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RICCI FLAT KÄHLER METRICS ON

RANK TWO COMPLEX SYMMETRIC SPACES

by Olivier Biquard & Thibaut Delcroix

Abstract. — We obtain Ricci flat Kähler metrics on complex symmetric spaces of rank two by
using an explicit asymptotic model whose geometry at infinity is interpreted in the wonderful
compactification of the symmetric space. We recover the metrics of Biquard-Gauduchon in the
Hermitian case and obtain in addition several new metrics.
Résumé (Métriques kählériennes Ricci plates sur les espaces symétriques complexes de rang 2)

Nous obtenons des métriques kählériennes Ricci plates sur les espaces symétriques complexes
de rang 2 à partir d’un modèle asymptotique explicite, dont la géométrie à l’infini s’interprète
en termes de la compactification magnifique de l’espace symétrique. Dans le cas hermitien, on
retrouve les métriques de Biquard-Gauduchon mais on produit aussi des métriques nouvelles.
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1. Introduction

A (complex) symmetric space is a homogeneous space under a complex semisimple
Lie group, whose isotropy Lie subalgebra is the fixed point set of a complex involution.
It may always be viewed as a complexified compact symmetric space, thus also as the
tangent or cotangent bundle of such a compact symmetric space, equipped with the
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164 O. Biquard & T. Delcroix

appropriate complex structure. Such a complex manifold may admit a Ricci flat Kähler
metric and indeed several such metrics have already been exhibited: notably Stenzel’s
metrics on rank one complex symmetric spaces [Ste93], and Biquard-Gauduchon’s
hyperKähler metrics on Hermitian complex symmetric spaces [BG96]. These metrics
are Asymptotically Conical (AC), with smooth cone at infinity for Stenzel’s metrics
and singular cone for Biquard-Gauduchon’s metrics.

Tian and Yau developed in [TY90, TY91] a general method to obtain complete
Ricci flat Kähler metrics on non-compact complex manifolds by viewing such a man-
ifold as the complement of a smooth divisor supporting the anticanonical divisor in a
Fano manifold (or more generally orbifold). If the anticanonical divisor thus obtained
is non-reduced, then a condition has to be imposed on the reduced divisor, namely
that it admits a, necessarily positive, Kähler-Einstein metric. The Tian-Yau theorem
was refined by various authors along the years, and most notably in the AC case by
Conlon and Hein [CH13, CH15]. Recently, new examples of AC Calabi-Yau metrics
with singular cone at infinity were constructed in [CDR16, Li17, Sze17], in particular
on Cn for n > 2.

In this article we use the Tian-Yau philosophy to produce Ricci flat Kähler metrics
on complex symmetric spaces of rank two by viewing such a manifold as the open
orbit in its wonderful compactification. Let G/H denote the symmetric space and X
its wonderful compactification. The boundary divisor X r G/H is then a simple
normal crossing divisor with two irreducible components D1 and D2, which supports
an anticanonical divisor for the wonderful compactification (note that this manifold
is not always Fano [Ruz12]). Each component divisor is a two-orbits manifold with
one open orbit which is a homogeneous fibration over a generalized flag manifold
with fibers a complex symmetric space. We will search for AC metrics with singular
cone at infinity obtained by taking a line bundle over a singular Kähler-Einstein
manifold Ď2 which is a blow-down of the boundary divisor D2. We find an ansatz to
desingularize this singular cone using the other boundary divisor D1 and in particular
the Stenzel metric on the fibers of the open orbit of this other boundary divisor, which
gives the desingularization in the ‘collapsed directions’. It is justified by analyzing
the explicit examples produced by the first author and Gauduchon with the Kähler
geometry techniques developed by the second author to study horosymmetric spaces
[Del17b] (as both symmetric spaces and the open orbits of divisors in their wonderful
compactifications are horosymmetric). There is no canonical choice of behavior on the
respective divisors: we obtain examples where only one choice works, and examples
where both choices work, thus providing two Ricci-flat Kähler metrics with different
asymptotic behavior.

Theorem 1.1. — There exists a Ricci flat Kähler metric with the above boundary
behavior on the following indecomposable rank two symmetric spaces:

– for one ordering of divisors, on the non-Hermitian symmetric spaces

Sp8 /(Sp4×Sp4), G2/ SO4, G2 ×G2/G2, SO5× SO5 / SO5,
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Ricci flat Kähler metrics on rank two complex symmetric spaces 165

– on each Hermitian symmetric space, there is a Ricci flat Kähler metric for one
choice of ordering, which corresponds to Biquard-Gauduchon’s metrics,

– on the following Hermitian symmetric spaces, the other choice of ordering of
divisors produces a Ricci flat Kähler metric with a different asymptotic cone:

SOn /S(O2×On−2) for n > 5, SL5 /S(GL2×GL3).

There remains a number of cases not covered by the theorem, including the simplest
rank two symmetric space SL3 / SO3. The main reason is that the ansatz considered
degenerates too badly on the divisor D1, so that the usual techniques to produce the
Ricci flat solution from an asymptotic solution do not apply. We still expect that
such metrics exist, and we hope to come back to this problem in the future. There
are however two exceptions, which are the symmetric space G2/ SO4 and the group
G2 × G2/G2, in which case we can prove that there does not exist any metric with
the expected asymptotic behavior for one ordering of divisors.

Indeed, the existence of such a metric requires the existence of a positive Kähler-
Einstein metric on the singular Q-Fano variety Ď2. There is no general existence
theorem for Kähler-Einstein metrics on singular Fano varieties. For our purpose we
thus prove the following characterization:

Theorem 1.2. — Assume Ď2 is the Q-Fano blowdown of a boundary divisor in the
wonderful compactification of a rank two indecomposable symmetric space, then it
admits a (singular) Kähler-Einstein metric if and only if the combinatorial condition
in [Del16] is satisfied, thus if and only if it is K-stable.

Since Ď2 is a (colored) rank one horosymmetric variety, the Kähler-Einstein equa-
tion reduces to a one-variable second order ODE. The proof is nevertheless obtained by
using the continuity method, in which the main difficulty is the C0-estimate as usual
in the positive Kähler-Einstein situation. It turns out that the obstruction cancels
except for one choice of D2 in the cases G2/ SO4 and G2 × G2/G2. These examples
are thus natural examples of singular cohomogeneity one Q-Fano varieties with no
singular Kähler-Ricci solitons. We actually prove the last theorem in a more general
situation (see Section 3), so that it applies to a larger class of rank one horosymmetric
varieties, and for variants of the Kähler-Einstein equation.

There is an obvious question of generalizing these results to higher rank symmetric
spaces. We expect the general setting to be the same: the wonderful compactification
is obtained by adding r divisors, where r is the rank. For each choice of divisor of the
compactification one can try to produce a Ricci flat Kähler metric whose asymptotic
cone is a line bundle over a singular blowdown of this divisor. The first step is of
course to check the same combinatorial condition as in Theorem 1.2, which is not
obvious. Here the desingularization is encoded in the combinatorics of the divisors of
the compactification. This procedure should lead to a maximum of r distinct Kähler
Ricci flat metrics on the symmetric space.
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166 O. Biquard & T. Delcroix

The article is organized as follows. In Section 2 we introduce the relevant combi-
natorial data associated to symmetric spaces, their wonderful compactifications, and
derive from [Del17b] the translation of the Ricci flat equation as a real two-variables
Monge-Ampère equation. In Section 3, we state a numerical criterion of existence of
solutions to a one-variable ODE which arises as the equation ruling the existence of
positive Kähler-Einstein metrics on rank one horosymmetric spaces or simple vari-
ants of this. In the remaining of this section, we determine when this criterion is
satisfied in the case where the equation exactly encodes the existence of a (singular)
Kähler-Einstein metrics on a colored Q-Fano compactification of the horosymmetric
spaces arising as the boundary divisors in a wonderful compactification of a rank two
symmetric space. Section 4 is devoted to the proof of this criterion by a continuity
method following the usual steps for complex Monge-Ampère equations. The C0 es-
timates are obtained using essentially Wang and Zhu’s method, slightly modified as
in [Del17a]. In Section 5, we build an asymptotic solution to the Ricci flat equation
on a rank two symmetric space, using as essential ingredients Stenzel’s metrics and
the positive Kähler-Einstein metrics obtained in Section 3. This is also related to the
ansatz used in [CDR16, Li17, Sze17] but is more complicated and in particular ad-
dresses cones over singular Fano manifolds with non isolated singularities. Finally, we
detail in Section 6 the geometry of the asymptotic solution, and determine when the
classical techniques inspired from Tian-Yau’s work apply to our setting to produce
Ricci flat Kähler metrics. The bad cases occur when the ansatz gives a metric where
the collapsing towards the singular points is too quick compared to the distance in
the cone: the result is a metric with holomorphic bisectional curvatures not bounded
from below or from above, which is a crucial ingredient in the C2 estimate for the
complex Monge-Ampère equation.

2. Setup

2.1. Symmetric spaces. — Let G be a complex connected linear semisimple group.
We denote by 〈· , ·〉 the Killing form on the Lie algebra g. Let σ be a complex group
involution of G. Let Ts be a torus in G which satisfies the property that σ(t) = t−1

for all t ∈ Ts and maximal for this property. Let T be a σ-stable maximal torus of G
containing Ts. The dimension r of Ts is called the rank of the symmetric space.

Denote the root system of (G,T ) by R̂. The restricted root system R is the set of
all non-zero characters of T of the form α̂−σ(α̂) for α̂ ∈ R̂. It forms a (possibly non-
reduced) root system of rank r and we let mα denote the multiplicity of a restricted
root α, that is, the number of roots α̂ ∈ R̂ such that α = α̂− σ(α̂). We call the Weyl
group W of this root system the restricted Weyl group, etc.

We choose a positive root system R̂+ in R̂ such that if α ∈ R̂+ r R̂σ then
−σ(α) ∈ R̂+. Then the images of elements of R̂+r R̂σ in R form a positive restricted
root system R+. We denote by a the vector space ts ∩ ik, which is naturally identified
with Y(Ts)⊗R, where Y(Ts) denotes the group of one parameter subgroups of Ts. We
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Figure 1. Restricted root system of the complexified Grassmannian

let a+ denote the positive restricted Weyl chamber in a defined by the choice of R+.
We fix an ordering of the simple restricted roots α1, . . . , αr.

We will use several times the symmetry of positive roots systems induced by a
choice of simple root (see e.g. [Hum78, Lem. 10.2.B]): the reflection with respect to α1

induces an involution of the set R+ r α1.
We further denote by $ the half sum of positive restricted roots (counted with

multiplicities) and define the numbers Aj as the coordinates of $ in the basis of
simple roots: $ =

∑r
j=1Ajαj .

Finally, let us introduce the Duistermaat-Heckman polynomial PDH of G/H, de-
fined by PDH(p) =

∏
α∈R 〈α, p〉

mα for p ∈ a∗.

