather different, and is aimed at constructing “coarse L-packets” (which in the case
of GSp4 are unions of L-packets lying over a common L-packet for Sp4), and proving
a multiplicity formula for automorphic representations grouped together in a similar
way. Xu’s results are more general than ours in that they apply to groups of arbitrary
rank, but are less precise in the special case of GSp4, and our proofs are independent.

Acknowledgements. — We would like to thank George Boxer, Frank Calegari, Gaë-
tan Chenevier, Matthew Emerton and Wee Teck Gan for helpful conversations, and
Florian Herzig for useful comments on the article.

1.2. Notation and conventions

1.2.1. Algebraic groups. — We will use the boldface notation G for an algebraic group
over a local field or a number field, and we use the Roman version G for reductive
groups over C, or their complex points. Thus for example if F is a number field,
we will write GLn for the general linear group over F , with Langlands dual group
ĜLn = GLn, which we will also sometimes write as ĜLn = GLn(C).

For a real connected reductive group G, write g = C⊗R Lie(G(R)), and let K be
a maximal compact subgroup of G(R). When working adelically we will sometimes
abusively call (g,K)-modules “representations of G(R)”. This should cause no confu-
sion as we will mostly be considering unitary representations in this global setting (see
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[Wal88, Th. 3.4.11], [War72, Th. 4.4.6.6]), and distinguish between (g,K)-modules and
representations of G(R) when considering non-unitary representations.

1.2.2. The local Langlands correspondence. — IfK is a field of characteristic zero then
we write GalK for its absolute Galois group Gal(K/K). If K is a local or global field
of characteristic zero, then we write WK for its Weil group. If K is a local field of
characteristic zero, then we write WDK for its Weil–Deligne group, which is WK if K
is Archimedean, and WK × SU(2) otherwise.

If π is an irreducible admissible representation of GLN (F ) (F local) or GLN (AF )

(F global), then ωπ will denote its central character. We write rec for the local Lang-
lands correspondence normalised as in [HT01], so that if F is a local field of charac-
teristic zero, then rec(π) is an N -dimensional representation of WDF . If F is p-adic
then for this normalisation a uniformiser of F corresponds to the geometric Frobenius
automorphism.

1.2.3. The discrete spectrum. — Let G be a connected reductive group over a number
field F . Write

G(AF )1 =
{
g ∈ G(AF ) | ∀β ∈ X∗(G)GalF , |β(g)| = 1

}
,

so that G(F )\G(AF )1 has finite measure. Let AG be the biggest central split torus in
ResF/Q(G), and let AG be the vector group AG(R)0. Then G(AF ) = G(AF )1 ×AG.
We write

A 2(G) = A 2(G(F )AG\G(AF )) = A 2(G(F )\G(AF )1)

for the space of square integrable automorphic forms. This decomposes discretely, i.e.,
it is canonically the direct sum, over the countable set Πdisc(G) of discrete automor-
phic representations π for G, of isotypical components

A 2(G)π

which have finite length.
If χG is a character of AG, we could more generally consider the space of χG-

equivariant square integrable automorphic forms

A 2(G) = A 2(G(F )\G(AF ), χG).

Since we can reduce to the case χG = 1 considered above by twisting, we will almost
never use this more general definition.

2. Arthur’s classification

2.1. GSpin groups. — We now recall the results announced in [Art04] for GSp4, as
well as those for Sp4 proved in [Art13]. In fact, for convenience we begin by recalling
the conjectural extension of Arthur’s results to GSpin groups of arbitrary rank, and
then explain what is proved in [Art13].

We work with the following quasi-split groups over a local or global field F of
characteristic zero:

– The split groups GSpin2n+1.

J.É.P. — M., 2019, tome 6



474 T. Gee & O. Taïbi

– The split groups Sp2n ×GL1.
– The quasi-split groups GSpinα2n.

Here we can define the groups GSpin2n+1 and GSpinα2n as follows. If α ∈ F×/(F×)2,
we have the quasi-split special orthogonal group SOα

2n, which is defined as the special
orthogonal group of the quadratic space given by the direct sum of (n−1) hyperbolic
planes and the plane F [X]/(X2 − α) equipped with the quadratic form equal to the
norm. We have the spin double cover

0 −→ µ2 −→ Spinα2n −→ SOα
2n −→ 0,

and we set

GSpinα2n := (Spinα2n ×GL1)/µ2,

where µ2 is embedded diagonally. Note that GSpinα2n is split if and only if α = 1.
We define the split group GSpin2n+1 in the same way. This expedient definition is
of course equivalent to the usual, more geometric one (see [Knu91, Ch. IV, §6]). The
spinor norm is induced by (g, λ) 7→ λ2. It is convenient to let GSpin1

0 = GSpin1 =

GL1.
The corresponding dual groups are as follows.

G Ĝ

GSpin2n+1 GSp2n(C)

Sp2n ×GL1 GSO2n+1(C) = SO2n+1(C)×GL1(C)

GSpinα2n GSO2n(C)

Let µ : GL1 → Z(G) be dual to the surjective “similitude factor” morphism
µ̂ : Ĝ → GL1(C). Note that in the case G = Sp2n ×GL1, µ : GL1 → Z(G) is the
map x 7→ (1, x2), and it is the only case where it is not injective. Moreover the image
of µ is Z(G)0 except in the case G = GSpinα2 .

We set LG = Ĝ o WF , where the action of WF on Ĝ is trivial except in the case
that G = GSpinα2n with α 6= 1, in which case the action of WF factors through
Gal(F (

√
α)/F ) = {1, σ}, and σ acts by outer conjugation on GSO2n. More precisely,

in this case we identify Ĝ o Gal(F (
√
α)/F ) with GO2n(C) as follows: if SO2n is

obtained from the symmetric bilinear form B on Ce1⊕· · ·⊕Ce2n given by B(ei, ej) =

δi,2n+1−j , then 1 o σ is the element of O2n(C) which interchanges en and en+1 and
fixes the other ei.

We have the standard representation

StdG : LG −→ GLN (C)×GL1(C),

where N = N(Ĝ) = 2n if G = GSpinα2n or G = GSpin2n+1, and N = 2n + 1

if G = Sp2n × GL1. In the first two cases the representation is trivial on WF ,
and is given by the product of the standard N -dimensional representation of Ĝ and
the similitude character. In the final case it is given by the product of the natural
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inclusion O2n+1(C) ⊂ GL2n+1(C) and the identity on GL1(C). The standard repre-
sentation realises G as an elliptic twisted endoscopic subgroup of GLN ×GL1, as we
will explain below.

We set sign(G) = 1 if G = GSpinα2n or GL1 × Sp2n, and sign(G) = −1 if
G = GSpin2n+1 (equivalently, we set sign(G) = −1 if and only if Ĝ is symplectic).

2.2. Levi subgroups and dual embeddings. — As in our description of the dual
group SO2n above, we may realise the groups SOα

2n and SO2n+1 as matrix groups
using an antidiagonal symmetric bilinear form (block antidiagonal with a 2× 2 block
in the middle for SOα

2n with α 6= 1). Let B be the Borel subgroup consisting of
upper diagonal elements (block upper diagonal in the case of SOα

2n). Let T be the
subgroup of diagonal (resp. block diagonal) elements. This Borel pair being given, we
can now consider standard parabolic subgroups and standard Levi subgroups. (We
recall that we only need to consider Levi subgroups up to conjugacy; indeed, given a
Levi subgroup L of a parabolic P, we obtain an L-embedding LL ↪→ LG, which up
to Ĝ-conjugacy is independent of the choice of P.)

It is well-known that the standard Levi subgroups are parametrised as follows.
Consider ordered partitions n =

∑r
i=1 ni +m, where m > 0 if G = SOα

2n with α 6= 1,
and m 6= 1 if G = SO1

2n. Such a partition yields a standard Levi subgroup L of G

isomorphic to GLn1
× · · · ×GLnr ×Gm, where Gm is a group of the same type as

G of absolute rank m. Explicitly, an isomorphism is given by

(2.2.1) (g1, . . . , gr, h) 7−→ diag
(
g1, . . . , gr, h, S

−1
nr

tg−1
r Snr , . . . , S

−1
n1

tg−1
1 Sn1

)
,

where Sn denotes the antidiagonal n × n matrix with 1’s along the antidiagonal.
For G = SO1

2n and m = 0 and nr > 1, there are two standard Levi subgroups
of G corresponding to the partition n =

∑r
i=1 ni: the one described above and its

image under the outer automorphism of G. This completes the parameterisation of
all standard Levi subgroups of special orthogonal groups. Standard Levi subgroups
of Sp and GSp admit a similar description. In all three cases, two standard Levi
subgroups are conjugated under G(F ) if and only if they have the same associ-
ated family (|{i | ni = k}|)k>1 (i.e., same associated multi-set {n1, . . . , nr}), except
when G = SO1

2n and m = 0 and all ni’s are even, in which case there are two
G(F )-conjugacy classes of Levi subgroups of G(F ) corresponding to the same multi-
set, swapped by the non-trivial outer automorphism of G.

Denote G′ = GSpinα2n if G = SOα
2n and G′ = GSpin2n+1 if G = SO2n+1.

Parabolic subgroups of G′ correspond bijectively to parabolic subgroups of G, and
the same goes for their Levi subgroups. Consider L as above, and let L′ be its preimage
in G′. An easy root-theoretic exercise shows that there exists a unique isomorphism

GLn1 × · · · ×GLnr ×G′m ' L′

lifting (2.2.1) such that for any 1 6 i 6 r, the composition of the induced embedding
of GLni in G′ with the spinor norm G′ → GL1 is det. Alternatively, the embeddings
GLni → GSpin1

2ni can be constructed geometrically using the definition of GSpin
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groups via Clifford algebras (see [Knu91, Ch. IV, §6.6]), and the above parameterisa-
tion of L′ easily follows. The conjugacy class of L′ under G′(F ) is determined by the
multi-set {n1, . . . , nr}.

Dually, this corresponds to identifying the dual Levi subgroup L̂ of Ĝ = GSO2n

or GSp2n with GLn1 × · · · ×GLnr ×Ĝ′m via the block diagonal embedding:

(g1, . . . , gr, h) 7−→ diag
(
g1, . . . , gr, h, µ̂(h)Snr

tg−1
r S−1

nr , . . . , µ̂(h)Sn1

tg−1
1 S−1

n1

)
.

2.3. Endoscopic groups and transfer. — Before stating the conjectural parameter-
isation, we need to recall some definitions and results about endoscopy. We begin by
recalling that an endoscopic datum for a connected reductive group G over a local
field F is a tuple (H,H , s, ξ) (almost) as in [KS99, §2.1]:

– H is a quasi-split connected reductive group over F ,
– ξ : Ĥ→ Ĝ is a continuous embedding,
– H is a closed subgroup of LG which surjects onto WF with kernel ξ(Ĥ), such

that the induced outer action of WF on ξ(Ĥ) coincides with the usual one on Ĥ

transported by ξ, and such that there exists a continuous splitting WF →H ,
– and s ∈ Ĝ is a semisimple element whose connected centraliser in Ĝ is ξ(Ĥ) and

such that the map WF → Ĝ induced by h ∈ H 7→ shs−1h−1 takes values in Z(Ĝ)

and is trivial in H1(WF , Z(Ĝ)).
Note that we modified the notation slightly: in [KS99] H is not contained in LG and
instead ξ is an embedding of H in LG. We choose this convention because in contrast
to the general case where z-extensions are a necessary complication, in all cases that
we will consider the embedding ξ : Ĥ → Ĝ will admit a (non-unique) extension as
Lξ : LH→ LG. Of particular importance are the elliptic endoscopic data, which are
those for which the identity component of ξ(Z(Ĥ)GalF ) is contained in Z(Ĝ).

For G belonging to the three families introduced in Section 2.1 the groups H will
be products whose factors are either general linear groups, or quotients by GL1 of
products of groups of the form considered in Section 2.1. At this level of generality we
content ourselves with specifying the group H, for each equivalence class of non-trivial
(s 6∈ Z(Ĝ)) elliptic endoscopic datum of G. They are as follows.

– If G = GSpin2n+1, then H = (GSpin2a+1 ×GSpin2b+1)/GL1 with a+ b = n,
ab 6= 0, and the quotient is by GL1 embedded as z 7→ (µ(z), µ(z)−1).

– If G = Sp2n ×GL1, then

H = (Sp2a ×GL1 ×GSpinα2b)/GL1
∼= Sp2a × SOα

2b ×GL1,

where a+ b = n, ab 6= 0, and α 6= 1 if b = 1.
– If G = GSpinα2n, then H = (GSpinβ2a × GSpinγ2b)/GL1, where a + b = n,

βγ = α, β 6= 1 if a = 1, and γ 6= 1 if b = 1.
In this paper we will also need one case of twisted endoscopy. Recall [MW16a,

§I.1.1] that if F is a local field of characteristic zero (in the paper we will also take F
to be a number field), and G is a connected reductive group defined over F , then a
twisted space G̃ for G is an algebraic variety over F which is simultaneously a left
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and right torsor for G. Consider the split group GLn ×GL1 over a local or global
field of characteristic zero F , and let θ be the automorphism of GLn ×GL1 given
by θ(g, x) = (J tg−1J−1, xdet g), where J is the antidiagonal matrix with alterna-
ting entries −1, 1,−1, . . . (that is, Jij = (−1)iδi,n+1−j). The reason for defining θ in
this way is that it fixes the usual pinning E of G consisting of the upper-triangular
Borel subgroup, the diagonal maximal torus and ((δi,aδj,a+1)i,j)16a6n−1. Then G̃ =

GLn ×GL1 o {θ} is a twisted space which happens to be a connected component of
the non-connected reductive group GLn ×GL1 o {1, θ}.

There is a notion of a twisted endoscopic datum (H,H , s, ξ) for the pair
(GLn ×GL1, θ), for which we again refer to [KS99, §2.1] (taking ω there to be equal
to 1, as we will throughout this paper, and using the same convention as above for ξ)
and [MW16b, §VI.3.1]. In the appendix we classify twisted endoscopic data (up to
isomorphism). We give slightly more details in the case n = 4 which is the main focus
of this paper in Section 4.2 below. In the present section we shall only need the fact
that if H is one of the groups considered in Section 2.1 (denoted G there), then H is
part of an elliptic twisted endoscopic subgroup of (GLN(Ĥ) ×GL1, θ).

Remark 2.3.1. — The definitions in [MW16a] and [MW16b], using twisted spaces
rather than a fixed automorphism of G (not fixing a base point), are more general
than those used in most of [KS99], due to an assumption in [KS99] that is only
removed in (5.4) there. Note in particular the notion of twisted endoscopic space
[MW16a, §I.1.7]. In the cases considered in this paper, where G̃ is either G (standard
endoscopy) or G o θ where θ ∈ Aut(G) fixes a pinning E of G (defined over F , i.e.,
stable under GalF ), this notion simplifies and we are under the assumption of [KS99,
(3.1)]. Namely, the torsor Z (G̃,E ) under Z (G) := Z(G)/(1 − θ)Z(G) defined in
[MW16a, I.1.2] is trivial with a natural base point 1 o θ, and so for any endoscopic
datum (H,H , s̃, ξ) for G̃, the twisted endoscopic space H̃ := H ×Z (G) Z (G̃) is
trivial with natural base point 1 o θ, where θ now acts trivially on H. For this reason
we can ignore twisted endoscopic spaces in the rest of the paper, and simply consider
endoscopic groups as in most of [KS99].

We now very briefly recall the notion of (geometric) transfer in the setting of
endoscopy. Suppose that F is a local field of characteristic zero, and that (G, G̃)

belongs to one of the four families of twisted spaces considered above, that is G =

GSpin2n+1, Sp2n × GL1 or G = GSpinα2n with G̃ = G, or G = GLn × GL1

with G̃ = G o θ. Given an endoscopic datum e = (H,H , s, ξ) for G̃, and a choice
of an extension Lξ : LH → LG of the embedding ξ, Kottwitz and Shelstad defined
transfer factors in [KS99], that is a function on the set of matching pairs of strongly
regular semisimple G(F )-conjugacy classes in G̃(F ) and regular semisimple stable
conjugacy classes in H(F ). In general such a function is only canonical up to C×,
but in all cases considered in this paper there is a Whittaker datum w = (U, λ)

of G fixed by an element of G̃(F ) and this provides [KS99, §5.3] a normalisation
of transfer factors, which we denote by ∆[e, Lξ,w]. To be more precise we use the
transfer factors called ∆D in [KS12], corresponding to the normalisation of the local
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Langlands correspondence identifying uniformisers to geometric Frobenii. In all cases
of ordinary endoscopy one can choose an arbitrary Whittaker datum of G.

In the case that G = GSpinα2n, there is an outer automorphism δ of G which
preserves the Whittaker datum. This δ can be chosen to have order 2 and be induced
by an element of the orthogonal group having determinant −1; if F is Archimedean,
for simplicity we can and do choose the maximal compact subgroup K of G(F ) to be
δ-stable. To treat all cases at once we let δ = 1 if G = GSpin2n+1 or Sp2n ×GL1.

In this paper we are particularly interested in the case G = GSpin5. By Hilbert’s
theorem 90 the morphism GSpin2n+1(F )→ SO2n+1(F ) is surjective, so GSpin2n+1

is of adjoint type and there is up to conjugation by GSpin2n+1(F ) only one Whittaker
datum in this case.

For G̃ = (GLn × GL1) o θ we choose for U the subgroup of unipotent upper
triangular matrices in GLn and λ((gi,j)i,j) = κ

(∑n−1
i=1 gi,i+1

)
, where κ : F → S1

is a non-trivial continuous character. This is the Whittaker datum associated to E

and κ. This Whittaker datum is fixed by θ (this is the reason for the choice of this
particular θ in its G(F )-orbit).

Definition 2.3.2. — If F is p-adic, then we let H (G̃) denote the space of smooth
compactly supported distributions on G̃(F ) with C-coefficients. Then

H (G̃) = lim−→
K

H (G̃(F )//K),

where the limit is over compact open subgroups of G(F ) and H (G̃(F )//K) is the
subspace of bi-K-invariant distributions. If F is Archimedean, then we fix a maximal
compact subgroup K of G(F ), and write H (G̃) for the algebra of bi-K-finite smooth
compactly supported distributions on G̃(F ) with C-coefficients.

Under convolution, the space H (G̃) is a bi-H (G)-module, where H (G) is the
usual (non-twisted) Hecke algebra for G.

In the case that G = GSpinα2n, we let H̃ (G) denote the subalgebra of H (G)

consisting of δ-stable distributions, and otherwise we set H̃ (G) = H (G) and δ = 1.
An admissible twisted representation of G̃ is by definition a pair (π, π̃) consisting

of an admissible representation π of G(F ) and a map π̃ from G̃ to the automorphism
group of the underlying vector space of π, which satisfies

π̃(gγg′) = π(g)π̃(γ)π(g′)

for all g, g′ ∈ G(F ), γ ∈ G̃. (This is the special case ω = 1 of the notion of an
ω-representation of a twisted space, which is defined in [MW16a].) If F = R or C
there is an obvious notion of (g, K̃)-module, where K̃ ⊂ G(F ) is a torsor under K
normalising K.

We will consider (invariant) linear forms on H̃ (G̃). In particular, for each admis-
sible representation π of G(F ), there is the linear form

tr(π(f(g)dg)) = tr

(∫
G(F )

f(g)π(g)dg

)
.
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If F is Archimedean and π is an admissible (g, K̃)-module the action of H̃ (G̃) is
not obviously well-defined but it is so when π arises as the space of K-finite vectors
of an admissible Banach representation of G̃(F ), independently of the choice of this
realisation (see [War72, p. 326, Th. 4.5.5.2]). In this paper all (g, K̃)-modules will
naturally arise in this way, even with “Hilbert” instead of “Banach”, although not all
of them will be unitary.

We write I(G̃) for the quotient of H̃ (G̃) by the subspace of those distribu-
tions f(g)dg with the property that for any semisimple strongly regular γ ∈ G̃(F ),
the orbital integral Oγ(f(g)dg) vanishes. There is a natural topology on I(G̃): see
[MW16a, I.5.2]. Similarly, we write SI(G̃) for the quotient by the subspace for which
the stable orbital integrals SOγ(f(g)dg) vanish. We say that a continuous linear form
on H̃ (G) is stable if it descends to a linear form on SI(G̃).

Given an endoscopic datum (H,H , s, ξ) for G̃, and our choice of Whittaker datum,
there is a notion of transfer from I(G̃) to SI(H) (see [KS99, §5.5], [MW16a, §I.2.4 &
IV.3.4]); this transfer is defined by the property that it relates the values of orbital
integrals on G̃ to stable orbital integrals on H, using the transfer factors recalled
above. Most importantly, this transfer exists ([Wal97], [Ngô10], [She12]). Dually, we
may transfer stable continuous linear forms on H̃ (H) to continuous linear forms
on H̃ (G).

In the twisted case where G̃ = (GLN ×GL1) o θ over a p-adic field F , the cho-
sen Whittaker datum yields a hyperspecial maximal compact subgroup K of G(F )

(see [CS80]), which is stable under θ, so it is natural to consider the hyperspecial sub-
space (see [MW16a, §I.6]) K̃ = Koθ of G̃(F ). For any unramified endoscopic datum
(H,H , s̃, ξ) for G̃ (also defined in [MW16a, §I.6]), with the above trivialisation of H̃,
the associated Had(F )-orbit of hyperspecial subspaces of H̃ is simply the obvious one,
that is the set of K ′ o θ, where K ′ is a hyperspecial maximal compact subgroup of
H(F ).

By the existence of transfer and [LMW15], [LW15] ([Hal95] in the case of stan-
dard endoscopy), the twisted fundamental lemma is now known for all elements of
the unramified Hecke algebra, with no assumption on the residual characteristic. We
formulate it in our situation, which is slightly simpler than the general case by the
above remarks.

Theorem 2.3.3. — Let G̃ be a twisted group over a p-adic field F belonging to one of
the four families introduced at the beginning of this section. Assume that G is unrami-
fied. Let (H,H , s̃, ξ) be an unramified endoscopic datum for G̃. Choose an unramified
L-embedding Lξ : LH→ LG extending ξ. Let K̃ be the hyperspecial subspace of G̃(F )

associated to the chosen Whittaker datum for G. Let 1K̃ be the characteristic function
of K̃ multiplied by the G(F )-invariant measure on G̃(F ) such that K̃ has volume 1.
Let b : H (G(Fv)//Kv)→H (H(Fv)//K

′
v) be the morphism dual to(

Ĥ o Frob
)ss
/Ĥ-conj −→

(
Ĝ o Frob

)ss
/Ĝ-conj

via the Satake isomorphisms (see [Bor79, §7]). Then for any f ∈H (G(Fv)//K), b(f)

is a transfer of f ∗ 1K̃ .
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Remark 2.3.4. — In the above setting, there is a natural notion of unramified twisted
representation: extend an unramified representation (π, V ) of G(F ) which is isomor-
phic to its twist by G̃(F ) to a twisted representation by imposing that K̃ acts trivially
on V K .

2.4. Local parameters. — Let F be a local field of characteristic zero. Let Ψ+(G)

denote the set of Ĝ-conjugacy classes of continuous morphisms

ψ : WDF × SL2(C) −→ LG

such that
– the composite with the projection LG → WF is the natural projection

WDF ×SL2(C)→WF ,
– for any w ∈WDF , ψ(w) is semisimple, and
– the restriction ψ|SL2(C) is algebraic.