Example 2.1. — Any complex symmetric space as defined above may be recovered
as the complexification of a compact (Riemannian) symmetric space. For exam-
ple, the complexification of a Grassmannian leads to a complex symmetric space
SLm /S(GLr ×GLm−r) for some integers m, r with r 6 m/2. The rank of this sym-
metric space is r, and its positive restricted root system (of type BC2) with multi-
plicities is depicted in Figure 1 for the rank two case.

Notation 2.2. — We will use the notations:

α̃1 = α1 −
〈α1, α2〉
〈α2, α2〉

α2 α̃2 = α2 −
〈α1, α2〉
〈α1, α1〉

α1.

Note that
A1 =

〈$, α̃1〉
〈α̃1, α̃1〉

A2 =
〈$, α̃2〉
〈α̃2, α̃2〉

.

2.2. The wonderful compactification. — From now on we fix an complex group in-
volution σ. Let H be a closed subgroup of G such that h = gσ. We say that a normal
projective G-variety X with given base point x ∈ X is a G-equivariant compactifica-
tion of G/H if StabG(x) = H and the orbit of x is open dense in X. We will identify
G/H with the orbit of x.

Assume that H = NG(Gσ). Then by [DCP83] there exists a wonderful compacti-
fication of G/H, that is, a G-equivariant compactification of G/H which is smooth,
such that X r G/H =

⋃r
j=1Dj is a simple normal crossing divisor, and the orbit

closures of G in X are precisely the partial intersections
⋂
j∈J Dj for all subsets
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168 O. Biquard & T. Delcroix

J ⊂ {1, . . . , r}. The number r is the rank of the symmetric space so that in the
rank two case, there are two codimension one orbits whose respective closures D1

and D2 are smooth and intersect transversely at D1 ∩D2 which is the last orbit, of
codimension two, equivariantly isomorphic to a generalized flag manifold.

The structure of G-variety on the boundary divisors Dj (and more generally all
orbits) is also known from [DCP83]: there exist a parabolic subgroup Pj such thatDj is
aG-equivariant fibrationDj → G/Pj whose fiberXj is the wonderful compactification
of the symmetric space Lj/NLj (Lσj ), where Lj is a Levi subgroup of Pj . They are
examples of horosymmetric varieties [Del17b].

There is a unique G-stable anticanonical divisor on the wonderful compactification,
which writes (see e.g. [Ruz12])

−KX =

r∑
j=1

(Aj + 1)Dj .

The closure of the T -orbit of eH in G/H is the T/(T ∩H)-toric manifold Z whose
fan is given by the restricted Weyl chambers and their faces in Y(T/T ∩ H) ⊗ R.
Furthermore, the intersection of a divisor Dj with Z is a restricted Weyl group orbit
of toric divisors in Z. The correspondence can be made explicit: consider the ray
defined by the fundamental weight associated to αj (we identify a and its dual using
the Killing form), then Dj intersects Z precisely along the toric divisor defined by this
ray. In other words, consider the (real non-compact part of the) flat passing through
eH in X, equipped with the coordinates induced by the αj . Then given a sequence of
points xk converging to a point x∞ ∈ X rG/H, we have x∞ ∈ ∩j∈JDj , where j ∈ J
if and only if limk→∞ αj(xk) =∞.

2.3. The Ricci flat equation. — We are interested in the Ricci flat equation
Ric(ω) = 0 for Kähler metrics on G/H. It is natural to impose a condition of invari-
ance under the action of a maximal compact subgroup K of G, and we furthermore
assume that the Kähler form ω is i∂∂-exact (note that the invariance condition
implies the second condition provided the symmetric space is not Hermitian by
[AL92]). Then using the general setup of [Del17b], one derives easily that the Ricci
flat equation translates as follows.

Proposition 2.3 ([Del17b]). — Assume Ψ is a smooth K-invariant strictly psh func-
tion on G/H and write Ψ(exp(x)H) = %(x) for x ∈ a. Then Ric(i∂∂Ψ) = 0 if and
only if % satisfies the equation

(1) det(d2%)
∏
α∈R+

〈α, d%〉mα = C
∏
α∈R+

sinh(α)mα

for some constant C > 0.

Note that it also follows from [AL92] that the correspondence between Ψ and %

is a 1-1 correspondence between smooth K-invariant strictly psh functions on G/H
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and smooth W -invariant strictly convex functions on a. We will sometimes write % as
% = eφ. Then the equation writes, in terms of φ, as

(2) enφ det(d2φ+ (dφ)2)
∏
α∈R+

〈α, dφ〉mα =
∏
α∈R+

sinh(α)mα ,

where n denotes the dimension of G/H and we assumed C = 1 as we may without
loss of generality.

Example 2.4. — In the rank one case, the symmetric spaces that we defined earlier
are precisely the complexified symmetric spaces considered by Stenzel in [Ste93]. We
may directly recover the main result of [Ste93] using Proposition 2.3: the equation
reduces to a one-variable ODE with separate variables of the form

%′′(x)(%′(x))m1+m2 = C sinhm1(x) sinhm2(2x),

where m1 is the multiplicity of the simple restricted root and m2 the (possibly 0) mul-
tiplicity of its double. Such an equation admits a unique even, smooth strictly convex
solution, up to an additive constant, which admits a precise asymptotic expansion
and is the Stenzel metric. We will use this metric later in our construction.

In the case of SLm /S(GL1×GLm−1), the complexified Grassmannian of rank one,
one has m1 = 2m−4 and m2 = 1, and there is a simple explicit solution to the above
equation for C = 1/2, defined by %(x) = cosh(x).

Example 2.5. — Paul Gauduchon and the first author provided in [BG96] an explicit
formula for the hyperKähler metric on a complexified compact Hermitian symmetric
space. Let us see how this formula may be interpreted in our setup, for the complexified
Grassmannian of rank two.

We work in the coordinates (x, y) defined by Figure 1. Consider the function defined
by %(x, y) = cosh(x) + cosh(y). then we compute ∂x% = sinh(x), ∂y% = sinh(y) and
det(d2%) = cosh(x) cosh(y). Plugging this into Equation 1, we obtain the equation

cosh(x) cosh(y) sinh2(m−4)+1(x) sinh(2(m−4)+1(y)(sinh2(y)− sinh2(x))2

= C sinh(2x) sinh(2y) sinh2(m−4)(x) sinh2(m−4)(y) sinh2(x+ y) sinh2(y − x)

which holds for all m provided C = 1/4. Hence the function % corresponds to a Ricci
flat Kähler metric, and one can check that it coincides with the metric of [BG96].

3. Positive Kähler-Einstein metrics on rank one horosymmetric spaces

3.1. The equation. — Let us start with a datum composed of a positive integer
n1 > 0, a non-negative integer n2 > 0, a one-variable polynomial P which is positive
on ]0, n1 + 2n2] and such that P (y)y−n1−n2 is an even polynomial in y, non-vanishing
at 0, and a positive real number λ > n1 + 2n2 such that P is non-negative on [0, λ].
We consider the one-variable second order ordinary differential equation

(3) u′′(x)P (u′(x)) = e−u(x) sinhn1(x) sinhn2(2x).

J.É.P. — M., 2019, tome 6



170 O. Biquard & T. Delcroix

We will use the notations

J(x) = sinhn1(x) sinhn2(2x), and P (y) = yn1+n2(λ− y)kP̃ (y).

Note that P̃ is positive on [0, λ].
We consider the weighted volume and barycenter of the segment [0, λ] defined by

V =

∫ λ

0

P (y)dy Bar =

∫ λ

0

yP (y)
dy

V
.

We will prove in Section 4 the following statement.

Theorem 3.1. — The numerical condition Bar > n1 + 2n2 is satisfied if and only
if there exists a smooth solution u to Equation (3) which is strictly convex, even,
and such that u(x) − λ|x| = O(1). Furthermore, if it exists, the solution satisfies an
asymptotic expansion at +∞ of the form

u(x) = λx+K0,0 +
∑

j,k∈N,δ6jδ+2k

Kj,ke
−(jδ+2k)x

with δ = (λ− n1 − 2n2)/(k + 1), for some constants Kj,k.

3.2. Geometric origin of the equation: the Kähler-Einstein equation on rank one
horosymmetric spaces. — Let G/H be a rank two complex symmetric space, with
corresponding involution σ. Choose a simple root α̂2 of G which gives rise to one of
the simple restricted roots α2 = α̂2 − σ(α̂2). Recall from [DCP83] that σ induces a
permutation of simple roots σ (characterized by the fact that σ(α̂)+σ(α̂) is fixed by σ,
though non-trivial in general). Let P denote the parabolic subgroup of G containing T
such that α̂2 and σ(α̂2) are the only simple roots of G which are not roots of P . The
Lie algebra of P writes p = pr⊕ la⊕ lb, where pr is the Lie algebra of the radical of P ,
σ induces a rank one (indecomposable) symmetric space on the semisimple factor la,
and the semisimple factor lb is fixed by σ.

Let La denote the simply connected semisimple group with Lie algebra la. There
is a natural action of P on the symmetric space La/NLa(Lσa), and we build from
this data a rank one horosymmetric space G/H2 under the action of G by parabolic
induction: G/H2 is the quotient of G × La/NLa(Lσa) by the diagonal action of P
given by p · (g, x) = (gp−1, p · x). In order to match with the conventions of [Del17b],
if we let L denote the Levi subgroup of P containing T , then the involution of L
corresponding to G/H2 in the definition of [Del17b] is the involution σ2 defined at the
Lie algebra level by σ2 = σ on la, and σ2 equal to the identity on the other factors z(l)
and lb.

The horosymmetric space thus constructed is actually exactly the open G-orbit in
the G-stable prime divisor D2 of the wonderful compactification of G/NG(H) corre-
sponding to the root α2, as one may deduce from [DCP83], or with some different
details, from [Del17b]. We will call such a horosymmetric space a facet of the sym-
metric space G/H.

Let R̂Qu denote the positive roots of G which have a positive coefficient in α̂2 or
σ(α̂2), and let R̂+

a denote the roots of La (identified with roots of G) which are not
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Ricci flat Kähler metrics on rank two complex symmetric spaces 171

fixed by σ. The restricted root system of (La, σ|La) is of rank one, hence there are at
most two possible positive restricted roots. We fix a simple restricted root, denoted
by α1 (it actually corresponds exactly to the second simple restricted root of G/H).
We let n1 denote the multiplicity of α1, and n2 denote the multiplicity of 2α1, which
is zero if 2α1 is not a restricted root.

In the situation we described above, there exists a unique colored Q-Fano compact-
ification of G/H2. This is easily seen by the classification of Q-Fano compactifications
of G/H2 via Q-G/H2-Gorenstein polytopes by Gagliardi and Hofscheier [GH15] and
using the description of the colored data of horosymmetric homogeneous spaces, high-
lighted in [Del17b]. Note that there may exist another, non-colored Q-Fano compact-
ification of G/H2, we just focus on the colored one here. Let Y denote this colored
Q-Fano compactification of G/H2. The moment polytope ∆ for Y is easily determined
as the intersection with the positive restricted Weyl chamber of the line parallel to α1

passing through $.
In this setup, Theorem 3.1 has the following consequence: let Bar denote the

weighted barycenter of ∆ with respect to the Lebesgue measure, with weight the
Duistermaat-Heckman polynomial of G/H.

Corollary 3.2. — The Q-Fano variety Y admits a (singular) Kähler-Einstein metric
if and only if Bar > n1/2 + n2.

Proof. — Recall that K denotes a maximal compact subgroup of G. Let h be a
smooth K-invariant positively curved metric on the anticanonical line bundle K−1G/H2

,
and denote by ω its curvature form. The second author introduced in [Del17b] an
even one-variable (in this rank one case) convex function u associated to h, called the
toric potential, and computed the curvature form ω in terms of u. It allows to write
the positive Kähler-Einstein Ric(ω) = ω on G/H2 also in terms of u. More precisely,
with the right choices of normalizing constants, the positive Kähler-Einstein equation
writes

(4) u′′(x)
∏

γ∈R̂Qu

〈γ, 2χ− u′(x)α1〉
(u′(x))n1+n2

sinhn1(x) sinhn2(2x)
= e−u(x),

where χ =
∑
γ∈R̂Qu (γ + σ1(γ))/2 = $ − (n1/2 + n2)α1.

Define the one-variable polynomial P by

P (y) = yn1+n2

∏
β∈R̂Qu

(
〈β, 2χ〉 − 〈β, α1〉y

)
= yn1+n2

∏
α∈R+,α1-α

1

2

(
〈α, 2χ〉 − 〈α, α1〉y

)mα
,

where the second equality holds because σ(χ) = −χ. With these notations, the equa-
tion may be written

u′′P (u′) = e−uJ,
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172 O. Biquard & T. Delcroix

where J(x) = sinh(x)n1 sinh(2x)n2 . Note that P (y)y−(n1+n2) is even thanks to the
symmetry of the positive root system. We may also check that P is positive at n1+2n2.
Indeed, n1 + 2n2 is positive, and we have 2χ + (n1 + 2n2)α1 = 2$, which of course
satisfies that 〈γ, 2$〉 > 0 for all γ ∈ R+. In fact, P (y) is, up to a multiplicative
constant, equal to PDH(2$ − (n1 + 2n2 + y)α1).

To see the geometric origin of the condition on the asymptotic behavior of the solu-
tions u, we turn now to the G-equivariant compactification Y of G/H1. Assume that
the metric h extends to a locally bounded metric on K−1Y . Then, again by [Del17b],
we know that the toric potential u has an asymptotic behavior controlled by the mo-
ment polytope ∆ of X. More precisely, ∆ is the translate by χ of a segment of the
form [0, λα1], where λ is easily derived from the description of ∆: λ is the maximum
of all real numbers such that 〈α2, χ + λα1〉 > 0. The moment polytope controls the
asymptotic behavior of u in the sense that u(x) − 2λ|x| is bounded. The value of k
in this setting is easily derived from the restricted root system by definition of λ: the
number k is the sum of the multiplicity of α2 and of the (possibly zero) multiplicity
of 2α2.

Theorem 3.1 thus applies to our situation, and allows to conclude. Indeed, in the
situation described, the complement X r G/H2 has codimension at least two. Fur-
thermore, one can check that here, a locally bounded K-invariant metric on X which
is smooth on G/H2 has full Monge-Ampère mass. As a consequence, finding a smooth
solution u to the equation, with u(x) − |λx| bounded, is equivalent to the existence
of a singular Kähler-Einstein metric on X (see [BBE+16, §3]). �

More generally, for horosymmetric (but not horospherical) spaces of rank one (not
necessarily induced by a rank two symmetric space) the equation for Kähler-Einstein
metrics will be of the form of the equation we study. Furthermore, there are vari-
ants of the Kähler-Einstein equation that will also be encoded by an equation of
the same form. For example, if we consider a pair (Y, µD) where Y is a non-colored
G-equivariant compactification of G/H2 such that D := Y rG/H2 is a divisor, µ > 0

and (Y, µD) is a klt log Fano pair, then the equation for log Kähler-Einstein metrics in
this setting is the same as above, but the real parameter λ controlling the asymptotic
behavior of u varies with µ.

Other examples may be obtained by considering say a non-colored compactifi-
cation Y of G/H2 (thus equipped with a fibration structure π : Y → G/P ) and
considering a twisted Kähler-Einstein equation of the form

Ric(ω) = ω ± π∗ωP ,

where ωP is some fixed K-invariant Kähler metric on G/P . The corresponding equa-
tion in terms of u would imply a modified polynomial. We leave it to the interested
reader to deduce the precise equation from [Del17b].

3.3. Existence on facets of rank two symmetric spaces. — In the remaining of this
section, we check when the condition from Theorem 3.1 is satisfied in the examples
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Type G2

Figure 2. Types of rank two root systems

Type Parameter One Representative R multiplicities

AI SL3 /SO3 A2 1

A2 PGL3×PGL3 /PGL3 − 2

AII SL6 /Sp6 − 4

EIV E6/F4 − 8

AIII r > 5 SLr /S(GL2×GLr−2) BC2 (2, 2r − 8, 1)

CII r > 5 Sp2r / Sp4× Sp2r−4 − (4, 4r − 16, 3)

DIII SO10 /GL5 − (4, 4, 1)

EIII E6/ SO10×SO2 − (6, 8, 1)

BDI r > 5 SOr /S(O2×Or−2) B2 (1, r − 4, 0)

B2 SO5× SO5 / SO5 − (2, 2, 0)

CII r = 4 Sp8 / Sp4×Sp4 − (3, 4, 0)

G G2/ SO4 G2 1

G2 G2 ×G2/G2 − 2

Table 1. Indecomposable symmetric spaces of rank two

described previously. Table 1 shows the possible examples of indecomposable sym-
metric spaces of rank two (see [Hel78, p. 532]). Note that we do not give all possible
cases of a same given type (e.g. the group SL3×SL3 / SL3 is also a representative of
the group type A2). Furthermore, we chose parameters to avoid redundancy, but some
elements of the infinite families may also be known as representative of other families
of symmetric spaces: for example type BDI may be considered of type CI for r = 5,
of type AIII for r = 6, and of type DIII for r = 8. To check the condition, we reduce
to three situations with parameters depending on the symmetric space considered.
Namely we separate the possible restricted root systems and take as parameters the
multiplicities of restricted roots as in Figure 2.

3.3.1. Restricted root system of typeBC2 orB2. — Note that m3 = 0 if the root system
is of type B2 and else it is of type BC2. The possibilities for (m1,m2,m3) are given
in Table 1. We denote the simple restricted root with multiplicity m1 by α and the
simple restricted root with multiplicity m2 by β. Let α̃ = α+β and β̃ = α/2 +β. We
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β

α̃α

• β̃

•
$

•(m1 +m2/2 +m3)α̃

•
(m1 +m2 + 2m3)β̃

Figure 3. Moment polytopes for type BC2

have
$ = (m1 +m2/2 +m3)α+ (m1 +m2 + 2m3)β

and the Duistermaat-Heckman polynomial corresponding to the symmetric space is,
in several choices of coordinates and up to a (different) constant factor, as follows:

PDH(yα̃+ xβ) = xm2+m3(y2 − x2)m1ym2+m3

and
PDH(wα+ tβ̃) = wm1tm1(t2 − (2w)2)m2+m3 .

Depending on the choice α1 = α or α1 = β, there are two possible facets of G/H
as in the last section. We check when the condition of Corollary 3.2 is satisfied in each
case. From the description in Section 3.2, these conditions translate respectively as∫ m1+m2/2+m3

x=0

(x− (m2/2 +m3))PDH((m1 +m2/2 +m3)α̃) + xβ)dx > 0

and ∫ m1/2+m2/2+m3

w=0

(w −m1/2)PDH(wα+ (m1 +m2 + 2m3)β̃)dx > 0.

They may be interpreted as conditions on the weighted barycenters of the segments
in Figure 3.

Using the changes of variables

u = (x/(m1 +m2/2 +m3))2 and v = (w/(m1/2 +m2/2 +m3))2

and the expression of PDH , we get the equivalence of the above conditions with,
respectively,∫ 1

u=0

u(m2+m3)/2(1− u)m1du >
m2 + 2m3

2m1 +m2 + 2m3

∫ 1

u=0

u(m2+m3−1)/2(1− u)m1du
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and∫ 1

v=0

vm1/2(1− v)m2+m3dv >
m1

m1 +m2 + 2m3

∫ 1

v=0

v(m1−1)/2(1− v)m2+m3dv.

These are inequalities on beta functions: recall that the beta function is a function
of two variables defined by

B(λ, µ) = B(µ, λ) =

∫ 1

t=0

tλ−1(1− t)µ−1dt.

Hence we want to check

(5) B((m2 +m3)/2 + 1,m1 + 1) >
m2 + 2m3

2m1 +m2 + 2m3
B((m2 +m3 + 1)/2,m1 + 1)

and

(6) B(m1/2 + 1,m2 +m3 + 1) >
m1

m1 +m2 + 2m3
B((m1 + 1)/2,m2 +m3 + 1).

We first check these conditions by direct computation for the examples that do
not form infinite families. In each case, we compute the left-hand side minus the
right-hand side to check the condition.

(m1,m2,m3) condition (5) condition (6)

(2, 2, 0) 41/1260 > 0 1/140 > 0

(3, 4, 0) 43/7700 > 0 83/30030 > 0

(4, 4, 1) 101/63063 > 0 2533/1801800 > 0

(6, 8, 1) 5513/70114902 > 0 63407/743642900 > 0

For the infinite families, we use the expression of the beta function in terms of the
gamma function: B(x, y) = Γ(x)Γ(y)/Γ(x+ y). Recall that the factorial of a positive
integer is equal to the gamma function evaluated at the consecutive integer, and
that Legendre’s duplication formula yields the following expression, given a positive
integer p: Γ(p+ 1/2) = (2p)!

√
π/(p!4p).

Since they are proved differently, we separate the proof for condition (5) and the
proof for condition (6).

Lemma 3.3. — Condition (5) is satisfied for all infinite families.