We let Ψ(G) ⊂ Ψ+(G) be the subset of bounded parameters.

Lemma 2.4.1. — Let G = GSpin2n+1, Sp2n ×GL1 or GSpinα2n. Let δ̂ be the auto-
morphism of LG dual to the involution δ of G defined in the previous section. Then
composition with StdG induces an injective map

{1, δ̂}\Ψ+(G) −→ Ψ+(GLN(Ĝ) ×GL1).

Proof. — The case G = GSpin2n+1 is proved in [GT11a, Lem. 6.1]. The proof in the
other cases is almost identical. �

Let Ψ̃(G) and Ψ̃+(G) be the set of {1, δ̂}-orbits of parameters as above. For ψ ∈
Ψ+(G) let ϕψ be the Langlands parameter associated to ψ, that is ψ composed with
the embedding

w ∈WDF 7−→
(
w,diag(|w|1/2, |w|−1/2)

)
∈WDF ×SL2(C).

We write Cψ for the centraliser of ψ in Ĝ, Sψ = Z(Ĝ)Cψ, and

Sψ = π0(Sψ/Z(Ĝ)),

an abelian 2-group. We let S ∨ψ = Hom(Sψ,C×) be the character group of Sψ.
Write sψ for the image in Cψ of −1 ∈ SL2(C).

We can now formulate the conjectures on local Arthur packets in terms of endo-
scopic transfer relations.

Conjecture 2.4.2. — Let G = GSpin2n+1, Sp2n × GL1 or GSpinα2n. Then there
is a unique way to associate to each (ψ) ∈ Ψ̃(G) a multi-set Πψ of {1, δ}-orbits of
irreducible smooth unitary representations of G(F ), together with a map Πψ → S ∨ψ ,
which we will denote by π 7→ 〈• , π〉, such that the following properties hold.

(1) Let πGL
ψ be the representation of

GLN(Ĝ)(F )×GL1(F )
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associated to (StdG ◦ϕψ) by the local Langlands correspondence for GLN(Ĝ) ×GL1,
and let π̃GL

ψ be its extension to
(
GLN(Ĝ)(F )×GL1(F )

)
o θ recalled in Section 3.2.

Then ∑
π∈Πψ

〈sψ, π〉 trπ

is stable and its transfer to GLN(Ĝ)(F ) × GL1(F ) o θ is tr π̃GL
ψ , i.e., for any

f ∈ I
(
(GLN(Ĝ)(F )×GL1(F )) o θ

)
having transfer f ′ ∈ SI(G) we have

tr π̃GL
ψ (f) =

∑
π∈Πψ

〈sψ, π〉 trπ(f ′).

(2) Consider a semisimple s ∈ Cψ with image s in Sψ. The pair (ψ, s) determines
an endoscopic datum (H,H , s, ξ) for G (with H = Cent(s, Ĝ)0ψ(WDF )), and if we
fix an L-embedding Lξ : LH→ LG extending ξ we obtain ψ′ : WDF ×SL2(C)→ LH

such that ψ = Lξ ◦ ψ′. Then for any f ∈ I(G) with transfer f ′ ∈ SI(H), we have:∑
π∈Πψ

〈ssψ, π〉 trπ(f) =
∑

π′∈Πψ′

〈sψ′ , π′〉 trπ′(f ′).

(3) If ψ|SL2(C) = 1, then the elements of Πψ are tempered and Πψ is multiplicity
free, and the map Πψ → S ∨ψ is injective; if F is non-Archimedean, then it is bijective.
Every tempered irreducible representation of G(F ) belongs to exactly one such Πψ.

Remark 2.4.3. — Note that the uniqueness of the classification is clear from proper-
ties (1) and (2) and Proposition 2.4.4 below, as irreducible representations are deter-
mined by their traces. This Proposition is the generalisation of [Art13, Cor. 2.1.2]
from ĜLN to ^GLN ×GL1. Now that [MW16a] has appeared, it is clearer to prove
the Proposition following the constructions in [MW16a]. We give the proof in the
appendix (Section A.3).

Proposition 2.4.4. — In the situation of Conjecture 2.4.2, the transfer map

I( ^GLN(Ĝ) ×GL1) −→ SI(G)δ

is surjective.

Remark 2.4.5. — Part (3) of this conjecture gives the local Langlands correspondence
for tempered representations of G(F ) (up to outer conjugacy in case G = GSpinα2n).
It can be extended to give the local Langlands correspondence for all local parame-
ters ψ ∈ Ψ+(G) with ψ|SL2(C) = 1; indeed if Conjecture 2.4.2 is known for all G, then
a version can be deduced for Ψ+(G) using the Langlands classification (see [Lan89],
[Sil78] and [SZ14]).

Remark 2.4.6. — In the case where F is Archimedean and for an arbitrary reductive
group the local Langlands correspondence was established by Langlands and Shelstad
(see [She10], [She08]). Compatibility with twisted endoscopy was proved by Mezo
[Mez16] (under a minor assumption, see (3.10) loc. cit., which is satisfied in all cases
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considered in the present article) up to a constant which a priori might depend on
the parameter (see [AMR18, Ann.C]).

Remark 2.4.7. — If F is p-adic and G is unramified over F , then there is a unique
G(F )-conjugacy class of hyperspecial maximal compact subgroups of G(F ) which is
compatible with the Whittaker datum fixed above (in the sense of [CS80]), and we
will say that a representation of G(F ) is unramified if it is unramified with respect
to a subgroup in this conjugacy class.

If ψ ∈ Ψ̃+(G) and ψ|WDF is unramified, then assuming the conjecture the
packet Ψψ contains a unique unramified (orbit of) representation. It has Satake
parameter ϕψ (up to outer conjugation if G = GSpinα2n) and corresponds to the
trivial character on Sψ. This follows from the fundamental lemma (Theorem 2.3.3).

Remark 2.4.8. — By [Mœg11] if F is p-adic and the conjecture holds then the pack-
ets Πψ are sets rather than multi-sets.

2.5. Global parameters and the conjectural multiplicity formula. — Now let F
be a number field, and fix a continuous unitary character χ : A×F /F× → C×. If π is a
cuspidal automorphic representation of GLN/F such that π∨ ⊗ (χ ◦ det) ∼= π, then
we say that π is χ-self dual. Note that this implies that ω2

π = χN (so in particular
if N is odd, then χ = (ωπχ

(1−N)/2)2 is a square).
If π is χ-self dual and S is a big enough set of places of F then precisely one of

the L-functions LS(s, χ−1⊗∧2(π)) and LS(s, χ−1⊗Sym2(π)) has a pole at s = 1, and
this pole is simple (see [Sha97]). In the former case we say that (π, χ) is of symplectic
type, and set sign(π, χ) = −1, and in the latter we say that it is of orthogonal type,
and we set sign(π, χ) = 1.

We write Ψ( ^GLN ×GL1, χ) for the set of formal unordered sums ψ = �iπi[di],
where the πi are χ-self dual automorphic representations for GLNi/F and the di > 1

are integers (which are to be thought of as the dimensions of irreducible algebraic
representations of SL2(C)), with the property that

∑
iNidi = N . We refer to such

a sum as a parameter, and say that it is discrete if the (isomorphism classes of)
pairs (πi, di) are pairwise distinct.

Remark 2.5.1
(1) By the main result of [MW89], a discrete automorphic representation π of

GLN/F with π∨ ⊗ (χ ◦ det) ∼= π gives rise to an element of Ψ( ^GLN ×GL1, χ).
Indeed, there is a natural bijection between such representations π and the elements
of Ψ( ^GLN ×GL1, χ) of the form π[d] (that is, the elements where the formal sum
consists of a single term). We will use this bijection without further comment below.

(2) The set of formal parameters Ψ( ^GLN ×GL1, χ) that we consider does not
contain all non-discrete χ-self-dual parameters, for example those containing a sum-
mand of the form π � ((χ ◦ det) ⊗ π∨) for a non-χ-self-dual cuspidal automorphic
representation π for GLm. Our ad hoc definition will turn out to be convenient when
we will consider the discrete part of (the stabilisation of) trace formulas.
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Definition 2.5.2. — Let G = GSpin2n+1, Sp2n × GL1 or GSpinα2n over F . We
let Ψ̃disc(G, χ) be the subset of Ψ̃(GLN(G), χ) given by those ψ = �iπi[di] with the
properties that

– ψ is discrete,
– for each i, we have sign(πi, χ) = (−1)di−1 sign(G),
– if G = GSpinα2n, then χ−n

∏
i ω

di
πi is the quadratic character corresponding to

the extension Fα/F .
(Conditions analogous to this last bullet point could be formulated for the other
groups G, but in fact they are conjecturally automatically satisfied.)

If G 6= GSpinα2n we also let Ψdisc(G, χ) = Ψ̃disc(G, χ). The reason for writing Ψ̃

in the case of even GSpin groups is that this set only sees orbits of (substitutes for)
Arthur-Langlands parameters under outer conjugation.

As a particular case of the above definition, for π a cuspidal automorphic represen-
tation for GLN/F such that (χ ◦ det)⊗ π∨ ' π there is a unique group G as above
such that N(Ĝ) = N and π[1] ∈ Ψ̃disc(G).

Conjecture 2.5.3. — For π and G as above and for each place v of F , the represen-
tation (rec(πv), rec(χv)) factors through StdG : LG→ GLN(Ĝ)(C)×GL1(C), so that
by Lemma 2.4.1 we can regard (πv, χv) as an element of Ψ̃+(G(Fv)).

Remark 2.5.4
(1) This conjecture is the analogue of [Art13, Th. 1.4.1] (reformulated using The-

orem 1.5.3 loc. cit.). In particular it holds for G = Sp2n ×GL1.
(2) Since we do not know the generalised Ramanujan conjecture for GLn, and

do not wish to assume it, we can at present only hope to establish that the local
parameters ψv are elements of Ψ̃+(GFv ); they are, however, expected to be elements
of Ψ̃(GFv ).

Given a global parameter ψ ∈ Ψ̃disc(G, χ), we define groups Cψ, Sψ, Sψ as follows.
For each i, there is a unique group Gi of the kind we are considering for which πi ∈
Ψ̃disc(Gi, χ). We let Lψ denote the fibre product of the LGi over WF . Then there
is a map ψ̇ : Lψ × SL2(C) → LG such that StdG ◦ψ̇ is conjugate to ⊕i StdGi

⊗νdi ,
where νdi is the irreducible representation of SL2(C) of dimension di. The map ψ̇

is well-defined up to the action of Aut(LG). We let Cψ be the centraliser of ψ̇, and
similarly define Sψ and Sψ.

For each finite place v, under Conjecture 2.5.3 (applied to the πi’s) we may form
a local Arthur-Langlands parameter ψ0

v : WDFv ×SL2(C)→ Lψ. Composing with ψ̇,
we obtain ψv ∈ Ψ̃+(GFv ). The composition of ψv with StdG is given by

– χv on the GL1 factor,
– the direct sum of the representations ϕπi,v ⊗ νdi on the GLN(Ĝ) factor, where

ϕπi,v = rec(πi,v).
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Conjecture 2.5.6 below makes precise the expectation that the elements of the
corresponding multi-sets Πψv of Conjecture 2.4.2 are the local factors of the discrete
automorphic representations of G with multiplier χ. Before stating it, we need to
introduce some more notation and terminology.

For each place v of F , write H̃ (Gv) for the Hecke algebra defined after Definition
2.3.2, and write H̃ (G) for the restricted tensor product of the H̃ (Gv). Assuming
Conjecture 2.5.3, we have an obvious map Sψ → Sψv for each v, and we can associate
to ψ a global packet (a multi-set) of representations of H̃ (G):

Π̃ψ := {⊗′vπv | πv ∈ Πψv with πv unramified for all but finitely many v}.

For each π ∈ Π̃ψ, we have the associated character on Sψ,

〈x, π〉 :=
∏
v

〈xv, πv〉

(note that by Remark 2.4.7, we have 〈•, πv〉 = 1 for all but finitely many v, so this
product makes sense).

Associated to each ψ is a character εψ : Sψ → {±1} which can be defined explicitly
in terms of symplectic ε-factors. In the case χ = 1 this is defined in [Art13, Th. 1.5.2],
and this definition can be extended to the case of general χ without difficulty. Since we
will only need the case G = GSpin5 in this paper, and in this case the characters εψ
are given explicitly in [Art04] and are recalled below in Remark 6.1.8, we do not give
the general definition here.

Definition 2.5.5. — Π̃ψ(εψ) is the subset of Π̃ψ consisting of those elements for
which 〈•, π〉 = εψ.

This is the correct definition only because the groups Sψv are all abelian. Recall
that we have fixed a maximal compact subgroup K∞ of G(F ⊗Q R) in Section 2.3.
Let g = C ⊗R Lie(G(F ⊗Q R)). We write A 2(G(F )\G(AF ), χ) for the space of χ-
equivariant (where the action of A×F /F× is via µ) square integrable automorphic forms
on G(F )\G(AF ). It decomposes discretely under the action of G(AF,f )× (g,K∞).

Conjecture 2.5.6. — Assume that Conjectures 2.4.2 and 2.5.3 hold. Then there is an
isomorphism of H̃ (G)-modules

A 2(G(F )\G(AF ), χ) ∼=
⊕

ψ∈Ψ̃disc(G,χ)

mψ

⊕
π∈Π̃ψ(εψ)

π,

where mψ = 1 unless G = GSpinα2n, in which case mψ = 2 if and only if each Nidi
is even.

2.6. The results of [Art13]. — As we have already remarked, the conjectures above
are all proved in [Art13] in the case that χ = 1. As we now explain, the case that χ is
a square follows immediately by a twisting argument. The main results of this paper
are a proof of Conjectures 2.4.2 (Theorem 3.1.1) and 2.5.6 (Theorem 7.4.1) in the
case that G = GSpin5

∼= GSp4 for general χ. Conjecture 2.5.3 for G = GSpin5 is
a consequence of [GT11a], see Proposition 7.3.1. The case that χ is a square will be
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a key ingredient in our arguments, as if χ is not a square, then it is easy to see that
there are considerably fewer possibilities for the parameters ψ, and this will reduce the
number of ad hoc arguments that we need to make. Moreover in the remaining cases,
the statements pertaining to local tempered representations are covered by [CG15].

Theorem 2.6.1 (Arthur). — If χ = η2 is a square, then Conjectures 2.4.2, 2.5.3
and 2.5.6 hold.

Proof. — Given a χ-self dual cuspidal automorphic representation π, the twist
π ⊗ (η ◦ det)−1 is self dual. Similarly, we may twist the local parameters by the
restriction to WFv of the character corresponding to η−1, and we can also twist
representations of G(F ) and G(Fv) by η−1. All of the conjectures are easily seen to
be compatible with these twists, so we reduce to the case χ = 1. In this case, repre-
sentations of GSpin2n+1, (resp. GSpinα2n, resp. Sp2n ×GL1) with trivial similitude
factor (recall that this was defined in Section 2.1 as the composition of the central
character with µ) are equivalent to representations of SO2n+1, (resp. representations
of SOα

2n, resp. pairs given by a representation of Sp2n and a character of GL1 of
order 1 or 2), so the conjectures are equivalent to the main results of [Art13]. �

In particular, since in the case G = Sp2n×GL1 the character χ is always a square,
Theorem 2.6.1 always holds in this case.

2.7. Low rank groups. — If N(Ĝ) 6 3 then Conjectures 2.4.2, 2.5.3 and 2.5.6 also
hold unconditionally.

(1) If N = 1 the results are tautological.
(2) if N = 2 then G = GSpin3 or G = GSpinα2 . In the first case G ' GL2

and the results are also tautological. In the second case where G = GSpinα2 '
ResF (

√
α)/F (GL1) we are easily reduced to the well-known Theorem 2.7.1 below, the

symplectic/orthogonal alternative for GL2.
(3) If N = 3 then G = Sp2 × GL1 and we are reduced to a special case of

Theorem 2.6.1. Note that the local Langlands correspondence and the multiplicity
formula in this case go back to Labesse–Langlands [LL79] and [Ram00].

Theorem 2.7.1. — Let π be a χ-self dual cuspidal automorphic representation of GL2.
Then either

(1) χ = ωπ, and LS(s,∧2(π)⊗ χ−1) has a pole at s = 1; or
(2) ωπχ−1 is the quadratic character given by some quadratic extension E/F , π is

the automorphic induction of a character of A×E/E× which is not fixed by the non-
trivial element of Gal(E/F ), and LS(s,Sym2(π)⊗ χ−1) has a pole at s = 1.

Proof. — Certainly LS(s,∧2(π) ⊗ χ−1) = LS(s, ωπχ
−1) has a pole at s = 1 if and

only if χ = ωπ. So if LS(s,Sym2(π)⊗χ−1) has a pole at s = 1, we see that ωπχ−1 is a
non-trivial quadratic character corresponding to an extension E/F . Since we always
have π∨ ⊗ (ωπ ◦ det) ∼= π, this implies that π ∼= π ⊗ (ωπχ

−1 ◦ det), and it follows
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(see [Lan80, end of §2]) that π is the automorphic induction of a character of A×E/E×

which is not fixed by the non-trivial element of Gal(E/F ). �

2.8. The local Langlands correspondence for GSp4. — Let F be a p-adic field.
The local Langlands correspondence for GSp4(F ) was established in [GT11a], but
was characterised by relations with γ-factors, rather than endoscopic character rela-
tions. The necessary endoscopic character relations were then proved in [CG15]. In
particular, we have:

Theorem 2.8.1 (Chan–Gan). — If F is a p-adic field then Conjecture 2.4.2 holds
for GSpin5 and parameters ψ which are trivial on SL2(C), i.e., tempered Langlands
parameters.

Proof. — Parts (1) and (2) of Conjecture 2.4.2 are an immediate consequence of the
main theorem of [CG15] (note that bounded parameters are automatically generic,
in the sense that their adjoint L-functions are holomorphic at s = 1). Part (3) then
follows from the main theorem of [GT11a]. �

Remark 2.8.2. — Recall from Remark 2.4.6 that over an Archimedean field the local
Langlands correspondence and (ordinary) endoscopic character relations are known
in complete generality, and the twisted endoscopic character relations are known up
to a constant (which might depend on the parameter).

If F is Archimedean and ψ is a tempered and non discrete Langlands parameter for
GSpin5, then the twisted endoscopic character relation was verified in [CG15, §6],
which amounts to saying that the above constant (the only ambiguity in Mezo’s
theorem) is 1. In Proposition 7.2.1 below we will show using a global argument as in
[AMR18, Ann.C] that this also holds for the discrete tempered ψ.

3. Construction of missing local Arthur packets for GSpin5

3.1. Local packets. — Let F be a local field of characteristic zero. In this section
we complete the proof of the following theorem, which completes the proof of Con-
jecture 2.4.2 for GSpin5.

Theorem 3.1.1. — Let ψ : WDF ×SL2 → GSp4 be an element of Ψ(GSpin5).
Then there is a unique multi-set Πψ of irreducible smooth unitary representations
of GSpin5(F ), together with a map Πψ → S ∨ψ , which we will simply denote by
π 7→ 〈• , π〉, such that the following holds:

(1) Let πΓ
ψ be the representation of Γ(F ) associated to StdGSpin5

◦ϕψ by the
local Langlands correspondence, and let πΓ̃

ψ be its extension to Γ̃(F ) (Whittaker-
normalised as explained in Section 3.2). Then the linear form

∑
π∈Πψ

〈sψ, π〉 trπ on
I(GSpin5(F )) is stable and its transfer to Γ̃ is trπΓ̃

ψ .
(2) Consider a semisimple s ∈ Cent(ψ,GSp4), and denote by s its image in Sψ.

The pair (ψ, s) determines an endoscopic datum (H,H , s, ξ) for GSpin5, as well as
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ψ′ : WDF ×SL2 → Ĥ such that ψ = ξ ◦ψ′. Then for any f ∈ I(GSpin5(F )) we have∑
π∈Πψ

〈ssψ, π〉 trπ(f) =
∑

π′∈Πψ′

〈sψ′ , π′〉 trπ′(f ′).

Note that in the second point H is either GSpin5 or a quotient of a product of
general linear groups by a split torus, and so Πψ′ is well-defined. In the latter case it
is a singleton and Sψ′ is trivial.

As we recalled above (Theorems 2.6.1, 2.8.1 and Remark 2.8.2) this theorem is
already known in the following cases:

– if µ̂ ◦ ψ is a square,
– if F is p-adic and ψ|SL2

= 1,
– if F is Archimedean, ψ|SL2 and ψ is not discrete.
We will prove the case where F is Archimedean, ψ tempered discrete and χ not

a square later in Proposition 7.2.1, since we will use a global argument using the
stabilisation of the trace formula.

This section is devoted to the proof of Theorem 3.1.1 in the remaining cases, where
ψ|SL2 is not trivial and µ̂ ◦ ψ is not a square. It is easy to see that StdGSpin5

◦ψ '
(ϕ[2], χ), where ϕ : WDF → GL2 is χ-self-dual of orthogonal type. Then ϕ factors
through WF and detϕ/(µ̂ ◦ ψ) has order 1 or 2. There are two cases to consider.

(1) If ϕ is irreducible then detϕ/(µ̂◦ψ) has order 2. Let E/F be the corresponding
quadratic extension and denote c the non-trivial element of Gal(E/F ). We have ϕ '
IndE/F µ for a character µ : E× → C× such that µc 6= µ and µ|F× = χ. Then
Cent(ψ,GSp4) = Z(GSp4) and so we simply have to produce Πψ = {π} such that
trπ transfers to the trace of πΓ̃

ψ .
(2) If ϕ is reducible then ϕ = η1 ⊕ η2 with η1η2 = χ and η1 6= η2. Then

Cent(ψ,GSp4) = {diag(u1I2, u2I2)} and so we are led to define

Πψ = {Ind
GSpin5

L ((rec(η1) ◦ det)⊗ rec(χ))},

where L ' GL2×GSpin1. Then the second point in Theorem 3.1.1 is automatically
satisfied (see [CG15, §6.6]), and again we have to check that the twisted endoscopic
character relation holds.

We will prove these two cases separately, distinguishing between the cases where F
is p-adic, real, or complex (in which case only the second case occurs). Before doing so,
we recall some material on Whittaker normalisations.

3.2. Whittaker normalisation for general linear groups. — In this section F de-
notes a local field of characteristic zero, G = GLn ×GL1 over F and G̃ = G o θ.
Following [MW06, §5], [Sha10], [AMR18, §8] we briefly recall the Whittaker normali-
sation of extensions to G̃(F ) of irreducible representations of G(F ) fixed by θ. Recall
that we have fixed a θ-stable Whittaker datum (U, λ) for G. If F is Archimedean
for simplicity we choose the maximal compact subgroup K to be On(F ) × {±1}
(resp. U(n)×U(1)) if F is real (resp. complex), so that θ(K) = K.
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First consider the case of essentially tempered representations. Let π be an essen-
tially tempered (in particular, essentially unitary) irreducible representation of G(F ).
By [Sha74] there exists a continuous Whittaker functional Ω for π. If F is p-adic this
is just an element of the algebraic dual of the space πK of smooth vectors. If F is
Archimedean this is a continuous functional on the space π∞ of smooth vectors for
the topology defined by seminorms as in [Sha74, p. 183]. Now if π is fixed by θ,
define π̃(θ) as the unique element A ∈ Isom(π, πθ) such that Ω ◦ A = Ω. This does
not depend on the choice of Ω. So we have an extension π̃ of π to a representation
of G̃(F ), well-defined using the Whittaker datum (U, λ).

Next consider representations parabolically induced from a θ-stable parabolic sub-
group. Fix the usual (diagonal) split maximal torus T of G, as well as the usual (upper
triangular) Borel subgroup B = TU of G. Both are θ-stable. Let wG be the longest
element of the Weyl group W (T,G). Let P = MN be a standard parabolic sub-
group of G, with standard Levi subgroup M ⊃ T. Assume that P is θ-stable, which
means that M = (GLn1 × · · · ×GLnr )×GL1 (block diagonal) with ni = nr+1−i for
all i. Let σ be an irreducible admissible representation of M(F ) fixed by θ, that is
σ ' (σ1 ⊗ · · · ⊗ σr)⊗ χ with (χ ◦ det)⊗ σ∨i ' σr+1−i for all i. Let DM be the largest
split torus which is a quotient of M, so that we have a canonical isogeny AM → DM.
In the present case we have a natural identification DM ' GLr1 ×GL1 via the de-
terminants GLni → GL1. For ν ∈ X∗(DM) ⊗ C inducing a character of M(F ),
consider the parabolically induced (normalised) representation πν := Ind

G(F )
P(F ) σ ⊗ ν.

We also assume that ν = (ν1, . . . , νr, ν0) is fixed by θ, i.e., νi + νr+1−i = ν0 for
all i. Let wM be the longest element of W (T,M) (for B ∩M) and w = wGwM.
Let P− = MN− be the parabolic subgroup of G opposite to P with respect to M,
and let P′ = M′N′ = wP−w−1 = wGP−w−1

G be the standard parabolic subgroup
conjugated to P−. Choose a lift w̃ of w in NG(F )(T). Let λw̃M : (M ∩U)(F ) → S1

be the generic character defined by λw̃M(u) = λ(w̃uw̃−1). Assume that the space
Hom(M∩U)(F )(σ, λ

w̃
M) of Whittaker functionals for σ with respect to λw̃M is non-zero

and thus one-dimensional, and fix a basis Ωσ of this line. In the p-adic case, according
to a theorem of Rodier ([Rod73], [CS80], explained in [Sha10, §3.4]) we then have
that HomU(F )(Ind

G(F )
P(F ) (σ ⊗ ν), λ) also has dimension one. A basis Ωπν can be made

explicit: for f in the space of IndG
P σ ⊗ ν whose support is contained in the big cell

P(F )w−1U(F ),

(3.2.1) Ωπν (f) :=

∫
N′(F )

Ωσ(f(w̃−1n))λ(n)−1dn

is well-defined (the integrand is smooth and compactly supported). For arbitrary f
the same formula holds with N′(F ) replaced by large enough open compact subgroup
which depends on f but not on ν (as usual realising the vector space underlying
Ind

G(F )
P(F ) σ ⊗ ν independently of ν by restriction to K), so that ν 7→ Ωπν (f) is holo-

morphic.
The Archimedean case is more subtle, since the notion of Whittaker functional

requires a topology on the underlying space of the representation to be well-behaved
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(it is not defined directly on (g,K)-modules). So in this case one considers the smooth
parabolically induced representation πν := IndG

P (σ∞ ⊗ ν), whose subspace πν,K of
K-finite vectors is naturally isomorphic to the (g,K)-module algebraically induced
from σM(F )∩K (see [BW00, §III.7]). Assume that the central character of σ is unitary.
Then the integral (3.2.1) is absolutely convergent for ν ∈ X∗(DM)⊗ C satisfying

(3.2.2) ∀α ∈ Φ(T,N), 〈α∨,<ν〉 > 0,

and extends analytically to X∗(DM)⊗C ([Sha10, Th. 3.6.4]). The proof of Theorem
3.6.7 in [Sha10] also shows uniqueness (up to a scalar) of a Whittaker functional for
IndG

P (σ∞⊗ν) (note that the argument for uniqueness only involves the Jordan–Hölder
factors of a principal series representation, and so one may replace P by another
parabolic subgroup of G admitting M as a Levi factor and such that the opposite
of (3.2.2) is satisfied, so that any generic subquotient of IndG

P (σ ⊗ ν) appears as a
quotient).

We can now treat the p-adic and Archimedean cases together. Assume that ν is
chosen so that EndG(F )(πν) = C. This is the case if the central character of σ is unitary
and ν satisfies (3.2.2) (this follows from the fact that πν then has a unique irreducible
quotient which occurs with multiplicity one in its composition series), or if −ν satisfies
(3.2.2) (πν then has a unique irreducible subrepresentation). Then one can define the
action of θ on πν to be the unique Aθ ∈ End(πν) such that Aθ ◦πν(g) = πν(θ(g))◦Aθ
for all g ∈ G(F ) and Ωπν ◦ A = Ωπν . This can be made more explicit in the case at
hand, see [MW06, §5.2]. The operator Aθ does not depend on the choice of w̃ made
above.

For this definition we followed [AMR18, §8]. As explained there, the result-
ing canonical extension of πν coincides with the extension defined by Arthur in
[Art13, §2.2], by [MW06, §5.2] and analytic continuation (see [AMR18, Rem. 8.3]).

Finally, consider an arbitrary irreducible smooth representation π of G(F ) (admis-
sible (g,K)-module in the Archimedean case). By the Langlands classification ([Lan89,
Lem. 3.14 and 4.2], [Sil78], [BW00, Ch. IV]), π is the unique irreducible quotient of
IndG

P (σ ⊗ ν) (resp. unique irreducible subrepresentation of IndG
P−(σ ⊗ ν)) for ν ∈

X∗(DM) ⊗ C satisfying (3.2.2), with σ tempered (in particular, with unitary cen-
tral character) and the pair (P, σ ⊗ ν) is well-defined up to conjugation. These two
realisations of π as quotient (resp. subrepresentation) of a parabolically induced rep-
resentation give two canonical extensions of π to G̃, by the above. In fact these two
canonical extensions coincide: consider the composition

IndG
P (σ ⊗ ν) −→ π −→ IndG

P−(σ ⊗ ν)

which is clearly non-zero. From the properties of these induced representations men-
tioned above it follows that dim HomG(F )(IndG

P (σ ⊗ ν), IndG
P−(σ ⊗ ν)) 6 1. There-

fore the above composition coincides with the usual intertwining operator [Wal03,
Th. IV.1.1], [VW90] (up to a scalar and a normalising factor to make this intertwin-
ing operator holomorphic at ν). But this operator varies analytically if we vary ν,
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and generically it is an isomorphism between irreducible parabolically induced repre-
sentations, thus generically it intertwines the two Aθ’s, and by analytic continuation
this also holds for the original ν.

3.3. Proof of Theorem 3.1.1. — We now prove Theorem 3.1.1 in the cases described
at the end of Section 3.1.

Proof in the first case for F p-adic. — The proof is a very special case of the generali-
sation of [MW06, Th. 4.7.1] to essentially self-dual representations. See also [Mœg06].
Let ρ be the supercuspidal representation of GL2(F ) such that rec(ρ) = ϕ. Then
(χ ◦ det) ⊗ ρ∨ ' ρ. We will give an ad hoc definition of Πψ, using special cases of
results of [MW06] to check compatibility with twisted endoscopy for GL4 ×GL1. In
[MW06] Mœglin and Waldspurger consider self-dual parameters, and we will argue
that their arguments extend to the case at hand without substantial modification,
the essential input being compatibility of local Langlands for GSpin5 for twisted
endoscopy (and the same for GSpin3 and GSpin1, which is trivial). Let ∆ be the di-
agonal embedding SU(2) ↪→ SU(2)×SL2(C), so that ψ ◦∆ is the essentially tempered
Langlands parameter obtained by tensoring ϕ with the 2-dimensional irreducible rep-
resentation of the factor SU(2) of WDF . Then Cent(ψ ◦∆,GSp4) = Z(GSp4), and so
Πψ◦∆ (as defined by Gan–Takeda in [GT11a]) consists of a single irreducible discrete
series representation πψ◦∆ of GSpin5(F ). Let P be the standard parabolic subgroup
of GSpin5 with Levi subgroup L ' GL2 ×GSpin1 (conventions as in Section 2.2).
Then JacP(πψ◦∆) = ρ|det|1/2 ⊗ χ, where Jac denotes the normalised Jacquet mod-
ule. We briefly recall the proof. Let πGL

ψ◦∆ be the (discrete series) representation of
GL4(F ) corresponding to pr1 Std ◦ψ◦∆ : WDF → GL4(C). Denoting by PGL the up-
per block triangular parabolic subgroup of GL4 with Levi subgroup GL2×GL2, it is
well-known that JacPGL

(
πGL
ψ◦∆

)
= ρ|det|1/2⊗ ρ|det|−1/2. Let πΓ̃

ψ◦∆ be the Whittaker-
normalised (see Section 3.2 or [MW06, §5.1]) extension of πGL

ψ◦∆ ⊗ χ to Γ̃(F ). By (iii)
in the main theorem of [CG15] we have that trπΓ̃

ψ◦∆ is a transfer of trπψ◦∆. The
parabolic subgroup PGL ×GL1 of Γ is stable under θ, write P̃ = (PGL ×GL1) o θ.
By (an obvious generalisation of) [MW06, Lem. 4.2.1], tr JacP̃(πΓ̃

ψ◦∆) is a transfer of
tr JacP(πψ◦∆), and thus JacP(πψ◦∆) = ρ|det|1/2 ⊗ χ. By Frobenius reciprocity, πψ◦∆
is naturally a subrepresentation of Ind

GSpin5

P

(
ρ|det|1/2 ⊗ χ

)
. By [BZ77, Th. 2.8] this

parabolic induction has length 6 2 and so the cokernel of

πψ◦∆ ↪−→ Ind
GSpin5

P

(
ρ|det|−1/2 ⊗ χ

)
is an irreducible Langlands quotient which we denote πψ. We let Πψ = {πψ}. Since
Cent(ψ,GSp4(C)) = C×, we only have to check the twisted endoscopic character rela-
tion (Theorem 3.1.1 (1)). Following [MW06], this will be a consequence of comparing
the short exact sequence

(3.3.1) 0 −→ πψ◦∆ −→ Ind
GSpin5

P

(
ρ|det|1/2 ⊗ χ

)
−→ πψ −→ 0

with a similar one for Γ̃.
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We have a short exact sequence of representations of Γ(F ) = GL4(F )×GL1(F ):

(3.3.2) 0 −→ πGL
ψ◦∆ ⊗ χ −→ E1(πGL

ψ◦∆)⊗ χ −→ πGL
ψ ⊗ χ −→ 0

obtained as in [MW06, Prop. 3.1.2], by applying functorial constructions to πGL
ψ◦∆ to

get a resolution of πGL
ψ◦∆ by sums of standard modules except possibly for the last

term, which is defined as a cokernel and shown to be irreducible with Langlands
parameter (ψ ◦∆)] = ψ (the general definition of ψ] is given in [MW06, §3.1.2]). The
definition of the middle term is

E1(πGL
ψ◦∆) := IndGL4

PGL (JacPGL(πψ◦∆)) ' IndGL4

PGL

(
ρ|det|1/2 ⊗ ρ|det|−1/2

)
and in the present case Mœglin andWaldspurger’s resolution does not involve any non-
trivial “proj”, so that the resolution actually goes back to [Aub95], [SS97]. Following
Mœglin and Waldspurger one can extend πGL

ψ◦∆ ⊗ χ from Γ(F ) to Γ+(F ) by choos-
ing an action of θ (see [MW06, §§1.7-1.9]), that we denote by θMW . The resolution
(3.3.2) inherits an action of θ by functoriality (see [MW06, §3.2]), and fortunately the
resulting action on πGL

ψ ⊗ χ happens to coincide with θMW (see [MW06, Lem. 3.2.2],
in which we have j(ψ) = 1 and so β(ψ ◦ ∆, ρ,6 d) = +1). Another way to choose
an extension of πGL

ψ◦∆ ⊗ χ (resp. πGL
ψ ⊗ χ) to θ is to use Whittaker functionals and

the Langlands classification as we recalled in Section 3.2. Denote the resulting actions
of θ by θW . In general θW and θMW differ by a sign, but here fortunately θW = θMW

on both πGL
ψ◦∆⊗χ and πGL

ψ ⊗χ (a special case of [MW06, Prop. 5.4.1]). Thus we have
a well-defined extension

(3.3.3) 0 −→
(
πGL
ψ◦∆ ⊗ χ

)+ −→ (
E1(πGL

ψ◦∆)⊗ χ
)+ −→ (

πGL
ψ ⊗ χ

)+ −→ 0

of (3.3.2) to Γ+(F ). The trace of the left term is known to be the transfer of trπψ◦∆.
By compatibility of stable transfer with Jacquet modules [MW06, Lem. 4.2.1] and
parabolic induction (a consequence of the explicit formula for parabolic induction
([vD72], [Clo84], [Lem10, §7.3, Corollaire 3])), the trace of the middle term is the
transfer of the middle term of (3.3.1). So we can conclude that tr

(
πGL
ψ ⊗ χ

)+ is the
transfer of trπψ. �

Proof in the second case for p-adic F . — This is similar to the previous case but now
ϕ : WF → GL2(C) is reducible and so it defines a principal series representation of
GL2(Fv). Write ϕ ' rec(η1)⊕ rec(η2), so that χ = η1η2. As explained above we can
assume that η1 6= η2. Define πψ = Ind

GSpin5

P ((η1 ◦ det)⊗ χ), where the standard
parabolic subgroup P has Levi L ' GL2×GSpin2 and Πψ = {πψ}. The representa-
tion πψ is certainly irreducible (see [Mœg11, §4.2]), but since this is not necessary to
prove the Theorem we simply take the definition Πψ = {πψ} to mean that Πψ is the
multi-set of constituents of πψ.

Consider the parabolic induction for GL4 ×GL1

(3.3.4) πΓ
ψ := IndGL4

PGL ((η1 ◦ det)⊗ (η2 ◦ det))⊗ χ,

where PGL is the standard parabolic subgroup of GL4 with Levi GL2 ×GL2. The
twisted representation πΓ̃

ψ of Γ̃(F ) obtained from (3.3.4) using the canonical action
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of θ (defined as in [MW06, §1.3]) is such that its trace is the transfer of the trace
of πψ, by compatibility of parabolic induction with transfer. This is almost the twisted
endoscopic character relation, but again we need to be careful with the definition of
Whittaker normalisation. The Whittaker-normalised action of θ on πΓ

ψ is obtained by
realising it as the Langlands quotient of

(3.3.5) IndGL4

BGL

(
η1| · |1/2 ⊗ η2| · |1/2 ⊗ η1| · |−1/2 ⊗ η2| · |−1/2

)
⊗ χ,

where BGL is the standard Borel subgroup of GL4, which coincides with the canonical
action of θ on this parabolic induction by (the obvious generalisation of) [MW06,
Lem. 5.2.1].

Let us sketch the proof of the fact that these two actions of θ on πΓ
ψ coin-

cide. It will be convenient to denote σ1 × · · · × σr for the parabolic induction
(using the standard parabolic) of an admissible representation σ1 ⊗ · · · ⊗ σr of
GLn1

(F )× · · · ×GLnr (F ) to GLn1+···+nr (F ). Recall that for any s ∈ C the
parabolic induction η2| · |1/2+s × η1| · |−1/2−s is irreducible by [BZ76, Th. 3], since
the assumption that χ = η1η2 is not a square implies that η1|O×F 6= η2|O×F . The
intertwining operator

Is : η2| · |1/2+s × η1| · |−1/2−s −→ η1| · |−1/2−s × η2| · |1/2+s

defined by the usual integral formula for <(s)� 0, is rational in q−s (where q is the
cardinality of the residue field of F ) by [Wal03, Théorème IV.1.1], and so there is a
polynomial r(s) in q−s such that r(s)Is is well-defined and non-zero for any s, and
therefore an isomorphism. It induces an isomorphism Is,norm:

η1| · |1/2 × η2| · |1/2+s × η1| · |−1/2−s × η2| · |−1/2

−→ η1| · |1/2 × η1| · |−1/2−s × η2| · |1/2+s × η2| · |−1/2.

Denote π1,s (resp. π2,s) the LHS (resp. RHS). Since η2| · |−1/2 = χ/
(
η1| · |1/2

)
and

η1| · |−1/2−s = χ/
(
η2| · |1/2+s

)
, there is a canonical extension of π1,s ⊗ χ to Γ+(F )

(see [MW06, §1.3]). Denote by θ1 this canonical action of θ on the space of π1,s ⊗ χ
(one can easily check that it does not depend on s), so that for s = 0 we recover the
Whittaker normalisation on (3.3.5). The irreducible representation((

η1| · |1/2 × η1| · |−1/2−s)⊗ (η2| · |1/2+s × η2| · |−1/2
))
⊗ χ

of the θ-stable parabolic subgroup P ×GL1 of Γ is also fixed by θ, and so π2,s ⊗ χ
also admits a canonical extension to Γ̃(F ). Denote θ2 this canonical action of θ on the
space of π2,s⊗χ, which for s = 0 recovers the canonical action on the quotient (3.3.4).
An easy computation that we skip shows that for <(s) � 0 we have Is,norm ◦ θ1 =

θ2 ◦ Is,norm, and the case of an arbitrary s ∈ C follows by analytic continuation. �

Proof in the first case for F = R. — This is similar to the first case for F a p-adic
field except we now follow arguments of [AMR18]. For a ∈ 1

2Z>0 let Ia be the
tempered Langlands parameter WR → GL2(C) obtained by inducing the character
z 7→ (z/z)a := (z/|z|)2a of C×. Up to twisting we can assume that ϕ = Ia with a > 0

integral, with χ equal to the sign character sign of WR. Let πGL4

ψ be the irreducible
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unitary representation of GL4(R) associated to ϕψ. Let χ : GL1(R) → {±1} be the
sign character, so that (χ ◦det)⊗ (πGL4

ψ )∨ ' πGL4

ψ . As in the p-adic case we have the
Whittaker-normalised extension πΓ̃

ψ of πΓ
ψ := πGL4

ψ ⊗ χ.
We have a (short) resolution from [Joh84] (see [AMR18, §6.2] where this resolution

is made completely explicit for GL2n and parameters Iw[n] for w ∈ 1
2Z>0)

0 −→ πGL4

ψ −→ πGL2

Ia|·|−1/2 × πGL2

Ia|·|1/2
−→ πGL2

Ia+1/2
× πGL2

Ia−1/2
−→ 0,

where |·| is the norm character ofWR (i.e., the square of the usual absolute value on C×

and |j| = 1) and we denoted parabolic induction for standard parabolic subgroups of
GL as in the p-adic case. In [AMR18, Lem. 9.9] only the first case occurs, so comparing
normalisations (Whittaker and imposed by induction in Johnson’s construction of the
resolution) is particularly simple: we obtain the analogue of [AMR18, Théorème 9.7]
with As = A+

s . �

Proof in the second case for F = R or C. — Up to twisting we can assume that ϕ '
1⊕χ with χ = sign in the real case and χ(z) = (z/z)a|z|it with a ∈ 1

2Z r Z and t ∈ R
in the complex case. The proof is identical to the p-adic case and we do not repeat
the argument. Note that the complex case is the analogue of [MR15, Prop. 6.5]. �

4. Stabilisation of the twisted trace formula

We now state the stabilisation of the twisted trace formula proved by Mœglin
and Waldspurger in [MW16a], [MW16b] following the case of ordinary (i.e., non-
twisted) endoscopy proved by Arthur in [Art02], [Art01], [Art03] (also following
[Lan83], [Kot86], [Lab99], and of course [LW13]). We recall some of the definitions
needed to state the stabilisation, and mention some simplifications occurring in the
cases at hand.

4.1. The discrete part of the spectral side. — Consider a connected reductive
group G over a number field F and an automorphism θ of G of finite order. Let
G̃ = G o θ. Let A0 be a maximal split torus in G. We will only consider Levi
subgroups of G which contain A0. Let K =

∏
vKv be a good maximal compact sub-

group of G(AF ) with respect to A0 as in [LW13, §3.1]. Choose a minimal parabolic
subgroup P0 of G containing A0.

Following [MW16b, §X.5], let us recall the terms occurring in the discrete part
of the spectral side of the twisted trace formula. To work with discrete automorphic
spectra it is necessary to fix central characters (at least on a certain subgroup of the
centre), and we follow [MW16b, §X.5.1]. We now elaborate on the notation for the
discrete automorphic spectrum introduced in Section 1.2.3. Recall that AG denotes
the vector group AG(R)0, where AG is the biggest central split torus in ResF/Q(G).
Then G(AF ) = G(AF )1 × AG, where

G(AF )1 =
{
g ∈ G(AF ) | ∀β ∈ X∗(G)GalF , |β(g)| = 1

}
,

so that G(F )\G(AF )1 has finite measure. Let AG̃ =AθG. Then AG =(1−θ)(AG)×AG̃.
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In the general definition of twisted endoscopy one considers a character ω of G(AF );
in all cases considered in this paper we have ω = 1. Mœglin and Waldspurger consider
a character χG of AG which is trivial on AG̃ and satisfies θ(χG) = χGω|AG

; since we
will always have ω = 1 in this paper, we will have χG = 1.

Let L be a Levi subgroup of G. Up to conjugating by G(F ) we can assume that L

is the standard Levi subgroup of a standard parabolic subgroup P of G. There is
a canonical splitting AL = AG × AG

L (with AG
L included in the derived subgroup of

G(F ⊗Q R)), and we write χG,L for the extension of χG to AL such that χG,L|AG
L

= 1.
As remarked above in all cases considered in this paper we simply have χG,L = 1. The
space of square integrable automorphic forms A 2(L(F )\L(AF ), χG,L) decomposes
discretely, i.e., it is canonically the direct sum, over the countable set Πdisc(L, χG,L)

of discrete automorphic representations πL for L such that πL|AL
= χG,L, of isotypical

components
A 2(L(F )\L(AF ), χG,L)πL

which have finite length. Denote by UP the unipotent radical of P. Recall [MW94,
§I.2.17] the space A 2 (UP(AF )L(F )\G(AF ), χG,L) of smooth K-finite functions φ on
UP(AF )L(F )\G(AF ) such that for any k ∈ K,

x 7−→ δP(x)−1/2(x)φ(xk)

is an element of A 2(L(F )\L(AF ), χG,L). In other words,

A 2 (UP(AF )L(F )\G(AF ), χG,L) = Ind
G(AF )
P(AF )

(
A 2(L(F )\L(AF ), χG,L)

)K-fin
.

This space is endowed with the usual left action of H (G), which we will denote by ρG
P .

If πL is an irreducible admissible representation of L(AF ) such that ωπL
|AL

= χG,L,
denote by

A 2(UP(AF )L(F )\G(AF ), χG,L)πL

the sub-H (G)-module of A 2(UP(AF )L(F )\G(AF ), χG,L) consisting of functions φ
such that for any k ∈ K,(

x 7−→ δP(x)−1/2(x)φ(xk)
)
∈ A 2(L(F )\L(AF ), χG,L)πL

.