Proof. — This first condition is proved by direct computation. We provide details for
the case (m1,m2,m3) = (4, 4m − 16, 3) (m > 4). We consider the quotient of the
left-hand side by the right-hand side and want to check that it is strictly greater than
one. The quotient writes:

(4m− 2)Γ(2m− 6 + 1/2)Γ(2m− 1)

(4m− 10)Γ(2m− 6)Γ(2m− 1 + 1/2)

=
(4m− 2)(4m− 12)!(2m− 2)!(2m− 1)!42m−1

(4m− 10)(2m− 7)!(4m− 2)!(2m− 6)!42m−6

=
(4m− 2)(4m− 4)(4m− 6)(4m− 8)(4m− 12)

(4m− 3)(4m− 5)(4m− 7)(4m− 9)(4m− 11)
.
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It is greater than one if and only if the polynomial obtained by subtracting the
denominator from the numerator is positive. This last polynomial is

768m4 − 5760m3 + 14880m2 − 15780m+ 5787,

it has positive leading coefficient and is of degree four hence we may compute its roots
and check that they are all strictly smaller than four, which means that condition (5)
is satisfied for m > 4. �

Lemma 3.4. — Condition (6) is satisfied for all infinite families.

Proof. — For this condition, direct computation does not seem tractable, so we first
prove that the quotient of the left-hand side by the right-hand side is increasing with
the parameter m, for the sequence of parameters considered, then check that it is
greater than one for the first value of the parameter. Let us again give details on the
case (m1,m2,m3) = (4, 4m−16, 3) for m > 4. We denote the quotient of the left-hand
side by the right-hand side by Q(m). We first compute

Q(m) =
(4m− 6)Γ(3)Γ(4m− 10 + 1/2)

4Γ(2 + 1/2)Γ(4m− 9)

=
(4m− 6)((8m− 20)!)

3 · 28m−21((4m− 10)!)2
.

Then we have
Q(m+ 1)

Q(m)
=

(4m− 2)((4m− 10)!)2(8m− 12)!

28(4m− 6)((4m− 6)!)2(8m− 20)!

=
(2m− 1)(8m− 13)(8m− 15)(8m− 17)(8m− 19)

(2m− 3)(8m− 12)(8m− 14)(8m− 16)(8m− 18)
.

Again, it is greater than one if and only if the polynomial obtained by subtracting
the denominator from the numerator is positive. This last polynomial is

4096m4 − 35584m3 + 113792m2 − 159086m+ 82167,

it has positive leading coefficient and is of degree four hence we may compute its
roots and check that they are all strictly smaller than four, which means that Q(m)

is increasing and thus Q(m) > Q(4) for all m > 4. Finally, direct computation shows
that Q(4) = 385/256 > 1 hence condition (6) is satisfied for m > 4. �

3.3.2. Restricted root system of type A2. — We denote the simple restricted roots by α
and β. There is an obvious symmetry exchanging the roles of both. Let α̃ = α+ β/2.
We have

$ = m(α+ β) = mα̃+mβ/2.

The Duistermaat-Heckman polynomial PDH reads, up to a constant factor, as follows:

PDH(yα̃+ xβ) = xm((3y/2)2 − x2)m.

The condition from Theorem 3.1 reads as

(7)
∫ 3m/2

x=0

(x−m/2)xm((3m/2)2 − x2)mdx > 0.
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Figure 4. Moment polytope for type A2
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•$•3mα̃
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Figure 5. Moment polytopes for type G2

It may again be interpreted as a condition on the weighted barycenter of the segment
in Figure 4. Condition (7) is easily checked to hold for the possible values of m by
direct computation.

3.3.3. Restricted root system of type G2. — We denote the long simple restricted root
by α and the short simple restricted root by β. Let α̃ = α + 3β/2 and β̃ = α/2 + β.
We have

$ = 3mα+ 5mβ

and the Duistermaat-Heckman polynomial PDH reads, in several choices of coordi-
nates and up to a constant factor, as follows:

PDH(yα̃+ xβ) = xmym((3y/2)2 − x2)m((y/2)2 − x2)m

and
PDH(wα+ tβ̃) = wmtm((t/2)2 − w2)m((t/2)2 − (3w)2)m.

The conditions from Corollary 3.2 corresponding to the choices α1 = α and α1 = β

read as (see Figure 5)∫ 3m/2

x=0

(x−m/2)xm((9m/2)2 − x2)m((3m/2)2 − x2)mdx > 0
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and ∫ 5m/6

w=0

(w −m/2)wm((5m/2)2 − w2)m((5m/2)2 − (3w)2)mdx > 0.

Direct computation shows that the first condition holds for m = 1 (the integral
is equal to 12879/1792) and m = 2 (the integral is then equal to 192283227/308).
The second condition, on the other hand, is not satisfied: the integral is equal to
−171875/435456 if m = 1, and to −79443359375/6062364 if m = 2.

4. Solution to the ODE by the continuity method

4.1. The continuity method. — To prove the existence of a solution, we consider the
family of equations

(8) u′′t (x)P (u′t(x)) = e−(tut(x)+(1−t)uref (x))J(x)

indexed by t ∈ [0, 1]. Here, uref is the smooth, even, strictly convex function on R
defined by

(9) uref(x) = ln(eλx + e−λx) + C,

where C is the constant determined by the condition
∫∞
0
e−urefJ =

∫ λ
0
P .

Consider the set I ⊂ [0, 1] of all t such that there exists an even, C2 solution ut to
Equation (8) with u′t(R) = ]− λ, λ[. We will show:

Proposition 4.1. — The set I is equal to [0, 1] ∩ [0, (λ− n1 − 2n2)/(λ− Bar)[.

4.2. Asymptotic expansion of the solutions. — Before proving Proposition 4.1, let
us prove the second half of Theorem 3.1, that is, the asymptotic expansion of solutions.
Recall the notation from Theorem 3.1

δ =
λ− n1 − 2n2

k + 1
.

Proposition 4.2. — Let ut be a C2, even solution to Equation (8) such that u′t(R) =

]−λ, λ[. Then ut is smooth, strictly convex, and admits an arbitrarily precise expansion
at infinity: for any integer jm, there are constants Kt,j,k such that

ut(x) = λx+Kt,0,0 +
∑

δ6jδ+2k6jmδ

Kt,j,ke
−(jδ+2k)x + o(e−jmδx).

Proof. — Assume that ut is a C2, even solution to Equation (8) such that u′t(R) =

]− λ, λ[. The parity of ut, together with the order of vanishing of J at 0, imply that
u′t vanishes to order exactly one at 0, and that u′′t is positive everywhere. It shows
that ut is strictly convex, and using the equation inductively, that ut is smooth.

By convexity and the assumption u′t(R) = ] − λ, λ[, we deduce that ut(x) − λx
admits a finite limit Kt,0,0 at infinity, which provides the two initial terms of the
expansion formula, and the full expansion formula for jm = 0.

We proceed now by induction and assume that the expansion formula is proved for
a given jm. We will prove an expansion formula for jm + 1.
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Consider the function F defined for w > 0 by

F (w) =

(
(k + 1)!(Q(λ)−Q(λ− w))

(−1)kP (k)(λ)

)1/(k+1)

.

Note that the assumptions on P imply that (−1)kP (k)(λ) > 0. The function F admits
an expansion to any arbitrary order N

F (w) =
∑

16n6N

Anw
n + o(wN ),

where A1 = 1, A2 = −P (k+1)(λ)/(k + 1)(k + 2)P (k)(λ), etc. It is invertible near 0

and its inverse function G satisfies an expansion

G(s) =
∑

16n6N

Bns
n + o(sN )

to any order N , with B1 = 1, B2 = P (k+1)(λ)/(k + 1)(k + 2)P (k)(λ), etc.
Using the definition of F and the equation, we have

F (λ− u′0(x)) =

(
(k + 1)!

(−1)kP (k)(λ)

∫ ∞
x

e−(tut+(1−t)uref )J

)1/(k+1)

.

The function uref obviously admits an expansion as in the statement at any order,
hence we have an expansion

tut(x) + (1− t)uref = λx+K0,0 +
∑

δ6jδ+2k6jmδ

Kj,ke
−(jδ+2k)x + o(e−jmδx),

for some constants Kj,k. We may thus write an expansion formula

(k + 1)!

(−1)kP (k)(λ)
e−(tut(x)+(1−t)uref )J

= K ′0,0e
(n1+2n2−λ)x

(
1 +

∑
δ6jδ+2k6jmδ

K ′j,ke
−(jδ+2k)x + o(e−jmδx)

)
for some constants K ′j,k. Up to replacing the constants K ′j,k by others constants K ′′j,k,
the expansion is still valid for the integral from x to infinity. Taking the power 1/(k+1)

we obtain the expansion

F (λ− u′0(x)) = K
(3)
0,0e

−δx
(

1 +
∑

δ6jδ+2k6jmδ

K
(3)
j,k e

−(jδ+2k)x + o(e−jmδx)

)
= K

(3)
0,0e

−δx +
∑

δ6jδ+2k6jmδ

K
(4)
j,k e

−((j+1)δ+2k)x + o(e−(jm+1)δx).

We finally apply G to the expansion of F (λ − u′0) to deduce the corresponding
expansion of u′0:

u′0(x) = λ+K
(5)
0,0e

−δx +
∑

δ6jδ+2k6jmδ

K
(5)
j,k e

−((j+1)δ+2k)x + o(e−(jm+1)δx).

This expansion integrates to provides the expansion of u0 at the order jm + 1. �
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4.3. Initial solution. — We now proceed to the proof of Proposition 4.1, and first
verify 0 ∈ I. The equation for t = 0 is an ordinary differential equation with separate
variables. LetQ denote a fixed primitive of P . It is strictly increasing on [0, λ]. LetQ−1
denote its inverse function, that is, such that Q−1(Q(y)) = y for 0 6 y 6 λ. Let
u0 : R→ R denote the even function defined for x non-negative by

u0(x) =

∫ x

0

Q−1
(
Q(0) +

∫ s

0

e−urefJ

)
ds.

It is easily checked to be a C2 solution to Equation (8) at t = 0, with u′0(R) = ]−λ, λ[,
then is ultimately smooth and strictly convex in view of Proposition 4.2.

4.4. Upper bound on the time of existence of a solution

Proposition 4.3. — Assume that there exists an even and C2 solution ut to Equa-
tion (8) at time t with u′t(R) = ]− λ, λ[, then

t <
λ− n1 − 2n2
λ− Bar

.

Proof. — Assume there exists a solution as in the statement. Then it is in particular
strictly convex. It is part of our assumptions that λ > n1+2n2, hence e−(tut+(1−t)uref )J

converges to zero at infinity. As a consequence, the integral from zero to infinity of
the derivative (e−(tut+(1−t)uref )J)′ vanishes. On ]0,∞[, this derivative is equal to

e−(tut+(1−t)uref )(x)J(x) (n1 coth(x) + 2n2 coth(2x)− (tut + (1− t)uref)′(x))

Using Equation (8), then the change of variables y = u′t(x), we get∫ ∞
0

u′t(x)e−(tut+(1−t)uref )(x)J(x)dx =

∫ ∞
0

u′t(x)P (u′t(x))u′′t (x)dx

=

∫ λ

0

yP (y)dy

= V Bar .