Let W (L, G̃) = Norm(L, G̃(F ))/L(F ), where the action of G̃(F ) on G is the adjoint
action coming from the definition of a twisted space [MW16a, §I.1.1]. For w̃ ∈
W (L, G̃) and f(x̃)dx̃ ∈H (G̃), we have a map [MW16b, bottom of p. 1204]

ρG̃
P,w̃(f) : A 2(UP(AF )L(F )\G(AF ), χG,L)

−→ A 2(Uw̃(P)(AF )L(F )\G(AF ), χG,L),

φ 7−→
(
g 7−→

∫
G̃(AF )

φ(w̃−1gx̃)f(x̃)dx̃

)(4.1.1)

and for f1, f3 ∈H (G) and f2 ∈H (G̃) we have

ρG̃
P,w̃(f1 ∗ f2 ∗ f3) = ρG

w̃(P)(f1) ◦ ρG̃
P,w̃(f2) ◦ ρG

P (f3).
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If πL is an irreducible admissible representation of L(AF ) such that ωπL
|AL

= χG,L,
then for any f ∈H (G̃), ρG̃

P,w̃(f) restricts to

A 2(UP(AF )L(F )\G(AF ), χG,L)πL
−→ A 2(Uw̃(P)(AF )L(F )\G(AF ), χG,L)w̃(πL),

where w̃(πL) = πL ◦Ad(w̃−1).
By meromorphic continuation of the usual integral formula, there is an intertwining

operator

MP|w̃(P)(0) : A 2
(
Uw̃(P)(AF )L(F )\G(AF ), χG,L

)
−→ A 2 (UP(AF )L(F )\G(AF ), χG,L) .

Since χG,L is unitary, MP|w̃(P) is well-defined (i.e., holomorphic) at 0, and is in
fact unitary. Moreover for any irreducible admissible representation πL of L(AF ),
MP|w̃(P)(0) restricts to

A 2(Uw̃(P)(AF )L(F )\G(AF ), χG,L)πL
−→ A 2(UP(AF )L(F )\G(AF ), χG,L)πL

.

Therefore for f ∈H (G̃) the composition MP|w̃(P)(0) ◦ ρG̃
P,w̃(f) maps

A 2(UP(AF )L(F )\G(AF ), χG,L)

to itself and restricts to

A 2(UP(AF )L(F )\G(AF ), χG,L)πL
−→ A 2(UP(AF )L(F )\G(AF ), χG,L)w̃(πL).

We can finally recall the contribution of L to the discrete part of the spectral side
of the twisted trace formula for G̃. For f ∈H (G̃), let

IG̃,L
disc (f) = |W (L,G)|−1

∑
w̃∈W (L,G̃)reg

|det
(
w̃ − 1 |AG

L

)
|−1 tr

(
MP|w̃(P)(0) ◦ ρG̃

P,w̃(f)
)
,

where W (L, G̃)reg is the set of w̃ ∈ W (L, G̃) such that (aG
L )w̃ = 0. As the notation

suggests, IG̃,L
disc (f) only depends on f and the G(F )-conjugacy class of L. In fact it de-

pends on f only via its image in I(G̃). The fact that the trace ofMP|w̃(P)(0)◦ρG̃
P,w̃(f)

on A 2(UP(AF )L(F )\G(AF ), χG,L) is well-defined and equals the absolutely conver-
gent sum∑

πL∈Πdisc(L,χG,L)
w̃(πL)'πL

tr
(
MP|w̃(P)(0) ◦ ρG̃

P,w̃(f) | A 2(UP(AF )L(F )\G(AF ), χG,L)πL

)

is a consequence of work of Finis, Lapid and Müller, as explained in [LW13, §14.3]
and [MW16b, §X.5.2 and X.5.3].

The most interesting case is of course for L = G, since IG̃,G
disc (f) is simply the trace

of f on the discrete automorphic spectrum for G and χG. We will recall below the
refinement of discrete terms by infinitesimal character and Hecke eigenvalues following
Arthur and Mœglin–Waldspurger, that allows one to forget about convergence issues
and work with finite sums. But first we make explicit the condition w̃(πL) ' πL in
the cases at hand.
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(1) For G = GLN × GL1 and a standard (i.e., block diagonal) Levi L '(∏
k>1(GLk)nk

)
×GL1 (where nk = 0 for almost all k and

∑
k>1 knk = N), there

always exists an element of G̃(F ) normalising L (for example θ0 = (J−1, 1) o θ, so
that for any (g, x) ∈ G we have θ0(g, x)θ−1

0 = (tg−1, xdet g)). Moreover there is a
natural identification W (L,G) '

∏
k>1 Snk . For w̃ = (σk)k>1θ0 ∈ W (L, G̃), w̃ is

regular if and only if for every k > 1, the decomposition of σk in cycles only involves
cycles of odd length. For such a regular w̃ and if π =

(⊗
k>1 (πk,1 ⊗ · · · ⊗ πk,nk)

)
⊗χ

is an irreducible admissible representation of L(AF ), then w̃(π) ' π if and only if
each πk,i satisfies π∨k,i ⊗ (χ ◦ det) ' πk,i and for every k > 1, the isomorphism class
of (πk,i)16i6nk is fixed by σk (i.e., πk,i ' πk,j if i and j belong to the same cycle in
the decomposition of σk).

(2) In the non-twisted cases G = GSpin2n+1 or GSpinα2n, recall that in Sec-
tion 2.2 we chose (non-uniquely) an isomorphism L '

∏
i>1(GLi)

ri × Gm, where
m+

∑
i>1 iri = n and Gm is a GSpin group of the same type as G of absolute rankm.

There is a natural embedding W (L,G) ↪→
∏
i>1 ({±1}ri o Sri) which is surjective

unless G = GSpin1
2n, m = 0, and there exists an odd i > 1 such that ri > 0, in

which case it is of index two. An element w = ((εi,j)16j6ri o σi)i>1 is regular if and
only if for every i > 1 and every cycle (j1 . . . js) appearing in the decomposition of σi,∏s
l=1 εi,jl = −1. For such w ∈ W (L,G)reg and πL '

⊗
i>1 (πi,1 ⊗ · · · ⊗ πi,ri)⊗ πGm

an irreducible admissible representation of L(AF ), we have w(πL) ' πL if and only
(a) for every i > 1 and 1 6 j 6 ri, π∨i,j⊗ (χ◦det) ' πi,j , where χ : A×F → C×

is πGm
◦ µ, and

(b) for every i > 1 the isomorphism class of (πi,j)16j6ri is fixed by σi.
We now recall from [MW16b, p. 1212] the refinement of the discrete part of the

spectral side of the twisted trace formula by infinitesimal characters (using Arthur’s
theory of multipliers) and families of Satake parameters.

Definition 4.1.2
(1) Let IC(G) be the set of semisimple conjugacy classes in the Lie algebra of

the dual group (over C) of ResF/Q(G). This is the set where infinitesimal characters
for irreducible representations of G(F ⊗Q R) live. In the twisted case let IC(G̃) =

IC(G)θ̂. For π∞ an irreducible admissible representation of G(F ⊗Q R), denote by
ν(π∞) ∈ IC(G) its infinitesimal character.

(2) Let S be a large enough (i.e., containing Vram as in [MW16b, §VI.1.1]) finite
set of places of F . Let FSS(G) =

∏
v 6∈S
(
Ĝ o Frobv

)ss
/Ĝ, and in the twisted case

let FSS(G̃) = (FSS(G))θ̂. Write also FS(G) = lim−→S
FSS(G) and in the twisted

case FS(G̃) = lim−→S
FSS(G̃). If π = ⊗′vπv is an irreducible admissible representation

of G(AF ), we will write c(π) for the associated element of FS(G) via the Satake
isomorphisms.

(3) For ν ∈ IC(G̃), S as above, cS = (cv)v 6∈S ∈ FSS(G̃), and L a Levi subgroup
of G, let Πdisc(L, χG,L)ν,cS be the set of πL ∈ Πdisc(L, χG,L) such that the infin-
itesimal character of πL,∞ maps to ν via Lie

( \ResF/Q(L)
)
→ Lie

( \ResF/Q(G)
)
, and
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for every v 6∈ S, πL,v is unramified for Kv and its Satake parameter maps to cv via
LL→ LG. For f ∈

⊗
v∈S H (G̃(Fv)), let

IG̃,L
disc,ν,cS

(f) = |W (L,G)|−1
∑

w̃∈W (L,G̃)reg

det
(
w̃ − 1 |AG

L

)
|−1

∑
πL∈Πdisc(L,χG,L)ν,cS

w̃(πL)'πL

trπL
(f),

where we write

trπL
(f) =

(
MP|w̃(P)(0) ◦ ρG̃

P,w̃(f) | A 2(UP(AF )L(F )\G(AF ), χG,L)πL

)
.

Finally let

(4.1.3) IG̃
disc,ν,cS (f) =

∑
L

IG̃,L
disc,ν,cS

(f),

where the sum is over G(F )-conjugacy classes of Levi subgroups of G.

Seeing this as a sum over triples (L, w̃, πL), all but finitely many terms vanish.
Indeed, if we fix ν, S, cS and an idempotent e of

⊗
v∈S
v-∞

H (G(Fv)), then there is a

finite set Υ(ν, S, cS , e) of triples (L, w̃, πL) such that for any f ∈
⊗

v∈S H (G̃(Fv))

for which e ∗ f = f ∗ e = f , the terms corresponding to (L, w̃, πL) 6∈ Υ(ν, S, cS , e) in
the double sum defining IG̃

disc,ν,cS (f) all vanish.

Remark 4.1.4
(1) By [JS81] and [MW89], taking the image in FS(GLN ) is injective on formal

sums of elements of Πdisc(GLni , χ) (note that it is essential that all of the summands
are χ self-dual for the same character χ). For this reason we will often identify such
formal sums and their image.

(2) In [MW16b] Mœglin–Waldspurger multiply (4.1.3) by

j(G̃)−1 := |det(1− θ|AG/AG̃)|−1,

but this factor is also present in ι(G̃,H) with their definition.

Definition 4.1.5

(1) We will say that cS ∈ FS(G̃) occurs in IG̃,L
disc if there exists ν ∈ IC(G̃) and

f ∈H (G̃) such that up to enlarging S we have IG̃,L
disc,ν,cS

(f) 6= 0.
(2) Let D be an induced central torus in G, so that there is a dual morphism

LG → LD. For cS ∈ FS(G̃) occurring in IG̃,L
disc we define the central character

of cS to be the (unique by weak approximation for D [PR94, Prop. 7.3]) charac-
ter ωc : AG(AF )/AG(F )→ C× such that for almost all places v of F , the Langlands
parameter of (ωc)v equals the image of cv in LD.

Note that in all cases considered in this paper the connected centre of G is split
and so one can take D to be the full connected centre.
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Lemma 4.1.6. — Let G = GLN ×GL1 and G̃ = G o θ. If c ∈ FS(G̃) occurs in IG̃
disc

and χ is the central character of c, then there is a unique ψ ∈ Ψ(G̃, χ) such that c is
associated to ψ.

Proof. — This simply follows from Remark 4.1.4 (1) and the above description in
the case at hand of the pairs (w̃, πL) with w̃ ∈ W (L, G̃)reg, πL ∈ Πdisc(L) and
πw̃L ' πL. �

Remark 4.1.7. — Let G = GLN ×GL1 and G̃ = G o θ.
(1) For P a parabolic subgroup of G with Levi L and πL ∈ Πdisc(L, χG,L), the

parabolically induced representation A 2(UP(AF )L(F )\G(AF ))πL
is irreducible by

[MW89] (implying multiplicity one for the discrete automorphic spectrum for L) and
[Ber84, §0.2], [Vog86, Th. 17.6] (irreducibility of unitary parabolic induction for gen-
eral linear groups).

(2) It follows from [JS81], [MW89] and Lemma 4.1.6 that for c ∈ FS(G̃) occurring
in IG̃,L

disc , L is determined by c.
(3) For S ⊂ S′, the linear form IG̃

disc,ν,cS′
on I(G̃S′) is simply the tensor product

of IG̃
disc,ν,cS with the unramified linear form on I(G̃S′rS) corresponding to the Satake

parameters (cv)v∈S′rS (see Remark 2.3.4). This is particular to GLn and is a direct
consequence of strong multiplicity one. Also by strong multiplicity one for a given
cS ∈ FSS(G̃) there is at most one ν ∈ IC(G̃) such that Idisc,ν,cS 6= 0. By these
remarks, for c ∈ FS(G̃) we have a well-defined linear form IG̃

disc,c on I(G̃), whose
restriction to I(G̃S) (for large enough S) is IG̃

disc,ν,cS for the unique ν such that this
is non-zero, or 0 if no such ν exists.

4.2. Elliptic endoscopic groups. — Consider the split group Γ = GL4×GL1 over F
and its automorphism θ : (g, x) 7→ (J tg−1J−1, xdet g), where

J =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


was chosen so that the usual pinning of GL4 ×GL1 is stable under θ. Note that if
(π, χ) is a representation of Γ(Fv) for some place v of F , then

(π, χ) ◦ θ ' (π∨ ⊗ (χ ◦ det), χ).

The dual group Γ̂ is naturally identified with GL4(C) × GL1(C), and θ̂(g, x) =

(Ĵ tg−1Ĵ−1x, x), where Ĵ = J (but with coefficients in a different field). Denote
Γ̃ = Γ o θ (that is, the non-identity connected component of Γ o {1, θ}). We consider
twisted endoscopy with ω = 1.

Then the elliptic endoscopic data (H,H , s, ξ) for Γ̃ are easily seen to be of the
following form.
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(1) H = GSpin5, dual Ĥ = GSp4, for s = 1: The first projection identifies
ξ1( \GSpin5) = Γ̂θ̂ with the general symplectic group defined by Ĵ , and the “simili-
tude factor” morphism \GSpin5 → GL1 equals pr2 ◦ξ1| \GSpin5

. Both Γ and GSpin5

are split, so there is an obvious choice for Lξ : LGSpin5 → LΓ.
(2) GSpinα4 , with α ∈ F×/F×,2, dual \GSpinα4 = GSO4 with action of Gal(E/F ) if

α is not a square, where E = F (
√
α). Pick s = diag(−1,−1, 1, 1), then Γ̂Ad(s)◦θ̂ = GO4

for the Gram matrix 
0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 .

If α = 1 the group GSpin4 is split and we choose the obvious Lξ. Otherwise let c be
the non-trivial element of Gal(E/F ), and define Lξ by mapping 1 o c to

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , 1.

(3) Rα :=(GSpinα2×GSpin3)/{(z, z−1) | z∈GL1}, for non-trivial α. The dual R̂α

is the subgroup of GSO2×GSp2 of pairs of elements with equal similitude factors,
and Gal(E/F ) acts on the first factor. Let s = diag(−1, 1, 1, 1), so that

ξ(R̂α) = {diag(x1, A, x2) | A ∈ GL2, x1x2 = detA} .

Define Lξ by mapping 1 o c to 
0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 , 1.

We also need to consider the elliptic endoscopic groups for GSpin5 and GSpin4.
Let H1 be the unique non-trivial elliptic endoscopic group for GSpin5, so that H1 '
GL2×GL2/{(zI2, z−1I2)}. Then Ĥ1 is the subgroup of GSp2(C)×GSp2(C) of pairs
of elements with equal similitude factors, so we have an obvious embedding of dual
groups Ĥ1 → \GSpin5 = GSp4(C), inducing an embedding of L-groups Lξ′ : LH1 →
LGSpin5.

Let α ∈ F×/F×,2 and let α1, α2 ∈ F×/F×,2 r {1} be such that α1α2 = α.
Let Hα1,α2

2 be the elliptic endoscopic group for GSpinα4 associated to {α1, α2}, so
that Hα1,α2

2 ' GSpinα1
2 × GSpinα2

2 /{(z, z−1) | z ∈ GL1}. Recall that GSpinαi2

is naturally isomorphic to ResF (
√
αi)/F (GL1). Then \Hα1,α2

2 is the subgroup of
GSO2(C)×GSO2(C) consisting of pairs of elements with equal similitude factors, so
we again have an obvious embedding of dual groups \Hα1,α2

2 → \GSpin4 = GSO4(C).
Let µ (resp. µ1, µ2) be the morphism Gal(F/F )→ Z/2Z having kernel Gal(F/F (

√
α))
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(resp. Gal(F/F (
√
α1)), Gal(F/F (

√
α2))). Denote A =

(
0 1
1 0

)
∈ GL2(C). Writing

Gal(F (
√
α)/F ) = {1, c}, define Lξ′ : LHα

2 → LGSpin4 by mapping 1 o σ to

diag(Aµ1(σ), Aµ2(σ)) diag(1, Aµ(σ), 1) o σ.

4.3. Stabilisation of the trace formula. — We will need to use the stabilisation of
the (twisted) trace formula for Γ̃ and its elliptic endoscopic groups. Consider the latter
first: let (H,H , s, ξ) be an elliptic endoscopic datum for (Γ, Γ̃). The stabilisation of
the trace formula for H is as follows. Fix ν ∈ IC(H), S a big enough set of places,
and c ∈ FSS(H). Choose representatives (H′,H ′, s, ξ) for the isomorphism classes
of elliptic endoscopic data for H, and for each representative choose Lξ′ : LH′ → LH

extending ξ (for example as in the previous section). It induces maps Lξ′ : FS(H′)→
FS(H) and Lξ′ : IC(H′)→ IC(H). Inductively define a linear form on I(H(FS)) by

(4.3.1) SH
disc,ν,c(f) := IH

disc,ν,c(f)−
∑

e′=(H′,H ′,s′,ξ′)
H′ 6=H

ι(e′)
∑
c′ 7→c
ν′ 7→ν

SH′

disc,ν′,c′(f
H′),

where the sum is over equivalence classes of nontrivial elliptic endoscopic data for H,
fH′ is a transfer of f (see Section 2.3), and the constants ι(e′) are recalled after the
following theorem.

Theorem 4.3.2 ([Art02, Global Ths. 2 & 2’, and Lem. 7.3(b)])
The linear form SH

disc,ν,c is stable, i.e., factors through SI(H(FS)).

Note that in general (4.3.1) is only well-defined thanks to Theorem 4.3.2 applied
to H′. However, for the groups H considered here, and for any non-trivial endoscopic
group H′, the only elliptic endoscopic group for H′ is H′, and so SH′

disc = IH′

disc.
Let us recall the definition of ι(e′), both for ordinary endoscopy and for twisted

endoscopy. Assume that G̃ is a twisted space and e = (H,H , s, ξ) is an elliptic
endoscopic datum. Let

ι(e) =
τ(G)

τ(H)

∣∣∣π0

(
Z(Ĝ)GalF ,0 ∩ T̂θ̂,0

)∣∣∣
|π0(Aut(e))|

,

where τ is the Tamagawa number and the superscript 0 denotes the identity com-
ponent. We have not included the factor |det(1 − θ| . . . )|−1 from [MW16b, VI.5.1]
because of Remark 4.1.4 (2); compare with the definition on p. 109 of [KS99] using
[KS99, Lem. 6.4.B]. Recall [MW16b, p. 693] that there is a short exact sequence

1 −→
(
Z(Ĝ)/Z(Ĝ) ∩ T̂θ̂,0

)GalF −→ Aut(e)/Ĥ −→ Out(e) −→ 1.

In the ordinary (non-twisted) case we have T̂θ̂,0 = T̂ ⊃ Z(Ĝ) and thus ι(e) =

τ(G)τ(H)−1|Out(e)|−1. The only twisted case that we need in this paper is the case
of Γ̃, when T̂θ̂,0 = {((t1, . . . , t4), x) | ∀ i, ti = t−1

5−ix} and so Z(Ĝ) ∩ T̂θ̂,0 ' C×.
Similarly it is easy to see that Z(Ĝ)/Z(Ĝ) ∩ T̂θ̂,0 ' C× with trivial action of GalF ,
so we can conclude that ι(e) = τ(Γ)τ(H)−1|Out(e)|−1 for any elliptic endoscopic
datum e = (H,H , s, ξ) of Γ̃.
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Let us make the constant ι(e) explicit in the only two cases where it will be needed
in this paper:

(1) For the elliptic endoscopic group H1 of GSpin5, ι(e) = 1/4.
(2) For the elliptic endoscopic group GSpin5 of Γ̃, ι(e) = 1.
We can finally state the stabilisation of the twisted trace formula for (Γ, Γ̃). As in

the case of ordinary endoscopy we fix representatives e = (H,H , s, ξ) of isomorphism
classes of elliptic endoscopic data for Γ̃ and for each e we also choose an L-embedding
Lξ : LH→ LG extending ξ (for example the ones defined in the previous section).

Theorem 4.3.3 ([MW16b, X.8.1]). — For any ν and c we have
IΓ̃
disc,ν,c(f) =

∑
e=(H,H ,s,ξ)

ι(e)
∑
ν′ 7→ν
c′ 7→c

SH
disc,ν′,c′(f

H),

where the first sum is over equivalence classes of elliptic endoscopic data for Γ̃.

5. Restriction of automorphic representations

5.1. Restriction for general groups. — Let us recall a consequence of [HS12, §4]
that we will need. Since in all cases considered in this paper the assumption of [Che18,
Prop. 1 (iii)] will be satisfied, one can use the more precise result of [Che18] (which can
be formally generalised from cuspidal to square-integrable forms) instead. Consider
an injective morphism G ↪→ G′ between connected reductive groups over a number
field F such that G is normal in G′ and G′/G is a torus. Choose a maximal compact
subgroup K ′∞ of G′(F ⊗Q R); then

K∞ := G(F ⊗Q R) ∩K ′∞
is a maximal compact subgroup of G(F ⊗Q R). Note that if π′ is an irreducible
unitary admissible (g′,K ′∞)×G′(AF,f )-module then ResG′

G (π′) is a unitary admis-
sible (g,K∞) × G(AF,f )-module, but it has infinite length in general. We have a
(g,K∞)×G(AF,f )-equivariant map

resG′

G : A 2(AG′G
′(F )\G′(AF )) −→ A 2(AGG(F )\G(AF ))

obtained by restricting automorphic forms.
The fact that resG′

G takes values in A 2(AGG(F )\G(AF )) is a routine verification,
except for square-integrability which follows from the proof of [HS12, Lem. 4.19] (see
also Remark 4.20 op. cit.). If π′ ∈ Πdisc(G′) and ι : π′ ↪→ A 2(AG′G

′(F )\G′(AF )),
then resG′

G (ι(π′)) is naturally identified with a quotient of ResG′

G (π′). This quotient
can be proper and of infinite length, but in any case it is non-zero. In particular
there exists an irreducible constituent π of ResG′

G (π′) such that π ∈ Πdisc(G). In this
situation we will say that π is an automorphic restriction of π′. Unsurprisingly, this
notion of restriction is compatible with the Satake isomorphism at almost all places:

Lemma 5.1.1 (Satake). — Suppose that π ' ⊗′vπv ∈ Πdisc(G) is an automorphic
restriction of π′ ' ⊗′vπ′v ∈ Πdisc(G′), then for almost all places v of F the Satake
parameter c(πv) of πv is the image of c(π′v) under the natural map(

Ĝ′ o Frobv
)ss
/Ĝ′-conj −→

(
Ĝ o Frobv

)ss
/Ĝ-conj.
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Proof. — For almost all places v, πv is the unique unramified direct summand in
Res

G′(Fv)
G(Fv) (π′v). The result follows from [Sat63, §7.2] applied to G×T→ G′, where T

is any central torus in G isogenous to G′/G, and the translation in terms of dual
groups [Bor79, Prop. 6.7]. �

Let us now formulate a direct consequence of [HS12, Th. 4.14], ignoring multiplic-
ities.

Theorem 5.1.2 (Hiraga–Saito). — The map resG′

G is surjective, and so any discrete
automorphic representation for G is an automorphic restriction of a discrete auto-
morphic representation for G′. In other words, there exists a surjective map

extG′

G : Πdisc(G) −→ Πdisc(G′)/ (G′(AF )/G(AF )G(F )AG′)
∨

such that for any π′ ∈ extG′

G (π), π is a subrepresentation of ResG′

G (π′).

In general this map extG′

G is not uniquely determined. We will mainly use this result
for Sp4 ↪→ GSpin5. This will be fruitful thanks to exterior square functoriality for
GL4 [Kim03] and the commutativity of the following commutative diagram of dual
groups:

(5.1.3)

\GSpin5 = GSp4 Ŝp4 = SO5

GL4×GL1 SL6

Lξ Std⊕1

f

where f := ∧2(pr1)⊗ pr−1
2 .

6. Global Arthur–Langlands parameters for GSpin5

6.1. Classification of global parameters. — Let χ : A×F /F× → C× be a continu-
ous unitary character. Recall the set Ψ(Γ̃, χ) of formal global parameters defined in
Section 2.5. Recall that in Section 4.2 we fixed a representative (H,H , s, ξ) for each
equivalence class of elliptic endoscopic data for Γ̃, and in each case an L-embedding
Lξ : LH → LΓ = Γ̂ × WF . We also fixed, for each H as above, a representative
(H′,H ′, s′, ξ′) for each equivalence class of elliptic endoscopic data for H, as well as
an L-embedding Lξ′ : LH′ → LH. Throughout this section we will use this generic
notation.

A difficulty in using the twisted trace formula is to separate contributions from dif-
ferent endoscopic groups. In our case the problematic endoscopic groups are GSpin5

and GSpin4. For this reason we begin with parameters of orthogonal type, although
they will not be our main focus.

There are two natural conjugacy classes of morphisms of complex algebraic groups
GL2×GL2 → GSO4: up to scalars there is on C2 a unique non-degenerate alternating
bilinear form, so that we have GL2 = GSp2, and the tensor product bilinear form
on C2 ⊗ C2 is symmetric. A simple computation by restriction to a maximal torus
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shows that the composition of any such morphism GL2×GL2 → GSO4 with the
standard representation of GSO4 is isomorphic to (Sym2 Std⊗det)⊕(det⊗Sym2 Std).
Dually we get two conjugacy classes of embeddings ι : GSpin4 → GL2 × GL2,
with image the distinguished subgroup {(g1, g2) | det g1 = det g2}. Note that the
equality GL2 = GSp2 is reflected by the fact that for any irreducible representation π
of GL2(Fv) we have (ωπ ◦ det) ⊗ π∨ ' π. Ramakrishnan [Ram00, Th.M] defined
the “tensor product” functoriality GL2 × GL2 → GL4, which we will denote by
(π1, π2) 7→ π1 � π2, for cuspidal πi’s. This is an isobaric automorphic representation
for GL4, i.e., we may see it as formal sum of cuspidal automorphic representations for
GLni with

∑
i ni = 4. If ωπ1

ωπ2
is unitary then π1 � π2 is a formal sum of cuspidal

representations having unitary central character. (Note that this condition is put in
the definition of isobaric automorphic representations in [Ram00], as is apparent in
§2.2 loc. cit., contrary to the original definition in [Lan79].) We will only need this lift
in the weak sense, i.e., compatibility with Satake parameters at all but finitely many
places. This transfer is easily extended to discrete representations:

– if π1 = η[2] for some character η and π2 is cuspidal, then

π1 � π2 = ((η ◦ det)⊗ π2)[2].

– if π1 = η1[2] and π2 = η2[2], then π1 � π2 = η1η2 � η1η2[3].

Proposition 6.1.1. — For any discrete automorphic representations π1, π2 for GL2

such that ωπ1
ωπ2

= χ we have π1 � π2 ∈ Ψdisc(GSpin4, χ).

Proof. — If π1 or π2 is discrete but not cuspidal this is clear, so we may assume that
both are cuspidal. We have π1�π2 = π′1�· · ·�π′r and this decomposition is χ-self-dual,
so that each factor π′i is either χ-self-dual or occurs together with π′j ' (χ◦det)⊗π′∨i
for some j 6= i. For any large enough S we have

LS(s,∧2(π1 � π2)⊗ χ−1) =

r∏
i=1

LS(s,∧2(π′i)⊗ χ−1)
∏

16i<j6r

LS(s, π′i × π′j × χ−1).

Each factor is meromorphic and does not vanish at s = 1 [Sha81, Th. 5.2], and
LS(s, π′i × π′j × χ−1) has a pole at s = 1 if and only if π′j ' (χ ◦ det) ⊗ π′∨i [JS81,
Prop. 3.6]. So to prove that each factor π′i is χ-self-dual of orthogonal type and occurs
with multiplicity one it is enough to prove that the L-function LS(s,∧2(π1�π2)⊗χ−1)

is holomorphic at s = 1. We have

LS(s,∧2(π1 � π2)⊗ (ωπ1
ωπ2

)−1) = LS(s, ad0(π1))LS(s, ad0(π2)),

where ad0(πi) is the Gelbart-Jacquet lift [GJ78] of πi. The Gelbart-Jacquet lift decom-
poses as follows (see Theorem 9.3 and Remark 9.9 loc. cit.). Recall that any continuous
character η : A×F /F× → C× such that πi ⊗ (η ◦ det) ' πi satisfies η2 = 1. Denote
Σ(πi) = {η | πi ⊗ (η ◦ det) ' πi}.

(1) If Σ(πi) = {1} then ad0(πi) is a self-dual cuspidal automorphic representation
for GL3 with trivial central character.
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(2) If Σ(πi) = {1, η} for some non-trivial character η then letting E be the
quadratic extension of F corresponding to η, there exists a continuous charac-
ter γ : A×E/E× → C× such that πi corresponds to IndWF

A×E/E×
(γ), and denoting

Gal(E/F ) = {1, c} we have (γ/γc)2 6= 1. In particular ωπi = γ|A×F /F×η. Then
ad0(πi) = η � σ, where σ is the self-dual cuspidal automorphic representation for
GL2 of orthogonal type corresponding to IndWF

A×E/E×
(γ/γc).

(3) The last possibility is that Σ(πi) has 4 elements, say Σ(πi) = {1, η1, η2, η1η2}.
Then ad0(πi) = η1 � η2 � η1η2. This case is similar to the previous one except that
E/F is not unique, γ/γc is a quadratic character and σ is not cuspidal.

In any case no factor of ad0(πi) is the trivial representation of A×F /F× and so
LS(s, ad0(πi)) is holomorphic at s = 1. �

When we state the symplectic/orthogonal alternative (Proposition 6.1.7 below),
we will for completeness include the non-split case in the statement. For this reason
we next state a special case of the non-split analogue of Proposition 6.1.1.

Let E = F (
√
α) be a quadratic extension of F . We now consider the analogue of

Proposition 6.1.1 for GSpinα4 . Any one of the two conjugacy classes of embeddings
with distinguished image GSpinα4 ×F E → GL2,E × GL2,E descends to a unique
conjugacy class of embeddings ια : GSpinα4 → ResE/F GL2. Dually this corresponds
to two morphisms L(ResE/F GL2) → LGSpin4. The composition with the embed-
ding Lξ : LGSpinα4 → LΓ gives the dual of the inclusion GL1 ↪→ ResE/F GL1 =

Z(ResE/F GL2) on the second factor, and one of the two Asai representations on
the first factor. Recall that the two Asai representations L(ResE/F GL2)→ GL4 are
the two representations extending the representation Std⊗Std⊗1 of the index two
subgroup GL2×GL2×WE ; in particular they are twists of each other by the qua-
dratic character WF → Gal(E/F ) ' {±1}. We will not need to distinguish these
Asai representations, since we will only use the fact that their composition with the
exterior square morphism GL4 → GL6 is the unique representation of L(Res GL2) =

(GL2×GL2) o WF which coincides with (Sym2 Std⊗det⊗1) ⊕ (det⊗Sym2 Std⊗1)

on GL2×GL2×WE , i.e., the induction of either factor. For a cuspidal automorphic
representation π for ResE/F GL2, its Asai lift As(π) was constructed in [Ram02] and
[Kri03] and is an isobaric automorphic representation for GL4 which is a sum of cus-
pidal representations having unitary central character. As in the previous case we will
only need compatibility at unramified places. This construction is trivially extended to
non-cuspidal discrete automorphic representations for ResE/F GL2: for a continuous
character γ of A×E/E×, one of the two Asai lifts of γ[2] is γ|A×F /F×ηE/F � γ|A×F /F× [3],
where ηE/F is the quadratic character of A×F /F× corresponding to E.

Proposition 6.1.2. — As above let E = F (
√
α) be a quadratic extension of F . Let π

be a discrete automorphic representation for ResE/F GL2. Assume that the restric-
tion of ωπ to A×F /F× equals χ. Then (Π, χ) is of orthogonal type, i.e., for any large
enough S the L-function LS(s,Sym2(Π)⊗ χ−1) has a pole at s = 1.
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Proof. — As in the proof of Proposition 6.1.1 the case where π is not cuspidal is trivial,
and in the cuspidal case it is enough to prove that the L-function LS(s,∧2 As(π)⊗χ−1)

is holomorphic at s = 1. We have

LS(s,∧2 As(π)⊗ χ−1) = LS(s, IndFE(ad0 π)).

As we recalled in the previous proof the Gelbart-Jacquet lift ad0(π) may decompose
into one, two or three cuspidal representations but in any case the trivial represen-
tation of A×E/E× does not occur. Thus the trivial representation of A×F /F× does not
occur in the automorphic induction IndFE(ad0 π). �

Remark 6.1.3. — In [Kri12, App.A] the precise decomposition of the tensor product
and Asai lifts are given.

Corollary 6.1.4. — Let α ∈ F×/F×,2. Let Π be a discrete automorphic represen-
tation for GSpinα4 and let c(Π) ∈ FS(GSpinα4 ) be the associated family of Satake
parameters. Assume that Π has central character χ, i.e., µ̂(c(Π)) = c(χ). Then
Lξ(c(Π)) ∈ Ψ̃disc(GSpinα4 , χ).

Proof. — We use an embedding ια as introduced before Propositions 6.1.1 and 6.1.2
and Theorem 5.1.2 to realise Π as an automorphic restriction of some discrete auto-
morphic representation for ResF [

√
α]/F GL2. The fact that (π, χ) is of orthogonal type

then follows from Propositions 6.1.1 and 6.1.2. �

Proposition 6.1.6 below shows that we may associate a parameter in the set Ψ(Γ̃, χ)

to each discrete automorphic representation of GSpin5 with central character χ.
We will refine this in Proposition 6.1.9 to show that these parameters are in fact
contained in the subset Ψdisc(GSpin5, χ). The following elementary remark will help
us to distinguish parameters coming from different endoscopic subgroups for Γ̃.

Remark 6.1.5. — For any α ∈ F×/F×,2 r {1} the sets(
Lξ(FS(GSpin5)) ∪ Lξ(FS(GSpin4))

)
and

(
Lξ(FS(GSpinα4 )) ∪ Lξ(FS(Rα))

)
are pairwise disjoint, because we can recover α as follows (by the definition of Lξ):
for H = GSpinα4 or H = Rα, cS ∈ FS(H) and (gS , xS) = Lξ(cS), for any v 6∈ S,
then v splits in F (

√
α) if and only if det gv = x2

v. On the other hand if H = GSpin5

or H = GSpin4 then we always have det gv = x2
v.

Proposition 6.1.6
(1) For L a proper Levi subgroup of GSpin5, any c ∈ FS(GSpin5) occurring in

I
GSpin5,L
disc such that µ̂(c) = c(χ) satisfies Lξ(c) ∈ Ψ(Γ̃, χ) and this element of Ψ(Γ̃, χ)

is not discrete.
(2) Let H = (GL2 ×GL2) /{(zI2, z−1I2 | z ∈ GL1} be the unique non-trivial

elliptic endoscopic group for GSpin5. Then any c ∈ FS(H) occurring in IH
disc = SH

disc

and such that µ̂(c) = c(χ) satisfies (Lξ ◦ Lξ′)(c) ∈ Ψ(Γ̃, χ).
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(3) Let α ∈ F×/F×,2. Let H′ be a non-trivial elliptic endoscopic group for
GSpinα4 . Then any c ∈ FS(H′) occurring in IH′

disc = SH′

disc and such that µ̂(c) = c(χ)

satisfies (Lξ ◦ Lξ′)(c) ∈ Ψ(Γ̃, χ) and each one of its factors is of orthogonal type with
respect to χ.

(4) Let α ∈ F×/F×,2. For L a Levi subgroup of GSpinα4 , any c ∈ FS(GSpinα4 )

occurring in I
GSpinα4 ,L
disc and such that µ̂(c) = c(χ) satisfies Lξ(c) ∈ Ψ(Γ̃, χ). If L 6=

GSpinα4 then Lξ(c) is not discrete.
(5) Any c ∈ FS(GSpin4) occurring in SGSpin4

disc and such that µ̂(c) = c(χ) satisfies
Lξ(c) ∈ Ψ(Γ̃, χ), and if this parameter is discrete then each one of its factors is of
orthogonal type with respect to χ.

(6) Any c ∈ FS(GSpin5) occurring in SGSpin5

disc and such that µ̂(c) = c(χ) satisfies
Lξ(c) ∈ Ψ(Γ̃, χ).

(7) Any c ∈ FS(GSpin5) associated to a discrete automorphic representation for
GSpin5 with central character χ satisfies Lξ(c) ∈ Ψ(Γ̃, χ).

Proof. — We use repeatedly the description of IG̃,L
disc explained in Section 4.1, namely

that if c ∈ FS(G̃) occurs in IG̃,L
disc , then there is a regular element w̃ ∈ W (L, G̃),

and πL ∈ Πdisc(L) such that πw̃ ' π and c(πL) maps to c via LL→ LG.
(1) The possible proper Levi subgroups L and the embeddings LL → LGSpin5

are listed in Section 2.2. In the case at hand, the possibilities are
(a) GL1 ×GSpin3

∼= GL1 ×GL2,
(b) GL2 ×GSpin1

∼= GL2 ×GL1, and
(c) GL1 ×GL1 ×GSpin1

∼= GL1 ×GL1 ×GL1.
In the first case we find that the corresponding parameter is of the form η � π � η,
where π is a unitary discrete automorphic representation of GL2(AF ) with ωπ = χ and
η2 = χ; in the second case, that the parameter is of the form π�π, where π is a unitary
discrete automorphic representation of GL2(AF ) such that π∨⊗ (χ◦det) ' π; and in
the third case that the parameter is of the form η1 � η2 � η2 � η1 with η2

1 = η2
2 = χ.

(2) By the description of H as a quotient, c corresponds to a pair (π1, π2) with
each πi either an element of Πdisc(GL2) with ωπi = χ or η � η, with η2 = χ. It is
easy to check that (Lξ ◦ Lξ′)(c) = (c(π1) ⊕ c(π2), c(χ)), so that the corresponding
parameter is π1 � π2.

(3) This is similar to the previous two parts. Write H′ = Hα1,α2

2 as in Section 4.2,
so that an element of Πdisc(H′) is given by a pair of automorphic representations ρ1, ρ2

for the tori GSpinαi2 ' ResEi/F (GL1) (here Ei = F (
√
α)) whose restrictions to GL1

are equal to χ. Then via the natural embedding LGSpinαi2 = GSO2 o Gal(Ei/F ))→
GL2, we have (Lξ ◦ Lξ′)(c) = (c(π1) ⊕ c(π2), c(χ)), where π1 and π2 are the cuspi-
dal automorphic representations for GL2 with central character χ automorphically
induced (for Ei/F ) from ρ1 and ρ2 seen as unitary characters of A×Ei/E

×
i .

(4) We use the embedding ι introduced before Proposition 6.1.1 (or rather one of
the two possible embeddings, the choice being irrelevant as before). If c is discrete
automorphic, i.e., it occurs in IGSpin4,GSpin4

disc , then by Theorem 5.1.2 it comes from
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the automorphic restriction of some (π1, π2) ∈ Πdisc(GL2×GL2), with c(ωπ1
)c(ωπ2

) =

c(χ) and so ωπ1ωπ2 = χ. Then Lξ(c) = (c(π1) ⊗ c(π2), c(χ)), and the corresponding
parameter is π1 � π2, considered in Proposition 6.1.1.

Otherwise c occurs in IGSpin4,L
disc for some proper Levi subgroup. By the description

given in Section 2.2, we see that L is isomorphic to GL2 ×GSpin1
0
∼= GL2 ×GL1

or to GL1 ×GL1 ×GSpin1
0
∼= GL1 ×GL1 ×GL1. In either case we can compute

explicitly as in (1), and we find that we obtain parameters of the form π�π, where π
is a discrete automorphic representation of GL2(AF ) such that π∨ ⊗ (χ ◦ det) ' π,
and parameters of the form η1 � η2 � η2 � η1 with η2

1 = η2
2 = χ.

(5) This follows immediately from the stable trace formula (4.3.1) for GSpin4 and
the two previous points.

(6) This follows from the stable twisted trace formula of Theorem 4.3.3 and Re-
mark 6.1.5. Observe that we can associate an element of Ψ(Γ̃, χ) to any family of
Satake parameters occurring in S

GSpin4

disc or to IΓ̃
disc; in the former case this is the

content of (5), and in the latter case it follows from Lemma 4.1.6.
(7) This follows as in (6), this time using the stable trace formula for GSpin5, and

applying parts (2) and (6). �

Note that points 4 and 5 in Proposition 6.1.6 could be proved for GSpinα4 in a
similar way, but we will not need this case in the sequel.

We can now prove the symplectic/orthogonal alternative for GL4. This is well
known, and can also be proved using the theta correspondence or converse theorems;
indeed, [AS14, Th. 4.26] proves a corresponding result for GSpin groups of arbitrary
rank, showing that a χ-self dual cuspidal automorphic representation π of GLn arises
as the transfer of a globally generic representation of a GSpin group which is uniquely
determined by the data of which of the corresponding symmetric and alternating
square L-functions has a pole, together with the central character of π.

However, our emphasis here is slightly different (we wish to determine which repre-
sentations have Satake parameters which occur in the discrete spectrum of GSpin5),
and in any case we find it instructive to show how this follows from the trace formula
together with Kim’s exterior square transfer [Kim03].

Proposition 6.1.7. — Let π be a χ-self dual cuspidal automorphic representation for
GL4, and let S be a finite set of places of F containing all Archimedean places and
all non-Archimedean places where π is ramified.

(1) There is a unique (up to isomorphism) elliptic endoscopic datum (H,H , s, ξ)

for Γ̃ such that there exists c′ ∈ FS(H) satisfying Lξ(c′) = (c(π), c(ξ)). Moreover H

is not isomorphic to Rα, and for any c′ as above we have, for any large enough finite
set S of places of F and any ν ∈ IC(H),

SH
disc,ν,(c′)S = IH

disc,ν,(c′)S = IH,H
disc,ν,(c′)S

.

(2)
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(a) If H ' GSpinα4 for some α ∈ F×/F×,2 then (π, χ) is of orthogonal type,
i.e., for any large enough S the L-function LS(s,Sym2(π)⊗ χ−1) has a pole at
s = 1.

(b) If H ' GSpin5 then (π, χ) is of symplectic type, i.e., for any large enough
S the L-function LS(s,∧2(π)⊗ χ−1) has a pole at s = 1.

Proof

(1) By Remark 4.1.7 (2) we know that (c(π), c(χ)) does not occur in IΓ̃,L
disc for any

proper Levi subgroup L of Γ. Since (π, χ) occurs with multiplicity one in the discrete
automorphic spectrum for Γ, the automorphic extension π̃ of π to Γ̃ (provided by
(4.1.1) for L = G, with w̃ = θ) has non-vanishing trace (see [Lem10, Prop.A.5]
for the p-adic case, the Archimedean case is proved similarly). Therefore (c(π), c(χ))

occurs in IΓ̃
disc. In the stabilisation of the twisted trace formula (Theorem 4.3.3) this

contribution comes from at least one elliptic endoscopic datum, i.e., there is an elliptic
endoscopic group H and c′ ∈ FS(H) occurring in SH

disc such that Lξ(c′) = (c(π), c(χ)).
Again using [JS81] we see that H ' Rα would contradict cuspidality of π. By (2),
(3) and (4) in Proposition 6.1.6 we also know that c′ cannot come from a proper Levi
subgroup of H or from a non-trivial endoscopic datum for H. We have proved every
statement of the first point except for uniqueness of H, which will follow from the
second point.

(2) Let H and c′ be as above. The previous point shows that there exists a discrete
automorphic representation Π for H such that Lξ(c(Π)) = (c(Π), c(χ)).

(a) If H ' GSpinα4 the result follows from Corollary 6.1.4.
(b) If H ' GSpin5, let Π′ be an automorphic restriction (in the sense of

Section 5) of Π to (GSpin5)der ' Sp4. Then Π′ is a discrete automorphic rep-
resentation for Sp4, and Arthur associates a discrete parameter ψ′ ∈ Ψdisc(Sp4)

to Π′ (see Theorem 2.6.1). Now ∧2(c(π))⊗ c(χ)−1 = 1⊕ c(ψ′) (see the commu-
tative diagram (5.1.3)) and so LS(s,∧2(π) ⊗ χ−1) = ζSF (s)LS(s, ψ′). Moreover
by [Kim03, Th. 5.3.1], 1 ⊕ c(ψ′) is associated to a (unique by [JS81, Th. 4.4])
isobaric sum of unitary cuspidal representations, and so the same holds for ψ′.
This implies that LS(s, ψ′) does not vanish on the line <(s) = 1, by the main
result of [JS77]. �

Remark 6.1.8. — Thanks to Theorem 2.7.1 we see that Ψdisc(GSpin5, χ) is the subset
of Ψ(Γ̃, χ) consisting of pairs (ψ, χ) with ψ of the following kinds. (We have labelled
them in the same way as in [Art04]. The groups Sψ are easy to compute; for the
values of εψ, see [Art13, (1.5.6)].)

(a) cuspidal automorphic representations π of GL4 such that π∨ ⊗ (χ ◦ det) ' π

and LS(s, χ−1 ⊗ ∧2π) has a pole at s = 1. (General type, Sψ = 1, εψ = 1.)
(b) π1 � π2, where πi are cuspidal automorphic representations of GL2, ωπ1

=

ωπ2
= χ and π1 6' π2. (Yoshida type, Sψ = Z/2Z, εψ = 1.)
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(c) π[2] for π a cuspidal automorphic representation for GL2 such that ωπ/χ has
order 2 (i.e., (π, χ) is of orthogonal type, which means that π is automorphically
induced from a character η : A×E/E× → C× for the quadratic extension E/F cor-
responding to ωπ/χ, such that ηc 6= η and η|A×F /F× = χ). (Soudry type, Sψ = 1,
εψ = 1.)

(d) π � η[2] with π cuspidal for GL2 and ωπ = η2 = χ. (Saito–Kurokawa type,
Sψ = Z/2Z, εψ = sgn if ε(1/2, π ⊗ η−1) = −1, and εψ = 1 otherwise.)

(e) η1[2] � η2[2] with η2
1 = η2

2 = χ and η1 6= η2. (Howe–Piatetski-Shapiro type,
Sψ = Z/2Z, εψ = 1.)

(f) η[4] with η2 = χ. (One dimensional type, Sψ = 1, εψ = 1.)

Proposition 6.1.9. — For c ∈ FS(GSpin5) associated to a discrete automorphic rep-
resentation Π of GSpin5 with central character χ, the associated element of Ψ(Γ̃, χ)

(by Proposition 6.1.6) belongs to the subset Ψdisc(GSpin5, χ).