On the other hand, we have cosh > sinh and u′ref < λ hence the vanishing of the
integral of (e−(tut+(1−t)uref )J)′ yields the inequality

n1 + 2n2 − tBar−(1− t)λ < 0.

We have thus obtained the desired necessary condition. �

4.5. Openness. — Just as in choosing the continuity method to solve the equation,
we proceed here in analogy with the case of Kähler-Einstein metrics on compact
manifolds. This is even more justified as in the case that interests us the most, we are
working on a singular complex variety. The openness follows from the usual method
in the Kähler-Einstein continuity method, except that since our manifold is singular,
we must use weighted spaces instead of the standard functional spaces. Denote by
Ck,ev the space of even Ck functions on R. To solve the equation, we use weighted
spaces

(10) Ck,evη = cosh(x)ηCk,ev.

J.É.P. — M., 2019, tome 6



Ricci flat Kähler metrics on rank two complex symmetric spaces 181

We drop the suffix ev if we consider the same space only on an interval (A,∞) with
A > 0.

We rewrite Equation (8) as

(11) ln
(
u′′t P (u′t)

)
+ tut = −(1− t)uref + ln J.

The linearization of the LHS is

(12) Ltv = ∆tv + tv, ∆tv =
v′′

u′′t
+
P ′(u′t)

P (u′t)
v′.

Lemma 4.4. — If ut is a solution of (8), and we denote ωt = u′′t P (u′t) the volume
form of the corresponding metric, then one has the estimate∫

(∆tv)2ωt > t
∫

(v′)2

u′′t
ωt,

and the inequality is strict if v′ 6= 0.

Proof. — This is the usual estimate for the first nonzero eigenvalue of the Laplacian
in the continuity method: since − ln J and uref are convex, the equation on ut implies

(13) ρt := −(lnωt)
′′ > tu′′t .

(This is a weaker version of Ric > t which writes ρt + (ln J)′′ > tu′′t ).
To prove the estimate, we might check that the usual Weitzenböck formula applies

(we are on a singular manifold), but in our case it is easy to reprove it directly: by
integration by parts, writing ∆tv = (P (u′t)v

′)′/P (u′t)u
′′
t , one obtains∫

ρt(v
′)2

(u′′t )2
ωt =

∫
−(lnωt)

′′ (v′P (u′t))
2

ωt

=

∫
2
ω′t
u′′t
v′∆tv −

(ω′t)
2

(u′′t )3P (u′t)
(v′)2

6
∫

(∆tv)2ωt

and the result follows from (13), as does the strict inequality. �

From Proposition 4.2 we have u′t(x) = λ − K2δe
−δx + O(e−(δ+ε)x) and u′′t (x) =

K2δ
2e−δx +O(e−(δ+ε)x). Therefore the leading terms of ∆t are given by

∆tv ∼ −
eδx

K2δ2
(v′′ − kδv′).

So it is natural to study the operator Lt = ∆t + t : C2,ev
η → C0,ev

δ+η . Observe that
there is an asymptotic solution converging to a constant at infinity: if near ∞

(14) v0(x) = 1 +
tK2

δ
e−δx

then

(15) Ltv0 = O(e−η0x)

for small η0. We extend v0 as an even function on R.
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Lemma 4.5. — If −δ − η0 6 η < 0 and t > 0 then Lt : Rv0 ⊕ C2,ev
η → C0,ev

δ+η is an
isomorphism.

Proof. — Weighted analysis (see for example [LM85]) says immediately that

Lt : C2,ev
η −→ C0,ev

δ+η

is Fredholm as soon as η 6= 0, kδ, which are the critical weights giving the possible
orders of growth of elements of the kernel of Lt. Moreover Lt is selfadjoint with respect
to the volume form ωt ∼ cst.e−(k+1)δx.

The L2 space corresponds to the weight 1
2 (k+ 1)δ, and the same weighted analysis

implies that ∆t has discrete spectrum; from Lemma 4.4, the first nonzero eigenvalue
of ∆t is greater than t, and therefore kerL2 Lt = 0. This implies that the kernel of Lt
in C2,ev

η vanishes for η < 1
2 (k+1)δ and therefore for η < kδ since no kernel can appear

between critical weights.
From selfadjointness, the cokernel of Lt for the weight η identifies to the kernel

of Lt for the weight −η + kδ, so we get surjectivity provided that η > 0. When the
weight η crosses the critical weight 0, the index changes by 1, so we get for η < 0

an index equal to −1. If we add the factor Rv0 at the source, we therefore obtain a
Fredholm operator of index 0; it is an isomorphism since Lt is injective for weights
smaller then kδ. The restriction η > −δ − η0 comes from (15), one may obtain the
isomorphism for smaller η provided that v0 is replaced by an asymptotic solution to
order δ + η. �

Proof of openness. — For t > 0 the operator Lt is an isomorphism between the spaces
specified in Lemma 4.5, which is exactly what we need to apply the implicit function
theorem to equation (11). For t = 0, as is well-known, one recovers the same result by
applying the implicit function theorem to the operator ln

(
u′′t P1(u′t)

)
+tut+

∫
utω0. �

4.6. C0 estimates. — We turn now to a priori estimates on the solutions to Equa-
tion (8). We begin with C0 estimates with respect to the function u0, which are the
estimates where the condition appears. Our goal in this section is thus to prove the
existence, on any closed interval [t0, t1] ⊂ [0, 1] ∩ ]0, (λ − n1 − 2n2)/(λ − Bar)[ of a
constant C such that |ut − u0| 6 C for any smooth, even, strictly convex solution ut
of Equation (8) with |ut(x)− λ|x|| = O(1), at time t ∈ [t0, t1].

In the following, ut denotes a smooth, even, strictly convex solution of Equation (8)
at time t with ut(x)−λ|x| = O(1). Set j = − ln J on ]0,∞[ and νt := tut+(1−t)uref+j.
Note that, on ]0,∞[, e−νt is the right-hand side of Equation (8). In particular, its
integral is fixed:

(16)
∫ ∞
0

e−νtdx = V.

The function νt is smooth and strictly convex and satisfies

lim
x→0

νt(x) = lim
x→+∞

νt(x) = +∞.
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As a consequence, νt admits a unique minimum and we introduce the notations mt

and xt defined by mt = min]0,∞[ νt = νt(xt).

4.6.1. Reducing to estimates on mt, xt, and linear growth

Lemma 4.6. — Assume there exists positive constants t0, Cm, Cx, `1 and `0 such that
t > t0, |mt| < Cm, νt(x) > `1|x− xt| − `0, and xt < Cx. Then sup |ut − u0| > C for
some constant C independent of t > t0.

Proof. — Denote by vt resp. v0 the Legendre transforms of ut and u0. They are even
and bounded strictly convex functions defined on [−λ, λ], smooth on ] − λ, λ[ and
continuous on [−λ, λ]. It is standard that supR |ut − u0| = sup[0,λ] |vt − v0|. To prove
the statement, it is thus enough to bound |vt| on [0, λ].

Let v̂t :=
∫ λ
0
vtdp/(λ) denote the mean value of vt. By Morrey’s inequality, then

by the Poincaré-Wirtinger inequality, we have (for some constant C independent of t
which may change from line to line)

|vt − v̂t|C0,1/2 6 C (|vt − v̂t|L2 + |v′t|L2)

6 C|v′k|L2 .

Choose p, q > 1 such that 1/p + 1/q = 1 and P−q/p is integrable on [0, λ]. Then by
Holder’s inequality, we can write∫ λ

0

|v′t|2 =

∫ λ

0

(|v′t|2P 1/p)(P−1/p)

6

(∫ λ

0

|v′t|2pP
)1/p(∫ λ

0

P−q/p
)1/q

6 C

(∫ λ

0

|v′t|2pP
)1/p

.

By the change of variables x = v′k, we have∫ λ

0

|v′t|2pP =

∫ ∞
0

|x|2pP (u′t(x))u′′t (x)dx

=

∫ ∞
0

|x|2pe−νt(x)dx

by Equation (8). By the linear growth estimate, this is

6
∫ ∞
0

|x|2pe−`1|x|+`0+`1Cxdx = C.

We thus have |vt − v̂t|C0,1/2 6 C. As a consequence,

sup
y1,y2∈[0,λ]

|vt(y1)− vt(y2)| 6 C.

Hence to conclude it suffices to bound vt at some point. By definition of Legendre
transform, ut(0) = −vt(u′t(0)) = −vt(0). Since |u′t| 6 λ, we have

|ut(0)| 6 |ut(xt)|+ λCx.
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Note that there exists a constant s1 > 0, independent of t, such that xt > s1. Indeed,
the minimum xt is the point where ν′t = 0. Since j tends to infinity near 0, its
derivative is unbounded, whereas u′t and u′ref are 6 λ.

By definition of mt and xt, we can conclude:

|ut(xt)| =
1

t
|mt − (1− t)uref(xt)− j(xt)|

6
1

t0

(
Cm + sup

[s1,Cx]

uref + sup
[s1,Cx]

j
)

6 C. �

4.6.2. Estimates on |mt| and linear growth. — Define 0 < δ = δ(t) < y = y(t) by
[y − δ, y + δ] = ν−1t ([mt,mt + 1]). Note that there exists an s2 > 0 independent of t
such that y − δ > s2. Indeed, for 0 < x < 1, consider the expression

νt(x) = νt(1) +

∫ x

1

ν′t(z)dz > mt +

∫ x

1

j′(z)dz.

Since j′ is negative and
∫ 0

1
j′(z)dz =∞, we may find s > 0 such that

∫ x
1
j′(z)dz > 1

for all 0 < x < s, hence νt(x) > mt + 1 for x < s.
On [s2,∞[, the derivatives of νt admit a uniform bound independent of t, so we

may also find a δ0 > 0 independent of t with [xt − δ0, xt + δ0] ⊂ [y − δ, y + δ].
We will use estimates on δ to derive estimates on |mt| and linear growth.

Lemma 4.7. — Assume t > t0 > 0 then δ 6
√
t−10 emt+1 sup[0,λ] P .

Proof. — Consider the function f defined by

f(x) = νt(x)− t0e−mt−1(sup
[0,λ]

P )−1
(
(x− y)2 − δ2

)
−mt − 1.