Proof. — As in the proof of Proposition 6.1.7, we use an automorphic restriction Π′

of Π to Sp4, and the associated parameter ψ′, which we know to be discrete. We also
know that 1⊕ c(ψ′) = ∧2(c(ψ))⊗ c(χ)−1.

By Theorem 2.6.1, we can and do assume that χ is not a square. In particular,
this implies that ψ does not have a summand of the form η, η[2] or η[4] (as the
condition that η is χ-self dual forces η2 = χ). In addition, if ψ = ψ1 � ψ1, then
c(ψ′) =

(
∧2(c(ψ1))⊗ c(χ)−1

)⊕2⊕ad0(c(ψ1)), which contradicts the discreteness of ψ′.
Thus we have the following possibilities for ψ.

(1) ψ = ψ1 � ψ2, where ψi is a cuspidal automorphic representation for GL2 such
that ψ∨i ⊗ (χ ◦ det) ' ψi and ψ1 6' ψ2. We need to show that ωπi = χ, i.e., that
(πi, χ) is of symplectic type. Suppose not. We have ω2

πi = χ2, and by Remark 6.1.5
we also have ωπ1

ωπ2
= χ2 and so ωπ1

= ωπ2
. Then we find that ∧2(ψ) ⊗ χ−1 =

(ωπ1
/χ) � (ωπ2

/χ) � (χ−1π1 � π2). Since ωπ1
/χ = ωπ2

/χ is a non-trivial quadratic
character, this cannot be written as 1� ψ′ with ψ′ discrete, a contradiction.

(2) ψ = π[2], where π is a cuspidal automorphic representation for GL2 such that
π∨ ⊗ (χ ◦ det) ' π. In this case we need to check that ωπ/χ has order 2, i.e., is
non-trivial. But if χ = ωπ then ψ′ = ∧2(π[2])⊗ ω−1

π = ad0(π)� [3], which cannot be
written as an isobaric sum of 1 and discrete automorphic representations for general
linear groups, a contradiction.

(3) ψ = π[1], where π is a cuspidal automorphic representation for GL4 such that
π∨ ⊗ (χ ◦ det) ' π. This case was considered in Proposition 6.1.7. �

7. Multiplicity formula

In this section we prove the multiplicity theorem for GSpin5 (Theorem 7.4.1),
which describes the discrete automorphic spectrum in terms of the packets Πψ(εψ)

defined in Definition 2.5.5. We begin with some preliminaries.
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7.1. Canonical global normalisation versus Whittaker normalisation

Recall from Remark 4.1.7 that for G = GLN × GL1 and G̃ = G o θ, for a
Levi subgroup L of G and πL ∈ Πdisc(L) the parabolically induced representation
A 2(UP(AF )L(F )\G(AF ))πL

is irreducible. For w̃ ∈ W (L, G̃) we have a canon-
ical (“automorphic”) extension of this representation of G(AF ) to G̃, denoted
MP|w̃(P)(0) ◦ ρG

P,w̃ in Section 4. We have another canonical normalisation of this
extension, namely the Whittaker normalisation recalled in Section 3.2.

Lemma 7.1.1 (Arthur). — These two extensions coincide.

Proof. — The proof of [Art13, Lem. 4.2.3] readily extends to the case at hand. �

7.2. The twisted endoscopic character relation for real discrete tempered pa-
rameters

Proposition 7.2.1. — Let ϕ : WR → GSp4 be a discrete parameter. Then the twisted
endoscopic character relation holds for Πϕ (as defined by Langlands in [Lan89]), i.e.,
part 1 of Theorem 3.1.1 holds.

Recall that for ϕ such that µ̂ ◦ ϕ is a square, this twisted endoscopic character
relation is a direct consequence of [Mez16] and [AMR18, Ann.C].

Proof. — We use a global argument similar to (but simpler than) [AMR18, Ann.C].
Up to twisting we can assume that StdGSpin5

◦ϕ ' (Ia1⊕Ia2 , sign2a1), where a1, a2 ∈
1
2Z>0 are such that a1 − a2 ∈ Z>0 (and as before, Ia = IndWR

C× (z 7→ (z/z)a)). Fix
a continuous character χ : A×/R>0Q× → C× such that χ|R× = sign2a1 . There are
cuspidal automorphic representations π1, π2 for GL2/Q with central characters ωπ1 =

ωπ2 = χ and such that rec(πi,∞) = Iai (apply [Ser97, Prop. 4] with n = 1, k = 2ai+ 1

fixed and N of the form `cond(χ), where cond(χ) is the conductor of χ and `→ +∞
prime). Let ψ = π1 � π2 ∈ Ψdisc(GSpin5, χ), so that ψ∞ = ϕ.

By [Mez16] there is z(ϕ) ∈ C× such that for any f∞ ∈ I(Γ̃R) we have

trπΓ̃
ϕ(f∞) = z(ϕ)

(
trπ+
∞(f ′) + trπ−∞(f ′∞)

)
,

where π+
∞ (resp. π−∞) is the generic (resp. non-generic) element of Πϕ, i.e., 〈• , π+

∞〉
(resp. 〈• , π−∞〉) is the trivial (resp. non-trivial) character of Sϕ. We need to show that
z(ϕ) = 1. Recall that for any finite prime p the twisted endoscopic character relation

trπΓ̃
ψp(fp) =

∑
πp∈Πψp

trπp(f
′
p)

holds by the main theorem of [CG15].
In the discrete part of the trace formula for Γ̃, the contribution IΓ̃

disc,c(ψ) of c(ψ) only
comes from L = GL2×GL2 and w̃ = θ0, using notation as in the discussion preceding
Definition 4.1.2. By Lemma 7.1.1 and since det(w̃ − 1|AΓ

L) = 2 this contribution is
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(on I(Γ̃S) for S containing ∞ and all places where π1 or π2 ramify)∏
v∈S

hv 7−→
1

2

∏
v

trπΓ̃
ψv (hv),

where πΓ̃
ψv

is the Whittaker-normalised extension to Γ̃(Fv) of the irreducible parabol-
ically induced representation π1,v × π2,v. Thus we get for h =

∏
v∈S hv ∈ I(Γ̃S)

(7.2.2) IΓ̃
disc,c(ψ)(h) =

z(ϕ)

2

∏
v∈S

∑
πv∈Πψv

trπv(h
GSpin5
v ).

By the stabilisation of the twisted trace formula (Theorem 4.3.3), and using Re-
mark 6.1.5 and Proposition 6.1.6 (5) which imply that the endoscopic groups GSpinα4
(for α ∈ F×/F×,2) and Rα (for α ∈ F×/F×,2 r {1}) have vanishing contributions
corresponding to c(ψ)S , (7.2.2) equals

Sdisc,ν(ϕ),c(ψ)S (hGSpin5).

By surjectivity of the transfer map h 7→ hGSpin5 (Proposition 2.4.4), this determines
the stable linear form S

GSpin5

disc,ν(ψ),c(ψ)S
. Let

H = (GL2 ×GL2) /{(zI2, z−1I2 | z ∈ GL1}

be the unique non-trivial elliptic endoscopic group for GSpin5. The (ν(ψ), c(ψ)S)-
part of the stabilisation of the trace formula (Theorem 4.3.2) for GSpin5 now reads,
for f =

∏
v∈S fv ∈ I(GSpin5),

I
GSpin5

disc,ν(ψ),c(ψ)S
(f) =

z(ϕ)

2

∏
v∈S

∑
πv∈Πψv

trπv(fv) +
1

4

∑
ν′ 7→ν(ψ)

c′S 7→c(ψ)S

SH
disc,ν′,c′S (fH).

Now SH
disc,ν′,c′S = IH

disc,ν′,c′S is non-vanishing if and only if (ν′, c′S) is associated to
(π1, π2) or to (π2, π1), in which case it equals tr (π1 ⊗ π2) or tr (π2 ⊗ π1). By the
endoscopic character relations, in either case we have

SH
disc,ν′,c′S (fH) =

∏
v∈S

∑
πv∈Πψv

〈s, πv〉 trπv(fv),

where s is the non-trivial element of Sψ. Thus we obtain

I
GSpin5

disc,ν(ψ),c(ψ)S
(f) =

∑
(πv)v∈

∏
v∈S Πψv

z(ϕ) +
∏
v∈S〈s, πv〉
2

∏
v∈S

trπv(fv).

By Proposition 6.1.6 (1) the left-hand side simply equals the trace of f in the
(ν(ψ), c(ψ)S)-part of the discrete automorphic spectrum for GSpin5. Varying S,
the above equality means that the multiplicity of π = ⊗′vπv ∈ Πψ in A 2(GSpin5)

equals (z(ϕ) + 〈s, π〉)/2. Comparing with [CG15, Th. 3.1] (which relies on the theta
correspondence and not trace formulas) for any π we finally obtain z(ϕ) = 1. �
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Remark 7.2.3. — Arguing as in [AMR18, Lem.C.1] one could certainly prove the
Proposition without using [CG15, Th. 3.1], since |z(ψ)| = 1 and (z(ψ) − 1)/2 ∈ Z>0

imply z(ψ) = 1 (consider the multiplicity of π−∞ ⊗
⊗′

p πp, where 〈s, πp〉 = +1 for
all p).

7.3. Local parameters. — In this section we obtain Arthur’s multiplicity formula for
GSpin5, by formally using the stable twisted trace formula and twisted endoscopic
character relations to get the desired expression for SGSpin5

disc,c for c corresponding to
ψ ∈ Ψdisc(GSpin5), and then the stable trace formula for GSpin5.

We begin with the following important point, which is Conjecture 2.5.3 for G =

GSpin5.

Proposition 7.3.1. — If π is a χ-self dual cuspidal automorphic representation
of GL4(AF ) of symplectic type, then for any place v of F , the pair (rec(πv), rec(χv))

is of symplectic type, i.e., factors through GSp4(C).

Proof. — This follows from [GT11a, Th. 12.1], which shows that π arises as the trans-
fer of a (globally generic) automorphic representation Π of GSp4(AF ), and that at
each place v, the pair (rec(πv), rec(χv)) is obtained from the L-parameter associated
to Πv by the main theorem of [GT11a]. �

Remark 7.3.2. — There are at least two alternative ways of proving Proposition 7.3.1.
One is to use the main results of [Kim03] and [Hen09], which imply in particular that
for each place v the representation ∧2 rec(πv)⊗ rec(χv)

−1 contains the trivial repre-
sentation, together with a case by case analysis. The other is to follow the argument
of [Art13, §8.1].

7.4. The global multiplicity formula. — Given Proposition 6.1.9, the multiplicity
formula is morally equivalent to the following formula for any ψ ∈ Ψdisc(GSpin5),
f ∈H (GSpin5) and S large enough:

S
GSpin5

disc,ν,c(ψ)S
=


εψ(sψ)

|Sψ|
∑
π∈Πψ

〈sψ, π〉 trπ if ν = ν(ψ)

0 otherwise.

This is the simplification (for discrete parameters) of the general stable multiplicity
formula (see [Art13, Th. 4.1.2]).

We now prove the multiplicity formula; the following theorem is Conjecture 2.5.6,
specialised to the case G = GSpin5. We write Πψ(εψ) for the set of representations
defined in 2.5.5 (with no tilde, since we are working with GSpin5).

Theorem 7.4.1. — There is an isomorphism of H (GSpin5)-modules

(7.4.2) A 2(GSpin5) ∼=
⊕

χ:A×F /F
×R>0→C×

ψ∈Ψdisc(GSpin5,χ)
π∈Πψ(εψ)

π,

where χ runs over the continuous (automatically unitary) characters.
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Proof. — Fix a continuous character χ : A×F /F×R>0 → C×, and write

A 2(GSpin5, χ)

for the space of χ-equivariant square-integrable automorphic forms on which A×F /F×

acts via χ. For any ν ∈ IC(G) and c ∈ FS(G), write

A 2(GSpin5, χ)ν,c := lim−→
S

A 2(GSpin5, χ)ν,cs .

Then we have

A 2(GSpin5, χ) =
⊕

ν∈IC(G)
c∈FS(G)

A 2(GSpin5, χ)ν,c

=
⊕

ν∈IC(G)
ψ∈Ψdisc(GSpin5,χ)

A 2(GSpin5)ν,c(ψ).

Indeed, it follows from Proposition 6.1.9 that for any c with A 2(GSpin5, χ)c 6= 0,
there is some ψ ∈ Ψdisc(GSpin5, χ) such Lξ(c(π)) = c(ψ). It follows that we are
reduced to showing that for each ψ ∈ Ψdisc(GSpin5, χ), we have

(7.4.3) A 2(GSpin5)ν,c(ψ)
∼=

{⊕
π∈Πψ(εψ) π if ν = ν(ψ)

0 if ν 6= ν(ψ).

Fix ν ∈ IC(G) and ψ ∈ Ψdisc(GSpin5, χ). If χ is a square, then we are done by
Theorem 2.6.1 (that is, by reducing to SO5, already proved by Arthur). So we only
have to consider the following cases:

(1) Cuspidal π for GL4 such that π∨ ⊗ (χ ◦ det) ' π and (π, χ) is of symplectic
type.

(2) π1 � π2, where the πi’s are distinct cuspidal automorphic representations for
GL2 with ωπi = χ (Yoshida type).

(3) π[2], where π is a cuspidal automorphic representation for GL2 such that ωπ/χ
is a quadratic character, i.e., π∨⊗(χ◦det) ' π and (π, χ) is of orthogonal type (Soudry
type).
In case (2), the multiplicity formula is a special case of [CG15, Th. 3.1], proved using
the global theta correspondence. So we can and do assume that we are in case (1) or
case (3), so that in particular Sψ = 1 and εψ = 1. Furthermore, in either case we know
that for any place v, the parameter ψv is of symplectic type, i.e., factors through GSp4

(in case (1) this is Proposition 7.3.1, and in case (3) it follows from Theorem 2.7.1).
We will prove (7.4.3) by computing I

GSpin5,GSpin5

disc,ν,c(ψ) (f) for each f ∈H (GSpin5),
which by definition is the trace of f on the left hand side of (7.4.3) (note that this
is well-defined, and equal to IGSpin5,GSpin5

disc,ν,c(ψ)S
(f) for any sufficiently large S). To this

end, note firstly that by Proposition 6.1.6 (1), we know that for any proper Levi L of
GSpin5, and for any c ∈ FS(GSpin5) occurring in IGSpin5,L

disc,ν , with central charac-
ter χ, we have Lξ(c) ∈ Ψ(Γ̃, χ)rΨdisc(GSpin5, χ). Consequently, we see that for any
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ψ ∈ Ψdisc(GSpin5, χ), we have

(7.4.4) I
GSpin5

disc,ν,c(ψ) = I
GSpin5,GSpin5

disc,ν,c(ψ) .

Denoting as usual the unique non-trivial elliptic endoscopic group of GSpin5 by H,
we have that SH

disc,ν′,c′ vanishes identically for any ν′ ∈ IC(H) and any c′ ∈ FS(H)

such that Lξ′(c′) = c(ψ) (because the proof of Proposition 6.1.6 (2) shows that any c′
occurring in SH

disc is such that Lξ◦Lξ′(c′) is a sum of at least two discrete automorphic
representations of general linear groups). It follows that we have

(7.4.5) I
GSpin5

disc,ν,c(ψ) = S
GSpin5

disc,ν,c(ψ).

By Proposition 6.1.6 (5), for any c′ occurring in SGSpin4

disc we have Lξ(c′) 6= c(ψ), so
that (using also Remark 6.1.5) the contribution of ψ to the stabilisation of the twisted
trace formula for Γ̃ simply reads

(7.4.6) IΓ̃
disc,ν,c(ψ)(h) = S

GSpin5

disc,ν,c(ψ)(h
GSpin5),

where on the right-hand side c(ψ) denotes the unique element of FS(GSpin5) which
is the preimage of c(ψ) ∈ FS(Γ̃) by Lξ, and similarly for ν seen as an element
of IC(GSpin5). By surjectivity of h 7→ hGSpin5 (see Proposition 2.4.4), and Re-
mark 4.1.7, this implies that SGSpin5

disc,ν,c(ψ) vanishes identically if ν 6= ν(ψ). In the defi-
nition of IΓ̃

disc,ν,c(ψ) as a sum over Levi subgroups, the only non-vanishing summand
corresponds to L = GL4. By Lemma 7.1.1 we have for h =

∏
v hv ∈ I(Γ̃)

IΓ̃
disc,ν(ψ),c(ψ)(h) =

∏
v

trπΓ̃
ψv (hv).

Applying Theorem 3.1.1 (1) (or rather its extension to parameters in Ψ+(GSpin5)

via parabolic induction; see [Art13, §1.5]) to the right-hand side of this equality and
using (7.4.6) we obtain

S
GSpin5

disc,ν(ψ),c(ψ)(
∏
v

fv) =
∏
v

∑
πv∈Πψv

trπv(fv).

Combining this with (7.4.4) and (7.4.5), we conclude that

I
GSpin5,GSpin5

disc,ν,c(ψ) (
∏
v

fv) =

{∏
v

∑
πv∈Πψv

trπv(fv) if ν = ν(ψ)

0 if ν 6= ν(ψ).

Recalling that Sψ = 1 and εψ = 1, this is equivalent to 7.4.3, so we are done. �

Remark 7.4.7. — A consequence of the multiplicity formula and [AS14] is that for
any discrete automorphic representation π for GSpin5 which is formally tempered
(i.e., of general or Yoshida type), there exists a globally generic discrete automorphic
representation π′ for GSpin5 such that for any place v of F , πv and π′v have the same
Langlands parameter. Indeed letting ψ ∈ Ψdisc(GSpin5, χ) be the parameter of π
(well-defined by the multiplicity formula), Shahidi’s conjecture (proved in [GT11a])
implies that there is a unique representation in Πψ which is generic at each place.
In fact the multiplicity formula asserts that it is automorphic with multiplicity one.
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By (the converse part of) [AS14, Th. 4.26] there exists a globally generic discrete (even
cuspidal) automorphic representation π′ for GSpin5 such that π′v ' πv for almost all
v. In particular π′ has parameter ψ, and for any place v of F , π′v is generic.

Note that in the case χ = 1, Arthur used the the analogue of [AS14] in order to
prove Shahidi’s conjecture: see [Art13, Prop. 8.3.2]. More precisely, he used the descent
theorem of Ginzburg, Rallis and Soudry (and thus indirectly the converse theorem of
Cogdell, Kim, Piatestski-Shapiro and Shahidi).

Remark 7.4.8. — Let G be an inner form of GSpin5 over a number field F . Us-
ing the stabilisation of the trace formula for G qualitatively (i.e., only considering
families of Satake parameters), we see that for any π ∈ Πdisc(G, χ), there is a well-
defined ψ ∈ Ψ(Γ̃, χ) such that c(π) = (c(ψ), c(χ)). Moreover if ψ is discrete then
ψ ∈ Ψdisc(GSpin5, χ). If ψ ∈ Ψdisc(GSpin5, χ) is tempered (i.e., either of general
type or of Yoshida type) then using the stabilisation of the trace formula quantita-
tively and the endoscopic character relations proved in [CG15] for inner forms as well,
one could certainly prove the multiplicity formula for the part of the discrete auto-
morphic spectrum for G corresponding to (c(ψ), c(χ)) ∈ FS(G). The proof would be
similar to those of Proposition 7.2.1 and Theorem 7.4.1. Note however that to even
state the multiplicity formula, one has to fix a normalisation of local transfer factors
satisfying a product formula. This normalisation was achieved in [Kal15] and used in
[Taï19] to prove the multiplicity formula for certain inner forms of symplectic groups.
It would thus be necessary to compare Kaletha’s normalisation of local transfer factors
for the non-split inner form of GSp4 realised as a rigid inner twist with Chan–Gan’s
ad hoc normalisation [CG15, §4.3].

8. Compatibility of the local Langlands correspondences for
Sp4 and GSpin5

In this section, we study the compatibility of the local Langlands correspondence
with restriction from GSp4(F ) ' GSpin5(F ) to Sp4(F ), where F is a p-adic field.
We do not consider the case of Archimedean places, which could certainly be done by
a careful examination of the Langlands–Shelstad correspondence.

8.1. Compatibility with restriction. — Let F be a p-adic field. The proof of the ex-
istence of the local Langlands correspondence for GSp4(F ) ' GSpin5(F ) in [GT11a]
used the theta correspondence, and its compatibility with the correspondence stated
in [Art04] (characterised by (twisted) endoscopic character relations) was proved
in [CG15]. In the paper [GT10], a local Langlands correspondence for Sp4(F ) was
deduced from the correspondence for GSp4(F ) by restriction. This correspondence is
uniquely characterised by the commutativity of the diagram

(8.1.1)
Π(GSpin5) Φ(GSpin5)

Π(Sp4) Φ(Sp4)

pr
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where Π(GSpin5) (resp. Π(Sp4)) is the set of equivalence classes of irreducible admis-
sible representations of GSpin5(F ) (resp. Sp4(F )), Φ(GSpin5) (resp. Φ(Sp4)) is the
set of equivalence classes of continuous semisimple representations of WDF valued
in GSp4(C) (resp. SO5(C)), the horizontal arrows are the local Langlands correspon-
dences, and pr is the projection GSp4(C) → PGSp4(C) ∼= SO5(C). The left hand
vertical arrow is not in fact a map at all, but a correspondence, given by taking any
restriction of an element of Π(GSpin5) to Sp4(F ).

Of course, [Art13] gives another definition of the local Langlands correspondence
for Sp4, which is characterised by twisted endoscopy for (GL5, g 7→ tg−1). It is not
obvious that this correspondence agrees with that of [GT10]; this amounts to proving
the commutativity of the diagram (8.1.1), where now the horizontal arrows are the
correspondences characterised by twisted endoscopy. Proving this is the main point of
this section; we will also prove a refinement, describing the constituents of the restric-
tions of representations of GSpin5(F ) to Sp4(F ) in terms of the parameterisation of
L-packets.

We begin by recalling some results about restriction of admissible representations,
most of which go back to [GK82], and are explained in the context of GSp2n in [GT10].
They are also proved in [Xu16], which we refer to as a self-contained reference. If π̃
is an irreducible admissible representation of GSpin5(F ), then π̃|Sp4(F ) is a direct
sum of finitely many irreducible representations of Sp4(F ) ([Xu16, Lem. 6.1]), and
these representations are pairwise non-isomorphic ([AP06, Th. 1.4]). Furthermore if π
is an irreducible admissible representation of Sp4(F ), then there exists an irreducible
representation π̃ of GSpin5(F ) whose restriction to Sp4(F ) contains π, and π̃ is
unique up to twisting by characters ([Xu16, Cor. 6.3, 6.4]). There is also an analogue
of these statements for L-parameters, which is that L-parameters for Sp4 may be
lifted to GSpin5, and such lifts are unique up to twist; see [GT10, Prop. 2.8] (see also
[Lab85, Th. 7.1] for a more general lifting result).

In particular, it follows that if π ∈ Π(Sp4), and π̃ lifts π, with L-parameter ϕπ̃,
then pr ◦ϕπ̃ depends only on π (because ϕπ̃ is well-defined up to twist, as π̃ itself
is); we need to show that it is equal to the L-parameter of π defined by the local
Langlands correspondence of [Art13].

Theorem 8.1.2. — The diagram (8.1.1) commutes, where the horizontal arrows are
the correspondences of [Art13, Art04] determined by twisted endoscopy; that is, the
local Langlands correspondences for Sp4 of [GT10] and [Art13] coincide.

Proof. — By the preceding discussion, it suffices to show that for each irreducible
admissible representation π, there is some lift π̃ of π such that ϕπ = pr ◦ϕπ̃.

We begin with the case that π is a discrete series representation. Then by [Clo86,
Th. 1B] and Krasner’s lemma, we can find a totally real number field K, a finite
place v of K, and a discrete automorphic representation Π of Sp4(AK), such that:

(1) Kv
∼= F (so we identify Kv with F from now on).

(2) Πv ' π.

J.É.P. — M., 2019, tome 6



Arthur’s multiplicity formula for GSp4 and restriction to Sp4 517

(3) at each infinite place w of K, Πw is a discrete series representation.
(4) for some finite place w of K, Πw is a discrete series representation whose

parameter is irreducible when composed with StdSp4
: SO5 → GL5 (for example the

parameter which is trivial on WKw and the “principal SL2” on SU(2)).
By Theorem 5.1.2, there is a discrete automorphic representation Π̃ of GSpin5(AK)

such that Π̃|Sp4(AK) contains Π. We can and do assume that the infinitesimal character
of Π is sufficiently regular, so that in particular the parameter ψ of Π is tempered.
By (4) above, ψ is just a self-dual representation for GL5/K with trivial central
character. Write ψ̃ for the parameter of Π̃.

As in the proof of Proposition 6.1.7 (2) (i.e., comparing at the unramified places us-
ing (5.1.3)), we see that 1�ψ = ∧2(ψ̃)⊗ω−1

ψ̃
. Given the possibilities in Remark 6.1.8 we

see (using [GJ78] to rule out the case ψ̃ = π[2], see the proof of Proposition 6.1.7 (1))
that ψ̃ is necessarily tempered. If ψ̃ = π1�π2 was of Yoshida type then we would have
ψ = 1� (π1 � π∨2 ), a contradiction with the fourth property of Π above. Therefore ψ̃
is of general type, i.e., a χ-self-dual cuspidal automorphic representation for GL4/K

of symplectic type for some character χ of A×K/K×. By the main results of [Kim03]
and [Hen09], the Langlands parameter of 1� ψ at v equals ∧2(rec(ψ̃v))⊗ rec(ωψ̃)−1,
which implies that ϕΠv = pr ◦ϕΠ̃v

. Taking π̃ = Π̃v, we are done in this case.
We now treat the case that the parameter ϕπ is not discrete, but is bounded modulo

centre. Recall that a minimal Levi subgroup LM of LSp4 such that ϕπ(WDF ) ⊂ LM

is unique up to conjugation by Cent(ϕπ, Ŝp4) [Bor79, Prop. 3.6]. Then ϕπ factors
through a well-defined discrete parameter ϕM : WDF → LM. Since Sp4 is quasi-split
we have a natural identification of LM with the L-group of a Levi subgroup M of
GSp4 (well-defined up to conjugation by normalisers in Sp4, resp. Ŝp4). Since ϕπ is
assumed to be non-discrete we have LM 6= LSp4. It follows from the construction
in [Art13] (see the proof of Proposition 2.4.3 loc. cit., in particular (2.4.13)) that π is a
constituent of the parabolic induction Ind

G(F )
P(F ) πM, where P is any parabolic subgroup

of Sp4 with Levi M, and πM is in the L-packet of ϕM. Recall that this L-packet is
defined via the natural identification M with a product of copies of GL groups with
Sp2a for some 0 6 a < 2, using rec for the GL factors and Arthur’s local Langlands
correspondence for the Sp factor.

Write M = M̃ ∩ Sp4, where M̃ is a Levi subgroup of GSp4, and similarly
P = P̃ ∩ Sp4. Let π̃M be an essentially discrete series representation of M̃(F ) whose
restriction to M(F ) contains πM. Then there is an irreducible constituent π̃ of the
(semisimple) parabolic induction Ind

GSpin5(F )

P̃(F )
π̃M such that π is a restriction of π̃.

We will prove that ϕπ = pr ◦ϕπ̃. Note that for non-discrete parameters, the local
Langlands correspondence for GSpin5(F ) of [GT11a] is also compatible with para-
bolic induction (see [CG15, §6.6] and [GT11b, Prop. 13.1]), i.e., the parameter of π̃ is
ϕπ̃M

(the Langlands parameter of π̃M) composed with LM̃ ⊂ LGSpin5. Note that M̃

is isomorphic to a product of GL and for such a group the (bijective) local Langlands
correspondence is well-defined, i.e., it does not depend on the choice of an isomor-
phism. This follows from compatibility of rec with twisting, central characters and
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duality. The same argument shows that any morphism with normal image between
two such groups is also compatible with the local Langlands correspondence. We have
a commutative diagram

LM̃ LGSpin5

LM LSp4

pr pr

so that to conclude that ϕπ = pr ◦ϕπ̃ it is enough to show that ϕM = pr ◦ϕπ̃M
, which

is simply a compatibility of local Langlands correspondences for M and M̃. There
are three cases to consider. We write the standard parabolic subgroups of GSpin5

and Sp4 as in Section 2.2. We do not justify the embedding M ↪→ M̃, as this is a
simple but tedious exercise in root data.

– M̃ = GL2
1 × GSpin1, M = GL2

1, the embedding M ↪→ M̃ is (x1, x2) 7→
(x1x2, x1/x2, x

−1
1 ). This case is trivial.

– M̃ = GL2 ×GSpin1, M = Sp2 ×GL1, the embedding M ↪→ M̃ is (g, x1) 7→
(gx1, x

−1
1 ). This case is not formal as for the factor Sp2 the local Langlands cor-

respondence that is used is Arthur’s from [Art13] and it is not obvious that it is
compatible with rec for GL2, in other words that Arthur’s local Langlands correspon-
dence for Sp2 ' SL2 (characterised by twisted endoscopy for GL3) coincides with
Labesse-Langlands [LL79]. Fortunately Arthur verified this compatibility in [Art13,
Lem. 6.6.2].

– M̃ = GL1 × GSpin3, M = GL1 × GL2, the embedding M ↪→ M̃ is g 7→
(det g, g/ det g), where we have identified GSpin3 with GL2. This case also follows
from the above remark about the local Langlands correspondence for groups isomor-
phic to a product of GL.

Finally, we must treat the case that ϕ is not bounded modulo centre. The descrip-
tion of the L-packets in this case is again in terms of parabolic inductions from Levi
subgroups (“Langlands classification”). This is well-known and completely general
(see [Sil78], [SZ14]). The argument is similar to the above reduction, except that P

and P̃ are uniquely determined by a positivity condition and that π and π̃ are unique
quotients of standard modules and not arbitrary constituents. We do not repeat the
argument. �

We now examine the restriction from GSpin5(F ) to Sp4(F ) more closely, proving
a slight refinement of the results of [GT10]. In [GT10, App.A], a detailed qualitative
description of the constituents of π̃|Sp4(F ) is given, which is obtained by examining the
local Langlands correspondence (see [GT10, §5, 6] for the corresponding calculations
with L-parameters). However, since the local Langlands correspondence of [GT10]
is not characterised in terms of twisted and ordinary endoscopic character relations,
they cannot describe precisely which elements of the L-packets for Sp4(F ) arise as
the restrictions of given elements of the L-packets for GSpin5(F ).
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Theorem 8.3.2 below answers this question. In its proof, we need to make use of
the results of Section 5 for SO4 ↪→ H, where

H = (GL2 ×GL2) /{(zI2, z−1I2 | z ∈ GL1}

is the non-trivial elliptic endoscopic group of GSpin5. Here SO4 is identified with
the subgroup of pairs (a, b) with (det a)(det b) = 1. Indeed, H may be identified with
the subgroup GSO4 of GO4 given by the elements for which det = ν2, where ν is
the similitude factor.

Note that SO4 is an elliptic endoscopic group for Sp4 and that we have the fol-
lowing commutative diagram:

(8.1.3)

Ĥ ŜO4 = SO4

\GSpin5 = GSp4 Ŝp4 = SO5

Lξ′ Lξ′

8.2. Multiplicity one. — In studying restriction from H to SO4 we will make use
of the following variant of the results of [AP06]. In fact, we could prove the special
case that we need in a simpler but more ad-hoc fashion by using the description of H

in terms of GL2, but it seems worthwhile to prove this more general result.

Proposition 8.2.1. — Let n > 1, and let V be a vector space of dimension 2n over F
endowed with a non-degenerate quadratic form q. Let π be an irreducible admissible
representation of GSO(V, q) = GSO(V, q)(F ). Then the irreducible constituents of
the restriction π|SO(V,q) are pairwise non-isomorphic.

Proof. — By [AP06, Th. 2.3], it suffices to show that there is an algebraic anti-
involution τ of GSO(V, q) which preserves SO(V, q) and takes each SO(V, q)-
conjugacy class in GSO(V, q) to itself. To define τ , we set τ(g) = ν(g)δng−1δ−n, where
δ ∈ O(V, q) is an involution with det δ = −1. This obviously preserves SO(V, q), so we
need only check that it also preserves SO(V, q)-conjugacy classes in GSO(V, q). To see
this, we claim that it is enough to show that we can write g = xy with x ∈ O(V, q),
y ∈ GO(V, q) (so ν(y) = ν(g)) satisfying x2 = 1, det(x) = (−1)n, y2 = ν(y). Indeed,
we then have

τ(g) = ν(g)δng−1δ−n = δnν(y)y−1x−1δ−n = δnyxδ−n

= δnx−1(xy)xδ−n = (xδ−n)−1g(xδ−n),

as required. The result then follows from Lemma 8.2.2 below, which is a slight refine-
ment of [RV18, Th.A]. �

Lemma 8.2.2. — Let n > 0, let K be a field of characteristic 0, and let V be a
vector space of dimension 2n over K endowed with a non-degenerate quadratic form q.
If g ∈ GSO(V, q) then we can write g = xy with x ∈ O(V, q), y ∈ GO(V, q) satisfying
x2 = 1, det(x) = (−1)n, y2 = ν(y).
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Proof. — We argue by induction on n, the case n = 0 being trivial. Suppose now that
n > 0. By [RV18, Th.A], we can write g = xy with x ∈ O(V, q), y ∈ GO(V, q) satis-
fying x2 = 1, y2 = ν(y) = ν(g). If det(x) = (−1)n then we are done, so suppose that
det(x) = (−1)n+1 and so det(y) = (−1)n+1ν(y)n. Since y2 = ν(y), any eigenvalue (in
an extension of K) of y is a square root of ν(y). Since det(y) = (−1)n+1ν(y)n, we see
that the two eigenspaces of y do not have equal dimension. It follows that ν(y) is a
square, as otherwise the characteristic polynomial of y would be a power of the irre-
ducible polynomial X2 − ν(y). So the eigenvalues of y are in K, and up to dividing g
and y by one of these eigenvalues we can assume that g ∈ SO(V, q) and y ∈ O(V, q)

with det(y) = (−1)n+1. Then y has an eigenspace (for an eigenvalue ±1) of dimension
at least n+1. The same analysis applies to x, and it follows that there is a subspaceW
(the intersection of these eigenspaces for x and y) of dimension at least 2 of V on
which g acts by a scalar which is ±1. Up to replacing g by −g and y by −y, we can
assume that ker(g − 1) has dimension at least 2. We have a canonical g-stable de-
composition of V as the direct sum of ker((g − 1)2n) and its orthogonal complement,
and they both have even dimension over K since g ∈ SO(V, q) with dimK V even. If g
is not unipotent, we conclude using the induction hypothesis for the restriction of g
to ker((g− 1)2n) and to its orthogonal complement. Suppose for the rest of the proof
that g is unipotent. If n = 1 the conclusion is trivial, so assume that n > 1, so that
SO(V, q) is semisimple. By Jacobson–Morozov (see for example [Bou05, Ch.VIII §11])
there is an algebraic morphism SL2 → SO(V, q) mapping

(
1 1
0 1

)
to g, unique up to

conjugation by the centraliser of g in the subgroup Aute(so(V, q)) of SO(V, q)/{±1},
where Aute is the subgroup of automorphisms of the Lie algebra generated by expo-
nentials of nilpotent elements. For d > 1 fix an irreducible representation Ud of SL2 of
dimension d as well as a non-degenerate (−1)d−1-symmetric SL2-invariant pairing Bd
on Ud. We have a canonical decomposition

V =
⊕
d>1

Ud ⊗ Vd,

where Vd = (V ⊗K U∗d )SL2 . The quadratic form q corresponds to an element of

(Sym2 V ∗)SL2 =
⊕

d>1 odd
Sym2(V ∗d )⊕

⊕
d>2 even

∧2V ∗d

and non-degeneracy of q is equivalent to non-degeneracy of each factor. Writing
each Vd for d odd (resp. even) as an orthogonal direct sum of quadratic lines
(resp. planes endowed with a non-degenerate alternate form), we are left to prove a
decomposition g′ = x′y′ in the following cases.

(1) V ′ has odd dimension 2m+ 1 and is endowed with a non-degenerate quadratic
form q′ and a unipotent automorphism g′. Applying [RV18, Th.A] we obtain g′ = x′y′

with x′, y′ involutions in O(V, q). Up to replacing (x′, y′) by (−x′,−y′) we can assume
that det(x′) is ±1 as we may desire.

(2) V ′ = U2m⊗V ′′′, where V ′′′ is 2-dimensional and endowed with a non-degenerate
alternating form B′′′, and g′ = g′′ ⊗ IdV ′′′ ∈ SO(V ′, q′) for q′ the quadratic form
corresponding to the symmetric bilinear form B′ = B2m ⊗ B′′′ and g′′ a unipotent
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element of Sp(U2m, B2m). Applying [RV18, Th.A] again we can write g′′ = x′′y′′,
where x′′, y′′ are involutions in GSp(U2m, B2m) having similitude factor −1. Similarly
write IdV ′′′ = x′′′y′′′, where x′′′, y′′′ are involutions in GSp(V ′′′, B′′′) having similitude
factor −1. Then g′ = (x′′ ⊗ x′′′)(y′′ ⊗ y′′′) is the desired decomposition as a product
of involutions in SO(V ′, q′). �

8.3. Restriction of local Arthur packets. — We now give our description of the
restriction of representations of GSpin5(F ). Recall that if ϕ : WDF → GSp4 is a
bounded parameter, then the corresponding component group Sϕ is either trivial or
is Z/2Z = {1, s}. In the former case, the L-packet Πϕ associated to ϕ is a singleton,
and in the latter case it is a pair {π+, π−}, where π± is characterised by the fact
that trπ+ − trπ− is the transfer to GSpin5(F ) of trπϕH

, where ϕH ∈ Φ(H) is the
parameter mapping to (ϕ, s) via Lξ′. In either case, if we write ϕ′ = pr ◦ϕ, then
by [GT10, Prop. 2.8], we have

(8.3.1)
⊕
π∈Πϕ

π|Sp4(F )
∼=

⊕
π′∈Πϕ′

π′.

(Indeed, this follows from Theorem 8.1.2, the fact that lifts of representations
of Sp4(F ) to GSp4(F ) are unique up to twist, and the fact that the restrictions
of representations of GSp4(F ) to Sp4(F ) are semisimple and multiplicity free.)
The following theorem improves on this result by giving a precise description of the
restrictions of the individual elements of Πϕ.

Theorem 8.3.2. — Let ϕ be a bounded L-parameter, and write ϕ′ = pr ◦ϕ, so that
Sϕ ↪→ Sϕ′ . Write Πϕ and Πϕ′ for the respective L-packets. If Sϕ is trivial, and
Πϕ = {π}, then

π|Sp4(F )
∼=

⊕
π′∈Πϕ′

π′.

If Sϕ = Z/2Z = {1, s}, and Πϕ = {π+, π−} as above, then

π±|Sp4(F )
∼=

⊕
π′∈Πϕ′

〈s,π′〉=±1

π′.

Proof. — In the case that Sϕ is trivial, this is (8.3.1), so we may suppose
that Sϕ is non-trivial, so that ϕ is endoscopic. We can write ϕ = ϕ1 ⊕ ϕ2, where
ϕ1, ϕ2 : WDF → GL2 are bounded with same determinant; that is, ϕ = Lξ′ ◦ ϕH,
where ϕH = ϕ1 × ϕ2 : WDF ×SL2(C) → Ĥ. Via Lξ′ we can see s as the non-trivial
element of Z(Ĥ)/Z( \GSpin5), i.e., the image of (1,−1) ∈ Ĥ ⊂ GL2×GL2. Then
by Conjecture 2.4.2 (2) for GSpin5 (i.e., the main theorem of [CG15]), we have an
equality of traces

trπ+(f)− trπ−(f) =
∑

πH∈ΠϕH

trπH(fH).

Applying Conjecture 2.4.2 (2) (or rather Theorem 2.6.1) for Sp4, and writing ϕ′H for
the composite of ϕH and the natural map Ĥ → ŜO4, we also have an equality of

J.É.P. — M., 2019, tome 6



522 T. Gee & O. Taïbi

traces ∑
π′∈Πϕ′

〈s,π′〉=1

trπ′(f)−
∑

π′∈Πϕ′

〈s,π′〉=−1

trπ′(f) =
∑

π′SO4
∈Πϕ′

H

trπ′SO4
(f ′).

The result now follows from (8.3.1) and Theorem 8.3.3 below. �

We end with a result on the restriction of representations from H ' GSO4 to SO4

that we used in the course of the proof of Theorem 8.3.2. The arguments are very
similar to those for GSpin5, but are rather simpler, as H has no non-trivial elliptic
endoscopic groups. Since H is isomorphic to the quotient of GL2 ×GL2 by a split
torus, the local Langlands correspondence for H, and the corresponding endoscopic
character identities, are easily deduced from those for GL2. The correspondence and
endoscopic character identities for SO4 are of course proved in [Art13] (up to the
outer automorphism δ).

By Proposition 8.2.1, if π is an irreducible admissible representation of H(F ), then
π|SO4(F ) is a direct sum of representations occurring with multiplicity one. The proof
of [GT10, Lem. 2.6] goes through unchanged and shows that π1|SO4(F ), π2|SO4(F ) have
a common constituent if and only if π1, π2 differ by a twist by a character. By [GT10,
Lem. 2.7], the analogous statement is also true for L-parameters: every L-parameter
ϕ′ : WDF → ŜO4(C) arises from some ϕ : WDF → Ĥ(C), which is unique up to
twist.

Theorem 8.3.3. — Let ϕ : WDF → Ĥ(C) be a bounded L-parameter, and let ϕ′ :

WDF → ŜO4(C) be the parameter obtained from (8.1.3). Let π be the tempered irre-
ducible representation of H associated to ϕ. Then

π|
H̃ (SO4(F ))

∼=
⊕

π′∈Πϕ′

π′.

Proof. — By the preceding discussion, we need to show that for each bounded L-
parameter ϕ′ : WDF → ŜO4(C) (up to outer conjugacy), and each π′ ∈ Πϕ′ , there is
some π lifting π′ (or π′δ) whose L-parameter ϕ lifts ϕ′.

Suppose firstly that ϕ′ is discrete. As in the proof of Theorem 8.1.2, by Krasner’s
lemma and [Clo86, Th. 1B], we can find a totally real number field K, a finite place v
of K, and a discrete automorphic representation Π′ of SO4(AK), such that:

– Kv
∼= F (so we identify Kv with F from now on).

– Π′v = π′.
– at each infinite place w of F , Π′w is a discrete series representation.
By Theorem 5.1.2, there is a discrete automorphic representation Π of H(AK)

such that Π|SO4(AK) contains Π′. Then Π corresponds to a pair π1, π2 of discrete
automorphic representations of GL2(AK) with equal central characters. The condition
that Π′w is a discrete series representation at an infinite place w of K implies that π1

and π2 are cuspidal.
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We now consider the following commutative diagram of dual groups:

(8.3.4)
Ĥ ŜO4 = SO4

GL2×GL2 GL4

where the vertical arrows are the natural inclusions, and the lower horizontal arrow
is given by (g, h) 7→ (det g)−1g ⊗ h. Since the functorial transfer from GL2 ×GL2

to GL4 exists (as we recalled at the beginning of Section 6), we may compare at the
unramified places and then use strong multiplicity one to compare at the ramified
places, and we obtain that the composite

WDF
ϕ′−−−→ Ĥ −→ GL2×GL2 −→ GL4

is given by ϕ1,v ⊗ϕ∨2,v, where ϕ1,v, ϕ2,v are the L-parameters of π1,v and π2,v respec-
tively. Since the L-parameter of Πv is ϕ1,v⊕ϕ2,v, we can take π = Πv, so we are done
in the case that ϕ′ is discrete.

Suppose now that ϕ′ is not discrete. Then one can argue as in the proof of 8.1.2,
since both local Langlands correspondences for H and SO4 are compatible with para-
bolic induction. In fact the proof is simpler since all proper Levi subgroups are simply
products of GL, and we do not repeat the argument. �

Remark 8.3.5. — Theorem 8.3.2 (or rather its straightforward extension from tem-
pered to generic parameters) gives the complete spectral description of the automor-
phic restriction map of Section 5 for Sp4 ⊂ GSpin5 for formally tempered global
parameters. This is the analogue of the results of Labesse–Langlands [LL79] (ignoring
inner forms) and the multiplicity one theorem of Ramakrishnan for SL2 [Ram00]. It
would perhaps be interesting to extend this to parameters which are not formally
tempered, but in the interests of brevity we do not consider this question here.

Appendix. Classification of endoscopic data and surjectivity of transfer

In this appendix we denote Γ = GLN × GL1 over a local or global field F of
characteristic zero. Let J be the anti-diagonal N ×N matrix with Ji,N+1−i = (−1)i.
Let θ be the automorphism of Γ given by θ(g, x) = (J tg−1J−1, xdet g). The matrix J
was chosen so that the standard pinning (B,T, ((Ei,i+1, 0))16i6N−1), where T is the
diagonal torus and B the upper triangular Borel, is fixed by θ. A basis of X∗(T) is
given by (e∗1, . . . , e

∗
N , z

∗), where e∗i (x) = (diag(1, . . . , x, . . . , 1), 1) (x is the i-th term)
and z∗(x) = (1, x). Let (e1, . . . , eN , z) be the dual basis of X∗(T). Then the roots
of T are ei − ej for i 6= j, the positive ones (with respect to B) being those for which
i < j. The Langlands dual group Γ̂ is also isomorphic to GLN ×GL1 (now over C),
and we also fix the usual (upper triangular and diagonal) Borel pair (B,T ) of Γ̂. To
make the identification explicit, for y ∈ C× we have ei(y) = (diag(1, . . . , y, . . . , 1), 1)

and z(y) = (1, y). We also fix the usual pinning consisting of the elements (Ei,i+1, 0)

of Lie B.
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Let Γ̃ be the twisted space Γ o θ. A simple computation shows that the automor-
phism θ̂ of Γ̂ dual to θ (preserving the chosen pinning of Γ̂) is

(g, x) 7−→ (Ĵ tg−1Ĵ−1x, x),

where Ĵ is J (but now over C). It extends to an automorphism Lθ of LΓ = Γ̂×WF

which acts trivially on WF . Recall that an endoscopic datum of Γ̃ is a quadruple
(G,G , s, ξ) where

– G is a quasi-split connected reductive group over F ,
– ξ : Ĝ→ Γ̂ is a continuous embedding,
– G is a closed subgroup of LΓ which surjects onto WF with kernel ξ(Ĝ), such

that the induced outer action of WF on ξ(Ĝ) coincides with the usual one on Ĝ

transported by ξ, and such that there exists a continuous splitting WF → G ,
– and s ∈ Γ̂ is such that (Ads) ◦ θ̂ is quasi-semisimple (i.e., it stabilises a Borel

pair of Γ̂), (Γ̂(Ads)◦θ̂)0 = ξ(Ĝ) and such that the map WF → Γ̂ induced by h ∈ G 7→
sLθ(h)s−1h−1 takes values in Z(Γ̂) and defines an element of H1(WF , Z(Γ̂)) which
is trivial at every place of F .