We claim that f is convex on [y − δ, y + δ]. Indeed:

f ′′(x) = tu′′t (x) + (1− t)u′′ref(x) + j′′(x)− t0e−mt−1(sup
[0,λ]

P )−1

> t0u
′′
t (x)− t0e−mt−1(sup

[0,λ]

P )−1

> t0e
−νt(x)(P (u′t(x)))−1 − t0e−mt−1(sup

[0,λ]

P )−1

> 0,

where the last inequality holds by definition of y and δ. By construction, f(y − δ) =

f(y+δ) = 0, hence by convexity, f(y) 6 0. This translates as the second inequality in

mt 6 νt(y) 6 −t0e−mt−1(sup
[0,λ]

P )−1δ2 +mt + 1

and concludes the proof. �

Proposition 4.8. — There exists positive constants Cm, `1, `0 such that |mt| 6 Cm
and νt(x) > `1|x− xk| − `0.
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Proof. — We use Donaldson’s coarea formula [Don08] to express V :

V =

∫ ∞
0

e−νt(x)dx = e−mt
∫ ∞
0

e−sVol
(
{νt 6 mt + s}

)
ds.

We first obtain both upper and lower bounds on Vol({νt 6 mt + s}). On one hand,
for s > 1, the set {νt 6 mt + s} contains {νt 6 mt + 1} = [y − δ, y + δ] hence also
[xt − δ0, xt + δ0], so that, for s > 1,

Vol
(
{νt 6 mt + s}

)
> 2δ0.

On the other hand, by convexity, the set {νt 6 mt + s} is included in the s-dilation
of [y − δ, y + δ] with center xt. As a consequence,

Vol({νt 6 mt + s}) 6 2sδ 6 2s
√
t−10 emt+1 sup

[0,λ]

P ,

where the last inequality follows from Lemma 4.7.
From this we deduce upper and lower bounds on V : on one hand,

V > e−mt
∫ ∞
1

e−sVol({νt 6 mt + s})ds

> 2δ0e
−mt

∫ ∞
1

e−sds = 2δ0e
−mt−1

and on the other hand

V 6 2e−mt
√
t−10 emt+1 sup

[0,λ]

P

∫ ∞
0

se−sds = 2
√
t−10 e sup

[0,λ]

P e−mt/2.

We easily translate this into a bound |mt| 6 Cm.
Going back to Lemma 4.7, we now have a constant δm independent of t such

that δ 6 δm. As a consequence, we have νt(xt ± 2δm) > mt + 1 and, by convexity,
νt(x) > |x−xt|/(2δm)+mt outside of the interval [xt−2δm, xt+2δm]. The conclusion
thus follows:

νt(x) > |x− xt|/2δm +mt − 1 > |x− xt|/2δm − Cm − 1

everywhere. �

4.6.3. End of proof of C0 estimates. — We conclude the proof by contradiction. By
openness at 0 it means that the C0 estimates fail on some interval [t0, t

′] ⊂ [0, 1] ∩
[0, (λ − n1 − 2n2)/(λ − Bar)[ with t0 > 0. Then we may find a sequence (tk)k∈N∗ of
elements of [t0, t

′] such that tk → t∞ and

lim
k→∞

sup
R
|utk − u0| =∞.

By Lemma 4.6 and Proposition 4.8, we then have limk→∞ xtk =∞ up to passing to
a subsequence.

In view of the properties of νt, it is immediate that∫ ∞
0

ν′tke
−νtk dx = 0.
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This vanishing integral may be rewritten as

(17) tk

(∫ ∞
0

u′tke
−νtk +

∫ ∞
0

j′e−νtk

)
= (tk − 1)

(∫ ∞
0

u′refe
−νtk +

∫ ∞
0

j′e−νtk

)
.

Lemma 4.9. — The limit of equality (17) as k →∞ gives

t∞(Bar−(mα1
+ 2m2α1

)) = (t∞ − 1)(λ− (mα1
+ 2m2α1

)).

Before proving the lemma, we show that it allows to conclude. Indeed, Lemma 4.9
implies t∞ = (λ − n1 − 2n2)/(λ − Bar), which is a contradiction with t∞ 6 t′ <

(λ− n1 − 2n2)/(λ− Bar).

Proof. — By Equation (8), Legendre transform and the definition of Bar, we have∫∞
0
u′tke

−νtk = V · Bar for all k.
Let us abbreviate indices tk by k in the rest of the proof. Let ε > 0. Recall that

νk(x) > `1|x− xk| − `0. We may thus fix a δ > 0 independent of k such that∫
]0,∞[r[xk−δ,xk+δ]

e−νk(x)dx 6
∫
Rr[xk−δ,xk+δ]

e−(`1|x−xk|−`0)dx 6 ε,

and

e−νk(xk±δ) < ε.

Fix some s > 0. Since xk → ∞, there exists k0 such that for any k > k0, −ε <
u′ref − λ < 0 and −ε < j′ +mα1

+ 2m2α1
< 0 on [xk − δ, xk + δ].

Then we can write, for k > k0,∣∣∣∣∫ ∞
0

u′refe
−νk − λV

∣∣∣∣ 6 ∣∣∣∣∫
]0,∞[r[xk−δ,xk+δ]

u′refe
−νk
∣∣∣∣+

∣∣∣∣∫
[xk−δ,xk+δ]

(u′ref − λ)e−νk
∣∣∣∣

+

∣∣∣∣λ ∫
]0,∞[r[xk−δ,xk+δ]

e−νk
∣∣∣∣

6 λε+ εV + λε.

The proof for for the integral involving j′ follows the same lines, the only difference
being to control ∣∣∣∣∫

]0,∞[r[xk−δ,xk+δ]
j′e−νk

∣∣∣∣.
To this end we use the definition of νk and write∣∣∣∣∫

]0,∞[r[xk−δ,xk+δ]
j′e−νk

∣∣∣∣ 6 ∣∣∣∣∫
]0,∞[r[xk−δ,xk+δ]

ν′ke
−νk
∣∣∣∣+∣∣∣∣∫

]0,∞[r[xk−δ,xk+δ]
u′refe

−νk
∣∣∣∣.

The second term is controlled as before. The first term on the other hand is less
than 2ε by integration and definition of δ. �
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4.7. C2 estimates. — We turn to a priori estimates on u′′t . Note that the equation
at t may be written

u′′t = e−urefJet(uref−ut)/P (u′t).

Consider again a fixed primitive Q of P . It is strictly increasing on [0, λ]. By the
properties of P , we may find a positive constant C > 0 such that

yn1+n2+1/C 6 Q(y)−Q(0) 6 Cyn1+n2+1,

(λ− y)k+1/C 6 Q(λ)−Q(y) 6 C(λ− y)k+1

and
yn1+n2(λ− y)k/C 6 P (y) 6 Cyn1+n2(λ− y)k.

Thanks to the C0-estimates, we may further choose this constant C so that

1/C 6 et(uref−ut) 6 C

independently of the value of t.
Using the previous inequalities in reverse order, we get

C−1
P (u′0)

P (u′t)
6
u′′t
u′′0

=
P (u′0)

P (u′t)
et(uref−ut) 6 C

P (u′0)

P (u′t)

then

C−3
(u′0)n1+n2(λ− u′0)k

(u′t)
n1+n2(λ− u′t)k

6
u′′t
u′′0
6 C3 (u′0)n1+n2(λ− u′0)k

(u′t)
n1+n2(λ− u′t)k

and, using the first two inequalities:

C̃−1 6
u′′t
u′′0

(
Q(u′0)−Q(0)

Q(u′t)−Q(0)

)(−n1−n2)/(n1+n2+1)(
Q(λ)−Q(u′0)

Q(λ)−Q(u′t)

)−k/(k+1)

6 C̃,

where C̃ = C3+
2n1+2n2
n1+n2+1+

2k
k+1 .

We now remember the integral equation

Q(u′t(x))−Q(0) =

∫ x

0

e−urefJet(uref−ut)

again and deduce

C−1(Q(u′0(x))−Q(0)) 6 Q(u′t(x))−Q(0) 6 C(Q(u′0(x))−Q(0))

and similarly

C−1(Q(λ)−Q(u′0(x))) 6 Q(λ)−Q(u′t(x)) 6 C(Q(λ)−Q(u′0(x))).

Putting everything together yields the final estimate comparing u′′t and u′′0 :

C−3−
3n1+3n2
n1+n2+1−

3k
k+1 6

u′′t
u′′0
6 C3+

3n1+3n2
n1+n2+1+

3k
k+1 .
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4.8. Closedness. — Assume now that tj ∈ I, tj → t, and we have uniform C0

and C2 estimates on utj as obtained in other sections (note that C1 estimates are
immediate in view of the restriction u′tj (R) = ] − λ, λ[). Using Arzelà-Ascoli, we
obtain a limit function ut which is C1, with locally uniform convergence of utj to ut
and of u′tj to u′t. As a consequence, we also know that ut is an even function and
that ut(x) − λ|x| is bounded. It remains to check that ut is C2. Using the equation
we have u′′tj = e−(tjutj+(1−tj)uref )J/P (u′tj ). Combined with the fact that u′tj/u

′
0 is

uniformly bounded (this follows from the same techniques as the C2 estimates), we
obtain that u′′tj converges locally uniformly on R r {0} to e−(tut+(1−t)uref )J/P (u′t),
hence ut is C2 on R r {0} with this same second derivative. To conclude, it remains
to check that u′′t admits a limit at 0.

Note that ut still satisfies the integral equation

Q(u′t)−Q(0) =

∫ x

0

e−(tut+(1−t)uref )J

outside 0. The polynomial P and Q have the following behavior at 0: P (y) '
yn1+n2P (n1+n2)(0)/(n1 +n2)! and Q(y)−Q(0) ' y1+n1+n2P (n1+n2)(0)/(1+n1 +n2)!.
As a consequence, from the integral equation we have at 0,

(u′t)
1+n1+n2 ' e−(tut+(1−t)uref )(0)(n1 + n2)!x1+n1+n2/P (n1+n2)(0)

hence u′′t does admit a limit at 0, hence ut is C2 on R with

u′′t (0) =
(
e−(tut+(1−t)uref )(0)(n1 + n2)!/P (n1+n2)(0)

)1/(1+n1+n2)

.

This ends the proofs of Proposition 4.1 and Theorem 3.1.

5. Construction of an asymptotically Ricci flat metric

Let G/H be an indecomposable rank two (complex) symmetric space. We use the
notations introduced in Section 2. We introduce the three constants b, a0 and b1
defined by

b = 2A2/n a0α̃1 = b1α1 + bα̃2.

5.1. Approximate solution near D2. — Near (the open G-orbit of) D2, that is, when
α2 →∞ and α1 is bounded, we use a Tian-Yau like ansatz. We define a potential

%(2) = expβ, β = bα̃2 + ψ(α1),

where b is the constant defined by b = 2A2/n, and ψ is a solution to a positive
Kähler-Einstein equation on the open orbit of D2, with asymptotic behavior imposed
by the Ricci flat equation on G/H as we will check. More precisely, we assume that
the function defined by u = nψ + C, where C = − ln(2n−2−mα1−m2α1 b2n1−n), is a
smooth, strictly convex, even solution to the equation

(18) u′′PDH(2A2α̃2 + u′α1) = e−uJ
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with J(x) = sinhmα1 (x) sinh2mα1 (2x) and PDH is the Duistermaat-Heckman polyno-
mial for G/H. Furthermore, we assume that the function u satisfies the condition

(19) u(x)− |nb1x| = O(1).