Instead of giving s one could also give s̃ = so θ̂ which belongs to the twisted space
LΓ̃ := LΓ o θ̂ for the group LΓ. The action of Gal(F/F ) on Z(Γ̂) is trivial so this
cocycle WF → Z(Γ̂) is in fact trivial and we simply have G ⊂ Γ̂(Ads)◦θ̂ ×WF . It is
clear that the endoscopic datum (G,G , s, ξ) can be recovered from s and the locally
constant morphism α : Gal(F/F )→ π0(Γ̂(Ads)◦θ̂) such that

ξ(G ) = {g × σ ∈ Γ̂(Ads)◦θ̂ ×WF | g ∈ α(σ)}.

So to classify endoscopic data up to isomorphism it is enough to classify Γ̂-conjugacy
classes of elements s o θ̂ ∈ Γ̂ o θ̂ such that (Ads) ◦ θ̂ is quasi-semisimple and to
determine π0(Γ̂(Ads)◦θ̂).

A.1. Conjugacy classes in Γ̂ o θ̂ and centralisers. — Let us first consider conjuga-
tion by Γ̂ in Γ̂ o θ̂. For (y, t) ∈ Γ̂ and (sN , s1) ∈ Γ̂ we compute

(y, t)((sN , s1) o θ̂)(y−1, t−1) = (ysN Ĵ
tyĴ−1t−1, s1) o θ̂.

Thus the map soθ̂ 7→ (Ĵ−1s−1
N , s1) is a bijection Γ̂oθ̂ ' GLN ×GL1 which intertwines

the conjugation action of Γ̂ on Γ̂ o θ̂ with the action on GLN ×GL1 given by the
formula

(y, t) · (h, u) = (ty−1hy−1t, u).

In particular, denoting h = Ĵ−1s−1
N we see that Γ̂(Ads)◦θ̂ equals

GAut(h) = {(y, t) ∈ Γ̂ | tyhy = th}.

Denote by νh the morphism GAut(h) → GL1, (y, t) 7→ t. Denote hsym = (h + th)/2

for the symmetric part and hanti = (h− th)/2 for the antisymmetric part of h. Note
that h defines a bilinear form B : (X,Y ) 7→ tXhY on V := CN , and that the similarly
defined bilinear form Bsym (resp. Banti) associated to hsym (resp. hanti) is symmetric
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(resp. antisymmetric). The decomposition h = hsym +hanti is canonical. In particular
we have GAut(h) = {g ∈ GAut(hsym) ∩GAut(hanti) | νhsym(g) = νhanti(g)}.

Lemma A.1.1
(1) Let Vsym = kerBanti and Vanti = kerBsym. Then Bsym|Vsym

and Banti|Vanti
are

non-degenerate.
(2) Let V ⊥,Bsym

sym be the orthogonal of Vsym in V with respect to Bsym. Let V ⊥,Banti

anti

be the orthogonal of Vanti in V with respect to Banti. Let Vboth = V
⊥,Bsym
sym ∩ V ⊥,Banti

anti .
Then V = Vsym ⊕ Vanti ⊕ Vboth and this decomposition is orthogonal with respect to
Bsym and Banti.

Proof. — The condition h ∈ GLN implies that Vsym ∩ Vanti = 0, and that the restric-
tion of Bsym to Vsym (resp. of Banti to Vanti) is non-degenerate. The second point
follows easily. �

This decomposition is clearly canonical. Both Bsym|Vboth
and Banti|Vboth

are
non-degenerate. Let ϕ be the endomorphism of Vboth defined by Banti(x, y) =

Bsym(x, ϕ(y)) for all x, y ∈ Vboth.

Lemma A.1.2. — For any λ ∈ C we have ker(ϕ− λ) = (im(ϕ− λ))⊥,Bsym . The set of
eigenvalues of ϕ is contained in C r {−1, 0, 1} and stable under λ 7→ −λ.

Proof. — Easy. �

From now on we assume that (Ads) ◦ ϕ is quasi-semisimple.

Lemma A.1.3. — The endomorphism ϕ of Vboth is semisimple.

Proof. — The hypothesis means that up to conjugating so θ̂ by an element of Γ̂, we
may assume that s ∈ T . Then h is antidiagonal, say

(A.1.4) h =

 h1

. .
.

hN

 .

There is a natural partition {1, . . . , N} = Isym t Ianti t Iboth, where

Isym = {i | hi = hN+1−i},
Ianti = {i | hi = −hN+1−i},

Iboth = {i | h2
i 6= h2

N+1−i}.

Let ei be the standard basis of CN . For ? ∈ {sym, anti,both} the family (ei)i∈I? is a
basis of V?. In this basis of Vboth the matrices of Bsym and Banti are antidiagonal and
so the matrix of ϕ is diagonal. �

In particular we have a canonical orthogonal (with respect to Bsym and Banti)
decomposition

Vboth =
⊥⊕

µ∈Cr{0,1}

⊕
λ∈C
λ2=µ

ker(ϕ− λ)
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and each ker(ϕ−λ) is totally isotropic for Bsym and Banti and in perfect duality with
ker(ϕ+λ) (using either bilinear form). Let R be a set of representatives for the action
of {±1} on the set of eigenvalues of ϕ.

We obtain a canonical (except for the choice of R) identification

GAut(h) '
{

(gsym, ganti, (gλ)λ∈R)
∣∣∣ gλ ∈ GL(ker(ϕ− λ)), gsym ∈ GAut(Vsym, Bsym),

ganti ∈ GAut(Vanti, Banti) satisfying ν(gsym) = ν(ganti)
}

obtained by restricting to the stable subspaces Vsym, Vanti and ker(ϕ − λ) ⊂ Vboth

for λ ∈ R. To go from the right to the left, define for λ ∈ R the element gλ ∈
GL(ker(ϕ+ λ)) determined by the relation

Bsym(g−λ(x), gλ(y)) = ν(gsym)Bsym(x, y)

for all (x, y) ∈ ker(ϕ+ λ)× ker(ϕ− λ).

A.2. Endoscopic data. — Let S be the finite subset of C r {0, 1} such that λ2 ∈ S
if and only if ker(ϕ − λ) 6= 0. Let Nsym = dimVsym, Nanti = dimVanti, and for
µ ∈ S let Nµ = dim ker(ϕ − λ) (for either of the two λ such that λ2 = µ). We
have N = Nsym + Nanti + 2

∑
µ∈S Nµ, in particular Nsym ≡ N mod 2. The group

π0(GAut(h)) has one or two elements, and it has two if and only if Nsym > 0. The
characteristic polynomial of ϕ is clearly an invariant of the conjugacy class of s o θ̂.
We have associated a quintuple (Nsym, Nanti, S, (Nµ)µ∈S , α) to any endoscopic datum
for Γ̃. It is easy to check that two endoscopic data are isomorphic if and only if the
associated quintuples are equal.

Conversely if we give ourselves:
– a finite set S ⊂ C r {0, 1},
– a partition N = Nsym + Nanti + 2

∑
µ∈S Nµ with Nsym > 0, Nanti > 0 even and

Nµ > 0 for all µ ∈ S,
– a continuous morphism α : Gal(F/F )→ {±1} which is trivial if Nsym = 0,

it is not difficult to exhibit an endoscopic datum such that the associated quintuple
is (Nsym, Nanti, S, (Nµ)µ∈S , α). We have thus proved the first part of the following
classification result.

Proposition A.2.1

(1) Isomorphism classes of endoscopic data of Γ̃ are parametrized by tuples
(Nsym, Nanti, S, (Nµ)µ∈S , α) as above.

(2) An endoscopic datum is elliptic if and only if the corresponding tuple

(Nsym, Nanti, S, (Nµ)µ∈S , α)

satisfies:
– S = ?, and
– α is non-trivial if Nsym = 2.
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Proof of the second part. — If S is not empty then the center of GAut(h) contains
a torus isomorphic to GL

|S|
1 which is not included in the center of Γ̂, and so the

endoscopic datum cannot be elliptic.
If S is empty then the connected center of GAut(h)0 is 1 × GL1 ⊂ Γ̂ except in

the case where Nsym = 2, in which case it is isomorphic to SO2×GL1. The action
of GalF on the factor SO2 has kernel GalF (

√
α), so SOGalF ,0

2 is contained in Z(GLN )

(the first factor of Γ̂) if and only if α 6= 1. �

Let e = (G,G , s, ξ) be an elliptic endoscopic datum for Γ̃, corresponding to
(Nsym, Nanti, α) as above. Since the standard N -dimensional representation of Ĝ

(obtained by composing ξ with the first projection Γ̂ → GLN ) is irreducible, we
have an embedding Out(e) ⊂ Out(Ĝ)0, where Out(Ĝ)0 ⊂ Out(Ĝ) is the subgroup of
elements acting trivially on {(λIN , λ) | λ ∈ GL1} ⊂ Ĝ. If Nsym = 0 or if Nsym is odd
we simply have Out(Ĝ)0 = 1. If Nsym > 0 is even then Out(Ĝ)0 = Z/2Z, and there
is a non-trivial element in Out(e). Indeed, we can assume that h is antidiagonal and
that Isym = {(N −Nsym)/2 + 1, . . . , (N +Nsym)/2}, and in this situation the element

diag
(
INanti/2, INsym/2−1,

(
0 1
1 0

)
, INsym/2−1, INanti/2

)
∈ Γ̂

belongs to Aut(e) r ξ(Ĝ)Z(Γ̂).

A.3. Surjectivity of transfer. — We now assume that F is local and consider the
particular case of elliptic endoscopic data e=(G,G , s, ξ) for Γ̃ satisfying NsymNanti =0

(the analogous ones in [Art13] were called “simple” endoscopic data), i.e., the case
where G is not a product of two non-trivial groups, and prove Proposition 2.4.4. We
simply follow the strategy of the proof of Proposition I.4.11 in [MW16a], observing a
few facts which are particular to our situation (in particular Key Fact A.3.3 below).
For simplicity we fix Lξ : LG ' G extending ξ, avoiding the use of arbitrary auxiliary
datum which is necessary in general (see §I.2.5 loc. cit.). Note that since the action of
GalF on Z(Γ̂) is trivial, Z(Γ̂) is a subgroup of Aut(e) which acts trivially on SI(G),
and so the action of Aut(e) on SI(G) factors through Out(G) := Aut(e)/Z(Γ̂)ξ(Ĝ) =

{1, δ} (with δ defined as in Section 2.3, so that this group has cardinality dividing 2).
First we need to recall basic facts about Levi subgroups. There is an injec-

tion from the set of G(F )-conjugacy classes of Levi subgroups of G to the set of
Ĝ-conjugacy classes of Levi subgroups of LG, and similarly for Γ̃ and LΓ̃ (see
[MW16a, §I.3.1] for the notion of Levi subspace of LΓ̃ := LΓθ̂). More precisely,
for any Levi subgroup L of G (resp. Levi subspace M̃ of Γ̃ with associated Levi
subgroup M of Γ) there is a well-defined Ĝ-conjugacy class (resp. Γ̂-conjugacy
class) of L-embeddings ιL : LL ↪→ LG (resp. ι

M̃
: LM̃ ↪→ LΓ̃), and ιL(LL)

(resp. ι
M̃

(LM̃)) is a Levi subgroup of LG (resp. Levi subspace of LΓ̃). It is well
known (see [Bor79, §I.3]) that a choice of parabolic subgroup of G admitting L

as a Levi factor induces such an embedding, and the extension to the twisted case
is straightforward. The fact that the Ĝ-conjugacy class (resp. Γ̂-conjugacy class)
does not depend on the choice of a parabolic subgroup (resp. subspace) can be
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checked using the Springer section (in particular [Spr98, Prop. 9.3.5]). In the case
at hand since G (resp. Γ) is quasi-split the map on conjugacy classes L 7→ ιL(LL)

(resp. M̃ 7→ ι
M̃

(LM̃)) is also surjective. By [MW16a, I.3.1 (8)], we also have an
identification between W (L,G) := Norm(L,G(F ))/L(F ) and W (ιL(LL), Ĝ) :=

Norm(ιL(LL), Ĝ)/ιL(L̂) (resp. between W (M̃,Γ) := Norm(M̃,Γ(F ))/M(F ) and
W (ι

M̃
(LM̃), Γ̂) := Norm(ι

M̃
(LM̃), Γ̂)/ι

M̃
L(M̂)). As explained loc. cit. these identi-

fications depend on choices of parabolic subgroups, but it is easy to check that the
embeddings ιL and ι

M̃
also pin them down. Finally, recall that we can recover L

(resp. M̃) as the centraliser of AL in G (resp. of A
M̃

in Γ̃), where AL (resp. A
M̃
) is

the largest split torus in G (resp. Γ) centralizing L (resp. M̃). On the dual side we
similarly have

ιL(LL) = Cent(Z(ιL(LL))0, Ĝ) = Cent(ιL(Z(L̂)GalF ,0), Ĝ)

ι
M̃

(LM̃) = Cent(Cent(ι
M̃

(LM̃), Γ̂)0, LΓ̃) = Cent(ι
M̃

(Z(M̂)GalF ,θ̂,0), LΓ̃).and

We now recall a construction from [MW16a, §I.3.4]. Let L be a Levi subgroup of G.
We fix an embedding ιL as above. Let M 0 (resp. M , resp. M̃ ) be the centraliser of
ξ(ιL(Z(L̂)GalF ,0)) in Γ̂ (resp. LΓ, resp. LΓ̃). Then M̃ is a Levi subspace of LΓ̃ and
it contains s̃ := sθ̂. Since Γ is quasi-split, there exists a Levi subspace M̃ and an
isomorphism ι

M̃
: LM̃ ' M̃ , which identifies M̂ (resp. LM) with M 0 (resp. M ). Let

L = G ∩M , then

eLevi =
(
L, ι−1

M̃
(L ), ι−1

M̃
(s), ι−1

M̃
◦ ξ ◦ ιL|L̂

)
is an elliptic endoscopic datum for M̃. In particular dim A

M̃
= dim AL. The pair

(M̃, eLevi) is only well-defined up to the action of Aut(M̃, eLevi), the group of g ∈ Γ̂

normalising L such that gs̃g−1 ∈ ι
M̃

(Z(M̂))s̃. In particular any g ∈ Aut(M̃, eLevi)

normalises Z(L )∩L 0 = ξ(ιL(Z(L̂)GalF ,0)) and thus also M̃ . We have the following
commutative diagram with exact rows (by definition of all objects in the right column)
and where all vertical arrows are injective.

1 ξ(ιL(L̂)) ξ
(

Norm(ιL(LL), Ĝ)
)

W (ιL(LL), Ĝ) 1

1 Z(Γ̂)ξ(ιL(L̂)) Norm(Lξ(ιL(LL)),Aut(e)) W (ιL(LL), e) 1

1 ι
M̃

(Aut(eLevi)) Aut(M̃, eLevi) W (M̃, eLevi) 1

1 M 0 Norm(M̃ , Γ̂) W (M̃ , Γ̂) 1
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We now make all these objects explicit in the cases at hand. In Section 2.2 we
recalled that to a G(F )-conjugacy class of Levi subgroups of G is associated a fam-
ily (ri)i>1 with ri ∈ Z>0 satisfying 2

∑
i iri 6 N with strict inequality if G is not split

and 2
∑
i iri 6= N − 2 if N = Nsym is even and G is split, and any such family occurs.

This family determines the conjugacy class except when N = Nsym is even, G is split,
2
∑
i iri = N and ri = 0 for all odd i, in which case there are two conjugacy classes

corresponding to (ri)i, swapped by the non-trivial outer automorphism δ of G. We
may assume that the element h introduced in the previous section is antidiagonal, say

h =

 h1

. .
.

hN


and that h1 = · · · = hbN/2c = 1. Let k be the smallest integer > 0 such that ri = 0

for any i > k, Ŝi is the i-dimensional antidiagonal complex square matrix with 1’s on
the antidiagonal, and

h′ =

 h1+
∑
i iri

. .
.

hN−
∑
i iri

 ∈ GLN−2
∑
i iri

(C).

Then the (conjugacy class of a) Levi subgroup L corresponding to (ri)i is characterised
by the fact that there exists a Levi embedding ιL : LL ↪→ LG such that ξ ◦ ιL(LL) is
either an open subgroup of

(A.3.1)
{

(diag(gk,1, . . . , gk,rk , . . . , g1,1, g1,r1 , x, λŜ
−1
1

tg−1
1,r1

Ŝ1, . . . , λŜ
−1
k

tg−1
k,1Ŝk), λ)

∣∣∣
gi,j ∈ GLi(C), (x, λ) ∈ GAut(h′)

}
×WF ⊂ LΓ,

or, if N = Nsym is even, G is split,
∑
i iri = N/2 and ri = 0 for all odd i, an open

subgroup of the conjugate of (A.3.1) by diag(IN/2−1,
(

0 1
1 0

)
, IN/2−1). In the rest of the

argument we shall refer to this case as the exceptional case. We fix L and such an
embedding ιL. There is a natural embedding W (ιL(LL), LG) ↪→

∏
i>1{±1}ri o Sri ,

which is surjective unless N = Nsym is even, G is split,
∑
i iri = N/2 and there exists

an odd i > 1 such that ri > 0, in which case the image of this embedding has index
two.

To be explicit, M 0 is the diagonal Levi subgroup

(A.3.2)
(
GLrkk × · · · ×GLr11 ×GLN−2

∑
i iri
×GLr11 × · · · ×GLrkk

)
×GL1

of Γ̂, M = M 0 × WF and M̃ = M θ̂, except in the exceptional case where the
situation is conjugated by (A.3.2) under diag(IN/2−1,

(
0 1
1 0

)
, IN/2−1). In particular

W (M̃ , Γ̂) = W (M 0, Γ̂)θ̂ in the non-exceptional cases, and in any case W (M̃ , Γ̂) is
identified to

∏
i>1{±1}ri o Sri . Thus:

(1) If Nsym = 0 or if N = Nsym is odd, we simply have W (ιL(LL), Ĝ) = W (M̃ , Γ̂)

and Out(e) = 1.
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(2) If N = Nsym is even and
∑
i iri < N/2, we again have W (ιL(LL), Ĝ) =

W (M̃ , Γ̂), and there exists an element of ι
M̃

(Aut(eLevi)) ∩ Aut(e) mapping to the
non-trivial element of Out(e).

(3) If N = Nsym is even,
∑
i iri = N/2 (this implies that G is split) and there

exists an odd i such that ri > 0, then W (ιL(LL), Ĝ) has index two in the group
W (ιL(LL), e) = W (M̃ , Γ̂), and there exists an element of Norm(ξ(ιL(LL)),Aut(e))

which maps to the non-trivial element of Out(e).
(4) Finally in the exceptional case we have W (ιL(LL), Ĝ) = W (M̃ , Γ̂) and δ does

not fix the G(F )-conjugacy class of L.
We also observe the following.

Key fact A.3.3. — The Γ(F )-conjugacy class of M̃ determines the Out(e)-orbit of
the G(F )-conjugacy class of L, i.e., each fibre of L 7→ M̃ consists of (at most) one
Out(e)-orbit.

Now start with an arbitrary Levi subspace M̃ of Γ̃. Denote by Icusp(M̃) the sub-
space of I(M̃) consisting of all functions whose orbital integrals at non-elliptic semi-
simple regular elements vanish. The endoscopic transfer induces an isomorphism (see
[MW16a, §I.4.12 p.97], as well as §IV.3.5 loc. cit. to deduce the K-finite case if F is
Archimedean)

Icusp(M̃)W (M̃,Γ) '
(⊕

e′
SIcusp(L)Aut(e′)

)W (M̃,Γ)

=
⊕
e′
SIcusp(L)Aut(M̃,e′),

where the middle sum is over equivalence classes of elliptic endoscopic data e′ =

(L,L , s̃′, ξ′) for M̃, the sum on the right-hand side is over W (M̃,Γ)-orbits of such
equivalence classes, and SIcusp is defined similarly to Icusp, replacing “orbital inte-
grals” by “stable orbital integrals”. Note that in the case F = R the above isomorphism
only holds for a K-space for M̃ (see §I.1.11 loc. cit.), but since H1(F,Msc) = 1 the
space M̃ is a K-space. By the Key Fact A.3.3 and using a straightforward argument
in each of the four cases detailed above, the natural map

(A.3.4)
⊕
e′
SIcusp(L)Aut(M̃,e′) −→

(⊕
L

SIcusp(L)W (L,G)
)Aut(e)

,

where the sum on the right-hand side is over conjugacy classes of Levi subgroups
of G mapping to the conjugacy class of M̃, is surjective. This is the crucial step in
the proof of Proposition 2.4.4, and to conclude the proof it simply remains to follow
the strategy of [MW16a, §I.4.12], using natural filtrations on I(Γ̃) and SI(G)Aut(e).

To this end we now recall compatibility properties of endoscopic transfer for Levi
subgroups. As above we consider a Levi subgroup L of G, and a corresponding Levi
subspace M̃ of Γ̃. It follows easily from [BT65, Th. 4.13] that the maps H1(F,L) →
H1(F,G) and H1(F,M)→ H1(F,Γ) are injective. Thus for any Γ̃-regular γ ∈ M̃(F ),
the natural map from the set of M(F )-conjugacy classes in M̃(F ) stably conjugated
to γ to the set of Γ(F )-conjugacy classes in Γ̃(F ) stably conjugated to γ is bijective,
and similarly for L ⊂ G. As explained in [MW16a, §I.3.1, p.57], this implies that
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the “constant term map” I(G) → I(L)W (L,G) induces a well-defined map SI(G) →
SI(L)W (L,G). Moreover the restriction of a transfer factor for the endoscopic datum e

to Γ̃-strongly regular matching pairs in L(F )×M̃(F ) coincides with the restriction of a
unique transfer factor for eLevi. This is seen by choosing a parabolic subgroup PL of G

admitting L as a Levi factor (resp. a parabolic subspace P̃
M̃

of Γ̃ admitting M̃ as a
Levi factor), which gives corresponding parabolic subgroups in Langlands dual groups,
and following the constructions in [MW16a, §I.2.2] using Borel subgroups contained in
these parabolic subgroups and choosing χ-data which is trivial on asymmetric Galois
orbits. Using such a transfer factor for eLevi, it is straightforward to check that the
diagram

I(Γ̃) SI(G)

I(M̃)W (M̃,Γ) SI(L)W (L,G)

is commutative, where the vertical arrows are “constant term” maps and the horizontal
arrows are transfers maps.

Recall from [MW16a, §I.4.2] that there is a filtration (Filn I(Γ̃))n>−1 such that the
“constant term” maps identify Grn I(Γ̃) with⊕

M̃ s.t. dim A
M̃

=n

Icusp(M̃)W (M̃,Γ),

where the sum is over Γ(F )-conjugacy classes of Levi subspaces in Γ̃. There is an
analogous filtration (Filn SI(G))n>−1 of SI(G), which by §I.4.15 loc. cit. is simply
the image of the natural filtration of I(G), such that Grn SI(G) is identified with⊕

L s.t. dim AL=n

SIcusp(L)W (L,G).

This filtration is clearly stable under Aut(e), and a straightforward induction allows
one to deduce Proposition 2.4.4 from the surjectivity of (A.3.4).
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