Now, not only are we in a position to apply Theorem 3.1 to check when such a function
exists, but one can check that we are exactly in the example of situation described
in Section 3.2. The function u, if it exists, is thus the potential of a singular Kähler-
Einstein metric on the colored Q-Fano compactification of the open orbit in D2, which
is some G-equivariant blow-down of D2. It follows from Section 3.3 that it is possible
to find such a function ψ in all cases except when G = G2, in which case only one
choice of ordering of the roots allows the function ψ to exist.

Let us check that this gives indeed an asymptotic solution of the Monge-Ampère
equation: we obtain

d2%(2) = %(2)
(
d2β + (dβ)2

)
= %(2)

(
ψ′′(α1)α2

1 + (bα̃2 + ψ′(α1)α1)2
)
.

Therefore, using equation (18),

det(d2%(2))
∏
α∈R+

〈α, d%(2)〉mα = (%(2))nb2ψ′′
∏
α∈R+

〈bα̃2 + ψ′α1, α〉mα

= 2mα1+m2α1+2−nenbα̃2 sinhmα1 (α1) sinhm2α1 (2α1).

Thanks to the symmetry of the root system α̃2 ± λα1, we have∑
α∈R+,α1-α

mαα = 2A2α̃2 = nbα̃2,

and it follows that

det(d2%(2))
∏
α∈R+

〈α, d%(2)〉mα = sinhmα1 (α1) sinhm2α1 (2α1)
∏

α∈R+,α1-α

emαα/2

= (1 +O(e−2α2))
∏
α∈R+

sinhmα(α),

where O(e−2α2) means functions whose all derivatives with respect to α1 or α2 are
bounded by cst. e−2α2 .

Rewriting the Ricci flat equation (1) as

(20) P(%(2)) := ln det(d2%(2)) +
∑
α∈R+

mα

(
ln〈α, d%(2)〉 − ln sinhα

)
= 0,

we finally conclude that %(2) is an approximate solution when α2 → ∞ in the sense
that for all ` we have

(21) |∇`P(%(2))| 6 c`e−2α2 .

The solution is good near D2 except when we become close to D1 (α1 → ∞), where
we will construct another model in the next section. It is also important to note
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(as we will see in Section 6) that the geometry when we approach D2 is conical, and
in particular the radius in the cone is

r ∼
√
%(2).

From the inequality b < 2 (in all root systems except G2, only α2 and 2α2 appear
in the root system and this implies immediately b = 2A2/n < 2; in the G2 case, this
is also true, see the tables in § 7), it then follows from (21) that, when α1 remains
bounded and α2 →∞,

(22) P (%(2)) = O(r−4/b), 4/b > 2.

which is a good initial control. Our aim now is to construct an asymptotic solution
near D1 which can be glued to this one in order to extend the control (22) to a whole
neighborhood of infinity.

5.2. Approximate solution near D1. — Near D1, we need to find an asymptotic
solution with a good enough control, and to glue it to the Tian-Yau ansatz produced in
Section 5.1. Note that from Proposition 4.2, ψ admits a precise asymptotic expansion
as x→∞. In particular, we introduce the constants K1, K2 and a1 by

(23) ψ(x) = b1x+K1 +K2e
−a1x + o(e−a1x).

Note that the expression of a1 was given in Section 3, it is

a1 = (nb1 −mα1
− 2m2α1

)/(1 +mα2
+m2α2

).

We define ζ = −〈α1, α2〉/〈α2, α2〉 so that α̃1 = α1 + ζα2.

Proposition 5.1. — When α1 →∞ there is an expansion

(24) %(1) ∼ eK1ea0α̃1

(
1 +

∑
k>1

e−akα̃1Rk(α2)
)
,

where Rk is an even function of α2, such that:
(1) 0 < a1 < a2 < · · · , and for i > 2 one has ai ∈ a1N + 2N;
(2) for every k > 1, if %(1)k is the truncation of the expansion at order k, then

(25) |∇`P(%
(1)
k )| 6 Ck,`e−akα1 ;

(3) when α2 →∞ then Rk(α2) = eakζα2(rk +O(e−2α2)), where O(e−2α2) denotes
a function whose all derivatives are O(e−2α2).

It is important to note that the terms e−akα̃1+ζakα2 = e−akα1 are actually bounded
when α2 →∞.

The first truncation %
(1)
1 and corresponding function R1 plays an important role

in understanding the geometry of this model. Let us denote the function R1 by w. It
is obtained as a potential of the Stenzel metric on the symmetric space fiber of the
open G-orbit in D1, in the notations of Example 2.4. More precisely, the function w
is an (even, smooth, strictly convex) solution to the equation

Cw′′(x)(w′(x))mα2+m2α2 = sinhmα2 (x) sinhm2α2 (2x)
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with C = 2n−2−mα2a20e
nK1 |α2|2(mα2+m2α2 )

∏
α2-α∈R+〈α, a0α̃1〉mα . Such a solution is

defined up to an additive constant, and admits an expansion when x→∞ which by
choosing the additive constant is of the form

(26) w(α2) = K2e
a1ζα2

(
1 +

∑
k>1

wke
−2kα2

)
,

for some constants wk. Note that one verifies easily from the two one variable equations
that the constant K2 and a1 in the expansion of w are the same as that in the
expansion of ψ.

Proof. — If k = 1 we take R1 = w so that

%
(1)
1 = eK1ea0α̃1

(
1 + e−a1α̃1w(α2)

)
.

Then

d2%
(1)
1 = eK1ea0α̃1

(
(a20 + (a0 − a1)2e−a1α̃1)w(α2)α̃2

1

+ (a0 − a1)e−a1α̃1w′(α2)(α̃1α2 + α2α̃1) + e−a1α̃1w′′(α2)α2
2

)
.

In particular one obtains

(27) det(d2%
(1)
1 ) = e2K1a20w

′′(α2)e(2a0−a1)α̃1
(
1 + (a0−a1)2

a20
e−a1α̃1(w(α2)− w′(α2)

2

w′′(α2)
)
)
.

On the other hand, one has

(28) 〈α, d%(1)1 〉 = eK1e(a0−a1)α̃1w′(α2)〈α, α2〉

if α2 | α, and

(29) 〈α, d%(1)1 〉 = eK1a0〈α, α̃1〉ea0α̃1
(
1 + e−a1α̃1(a0−a1a0

w(α2) + 〈α,α2〉
a0〈α,α̃1〉w

′(α2))
)

if α2 - α.
We define an algebra A of formal expansions

A =

{∑
k>1

e−akα̃1fk(α2)

}
,

where the coefficients 0 6= ak ∈ a1N + 2N and fk is an even function satisfying, when
α2 →∞,

fk(α2) = eakζα2(Ak +O(e−2α2)),

and all the derivatives of fk have a similar expansion. More generally we defineAδ ⊂ A
as the subalgebra of expansions with exponents ak > δ, and we observe that

AδAδ′ ⊂ Aδ+δ′ .

With this formalism, putting together (27), (28), (29) and (26), it follows that

(30) P(%
(1)
1 ) ∈ Aa1 .

The linearization of equation (20) is

(31) Lf = tr
(
(d2%(1))−1d2f

)
+
∑
α∈R+

mα
〈α, df〉
〈α, d%(1)〉

.
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Writing df = ∂1̃fα̃1 + ∂2fα2, where ∂1̃f = Hα̃1
f/|α̃1|2 and ∂2f = Hα2

f/|α2|2, we
obtain the formula

(32) Lf =
1

eK1ea0α̃1

(
ea1α̃1∆2f + a−20 ∂2

1̃
f + a−10 (n− 1− d2)∂1̃f

+ a−20 (a0 − a1)2
w(α2)

w′′(α2)
∂22f +O(e−a1α1d2f) +O(e−a1α1df)

)
,

where the term O(e−a1α1d2f) means terms in the second derivatives of f with co-
efficients which are O(e−a1α1) (with all their derivatives with respect to α̃1 or α2);
and ∆2 is the Laplacian on the symmetric space defined by

(33) ∆2f =
∂22f

w′′(α2)
+ (d2 − 1)

∂2f

w′(α2)
.

Therefore when α1 →∞ the leading order term of L is given just by

e−K1e(−a0+a1)α̃1∆2.

From weighted analysis, we know that if δ > 0 then the Laplacian

∆2 : Ckδ −→ Ck−2δ−ζa1

is surjective, with kernel reduced to the constants.
Now we can correct our first approximate solution %

(1)
1 using the linearization of

the equation : from (30), we have

P(%
(1)
1 ) = e−a1α̃1g(α2) + h,

where
– g(α2) is an even function satisfying g(α2) = ea1ζα2(A+O(e−2α2));
– h ∈ Aa2 , where a2 = inf(2a1, 2).

Then we solve the equation

(34) ∆2f = g

with f ∈ Ckζa1 for all k (f is well-defined up to a constant); the form of ∆2 tells us
that, maybe after adjusting the constant if ζa1 < 2,

(35) f(α2) = e2a1ζα2(B +O(e−2α2)),

where the term O(e−2α2) again means that all derivatives have the same decay. This
is exactly the required expansion so that the function

(36) %
(1)
2 = %

(1)
1 − eK1e(a0−2a1)α̃1f(α2),

has the form expected in the statement of the proposition. If we apply the other terms
of the linearization L defined in (32) to e(a0−2a1)α̃1f(α2), we obtain a function in Aa2 ;
the nonlinear terms of P(%

(1)
2 ) also behave well thanks to the multiplication properties

in A, so that one obtains finally

P(%
(1)
2 ) ∈ Aa2 .

We can iterate this procedure to construct inductively %(1)k , and this gives the propo-
sition. �
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5.3. The approximate solution. — Near the divisor D2 we have the other approxi-
mate solution %(2) = ebα̃2+ψ(α1), with ψ(α1) satisfying the equation (18). We have an
asymptotic expansion

(37) ψ(α1) ∼ b1α1 +K1 +
∑
k>1

cke
−akα1 , ak ∈ a1N + 2N.

Lemma 5.2. — If we take for each term Rk(α2) of the expansion (24) the top order
term rke

akζα2 , then we obtain the same expansion as in (37), that is, (formally)

exp
∑
k>1

cke
−akα1 = 1 +

∑
k>1

rke
−akα1 .

In particular, the difference %(2) − %(1) has a formal expansion

%(2) − %(1) ∼ eK1ea0α̃1

∑
k>1

e−akα1gk(α2),

with each gk(α2) = O(e−2α2).

The lemma means that each term ebα̃2−akα1 of the expansion of %(2) glues well with
the terms of %(1): one can actually interpret the construction of %(1) as an extension
along D1 of each term of this asymptotic term, so that one obtains an asymptotic
solution along D1 at any order.

Proof. — We can rewrite %(2) in terms of the coordinates (α̃1, α2) used to con-
struct %(1): since α̃1 = α1 + ζα2,

%(2) = exp
(
a0α̃1 +K1 +

∑
k>1

cke
−ak(α̃1−ζα2)

)
.

This is by (21) a formal solution of the equation

(38) P(%(2)) = O(e−2α2).

We then just need to check that the top order terms of %(1), that is,

%
(1)
top := eK1+a0α̃1

∑
k>1

rke
−ak(α̃1−ζα2)

also satisfy (38), and that the formal solution of (38) in powers of eα1 = eα̃1−ζα2 is
unique.

Note
τ = %(1) − %(1)top = eK1+a0α̃1

∑
k>1

e−akα1O(e−2α2),

then it is clear that the contribution of τ in P(%(1)) is O(e−2α2), that is,

P(%(1)) = P(%
(1)
top) +O(e−2α2).

It follows that %(1)top is also a formal solution of (38). The uniqueness can be obtained
by specializing the construction of the formal expansion in the proof of Proposition 5.1
to the top order terms and checking that at each step the top order term is uniquely
determined: this is true because when we solve (34) the ambiguity is a constant but
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the top order term blows up (35) and is completely determined by the previous top
order terms. �

This now enables to glue together the potentials %(2) and %(1) along a ray α1 = ηα2

in the following way. We truncate %(1) to some order k into %(1)k . We choose a smooth
nondecreasing function χ on R such that χ(t) = 0 if t 6 0 and χ(t) = 1 if t > 1, and
define

(39) % = χ(α1 − ηα2)%
(1)
k + (1− χ(α1 − ηα2))%(2).

On the transition region 0 6 α1 − ηα2 6 1, we write

% = %
(1)
k + (1− χ(α1 − ηα2))(%(2) − %(1)k ).

By the lemma, and using the fact that χ(α1−ηα2) and all its derivatives are bounded,
one obtains that, still on the transition region, the linearization L calculated in (32)
satisfies

L(%− %(1)k ) = O(e−2α2 + e(a1−ak+1)α1),

where again the O(·) means a function such that all derivatives with respect to α1

or α2 satisfy the same estimate. The nonlinear terms are even smaller, so we finally
get on the transition region

(40) P(%) = O(e−2α2 + e(a1−ak+1)α1).

Proposition 5.3. — Take η < ζ(2/b−1) and k large enough so that ak > a0(1+ζ/η).
Then, for (α1, α2) outside a large compact set, we have for all `

|∇`P(%)| 6 C`e−(1+ε)β , β = bα̃2 + ψ(α1).

Proof. — The idea of the proof is simple: near D2 (that is, when α2 → ∞ while α1

remains bounded) we already have such a control, see (22), and therefore the control
persists up to the gluing region 0 < α1−ηα2 < 1 provided that η is small enough. On
the contrary, if η is small then we need a high order control in powers of e−α1 near D1

in order to control up to the transition region: this is provided by Proposition 5.1.
More precisely, observe that when α1 →∞ one has β = a0α̃1 +O(1). Then:
– on the region α1 6 ηα2 then a0α̃1 6 b(η/ζ + 1)α2 so e−2α2 = O(e−(1+ε)β) on

this region if η < ζ(2/b− 1);
– on the region α1 > ηα2 then a0α̃1 6 a0(1+ζ/η)α1 so e(a1−ak+1)α1 = O(e−(1+ε)β)

on this region if ak+1 − a1 > a0(1 + ζ/η).
Given the controls (25) and (22) nearD1 andD2, and the control (40) in the transition
region, the proposition follows. �

We will now modify slightly this function obtained by gluing to make it a well
defined W -invariant smooth and strictly convex function, thus corresponding to a
Kähler metric on G/H. Recall that % coincides with %(2) in the region defined by
α1 6 ηα2 and that %(2) is invariant under the reflection defined by α1 since α̃2 is
orthogonal to α1 and ψ is even. Similarly, on the region defined by α1 > ηα2 + 1, %
coincides with %

(1)
k which is invariant under the reflection with respect to α2. From
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this we deduce that the W -invariant function, still denoted by %, whose restriction to
the positive Weyl chamber is %, is smooth outside of a large enough compact set.

Let us now show that % is strictly convex outside of a large enough compact set.
Note that %(2) is strictly convex by construction. We restrict to a region of the form
{α1 > εα2 > 0} for some ε > 0. In restriction to such a region, we have ea0α̃1−akα1 =

o(ea0α̃1−ak−1α1) = o(ea0α̃1) at infinity, for k > 2. For simplicity, we identify χ with
the composition χ(α1 − ηα2), and compute

d2% = d2%
(1)
k + (1− χ)(d2%(2) − d2%(1)k )− 2dχd(%(2) − %(1)k )− (%(2) − %(1)k )d2χ.

We have at least %(2) − %(1)k = O(ea0α̃1−a2α1), and the derivatives of χ are bounded,
hence the two last terms above are of this order. On the other hand,

d2%
(1)
k + (1− χ)(d2%(2) − d2%(1)k )

is

eK1ea0α̃1
(
(a20 +O(e−a1α1))α̃2

1 +O(e−a1α1)(α̃1α2 + α2α̃1)

+ e−a1α̃1(χw′′(α2) + (1− χ)K2a
2
1ζ

2ea1ζα2)α2
2

)
.

We may now conclude, in view of the properties of w (which is strictly convex and
such that w(α2) = K2e

a1ζα2(1 + O(e−2α2)), that the dominant term of det(d2%) at
infinity is strictly positive. Furthermore, the dominant term for the matrix itself is
eK1ea0α̃1a20α̃

2
1, which is semi-positive, hence we may find a compact set outside of

which the function % is strictly convex.
We finally glue in an arbitrary smooth, W -invariant, strictly convex function on

the compact set where % is not well-behaved as follows. Let M ∈ R and consider the
function

%int := M + ln
∑
w∈W

ew·α1 .

It is a smooth, W -invariant and strictly convex function on a, and we may assume,
by choosing M large enough, that %int > % on the compact set where it is not well-
behaved. Now consider the function defined by sup(%int, %). It is a convex function,
smooth and strictly convex outside of the set where %int and % coincide, which is
compact by comparison of the growth rates. We finally choose an approximation of
this supremum which is smooth, strictly convex, and equal to % outside of a compact
set containing the contact set of % and %int. This is possible using for example [Gho02].
This final function provides the desired asymptotic solution, and we still denote it by %
in the following.

6. Solution to the Kähler-Ricci flat equation

6.1. The asymptotic metric. — Let (l1, l2) denote the basis of a which is dual to
the basis of restricted roots (α1, α2). We use the notation R̂s to denote the roots
of G which are not stable under σ, and let α̂r = α̂ − σ(α̂) denote the restricted root
associated to α̂ ∈ R̂s. Recall that with this convention, α̂r|a = 2α̂|a. For each α̂ ∈ R̂+
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denote µα̂ = eα̂ + σ(eα̂), where (α̂∨, eα̂, e−α̂ = −θ(eα̂)) is a sl2-triple. (Here α̂∨ is
defined by α̂∨ = 2Hα̂/|α̂|2).

Then we can parametrize the symmetric space by

(41) (z1, z2, (zα̂)α̂∈R̂+
s

) 7−→ exp

( ∑
α̂∈R̂+

s

zα̂µα̂

)
exp(z1l1 + z2l2)H,

which is a local biholomorphism when <(z1)l1 + <(z2)l2 belongs to the regular part
of a.

Using the forms ωab = i
2dza ∧ dzb for a, b ∈ {1, 2}, and ωα̂α̂ = i

2dzα̂ ∧ dzα̂, then a
K-invariant Kähler potential is given by a function %(x1, x2) on a, and it follows from
[Del17b, Cor. 2.11] that the Kähler form on the symmetric space G/H is given along
the regular part of A = exp a by

(42)
∑

a,b∈{1,2}

d2%(la, lb)ωab + 2
∑
α̂∈R̂+

s

coth(α̂)
〈d%, α̂r〉
|α̂|2

ωα̂α̂.

The parametrization (41) is slightly different from that in [Del17b] which explains
that the formula is not exactly the same: in (41) we choose the coordinates (zα)

given by the group action on ez1l1+z2l2H ∈ A; this choice still makes sense on the
compactification (when z1 or z2 go to infinity), so our formulas will be meaningful
also on A ∩D1 and A ∩D2.

Note that with this normalization, the restriction to A of the metric g corresponding
to the the Kähler form (42) is given in coordinates (x1, x2) by

(43) g|A = Hess %.

With these formulas at hand, we can now give the asymptotic behavior of the
metric at infinity. We define as in Section 5.1 the function

β = bα̃2 + ψ(α1).

Then near D2, that is, when α2 →∞, the potential eβ leads to a metric

(44) g2 = eβ
(
|dβ|2 + ψ′′(α1)|α1|2 +

∑
α̂∈R̂+

s

2

|α̂|2
coth(α̂)〈dβ, α̂r〉|dzα̂|2

)
.

Since dβ = bα̃2 + ψ′(α1)α1 and ψ′(α1) > 0, we have 〈dβ, α̂r〉 > 0 for all α̂r ∈ R̂+
r

and all values of α1. Therefore, the formula (44) is an asymptotically conical metric
with radius r = 2eβ/2 when we approach D2, that is, when α2 →∞ while α1 remains
bounded.

We now pass to the behavior near D1 of the metric given by the principal term of
the potential, %(1)1 = exp(a0α̃1 + e−a1α̃1w(α2)). The same calculation now gives

g1 = %
(1)
1

(∣∣(a0 − a1e−a1α̃1w)α̃1 + e−a1α̃1w′α2

∣∣2 + a21e
−a1α̃1w|α̃1|2 + e−a1α̃1w′′|α2|2

+
∑
α̂∈R̂+

s

2

|α̂|2
coth(α̂)

〈
(a0 − a1e−a1α̃1w)α̃1 + e−a1α̃1w′α2, α̂r

〉
|dzα̂|2

)
.
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Splitting the sum into roots such that α̂r is a multiple of α2 and other roots, we write
the principal part as

(45) gmod = %
(1)
1

(
a20|α̃1|2 + 2a0

∑
α2-α̂r

coth(α̂)
〈α̃1, α̂r〉
|α̂|2

|dzα̂|2

+ e−a1α̃1

(
w′′|α2|2 + 2w′

∑
α2|α̂r

coth(α̂)
〈α2, α̂r〉
|α̂|2

|dzα̂|2
))

.

Then, using that w(α2) = O(ea1ζα2) when α2 → ∞ and therefore e−a1α̃1w(α2) =

O(ea1α1), with the same for the derivatives with respect to α2, we obtain

(46) |g1 − gmod|gmod
= O(e−a1α1).

Therefore the equation (45) gives the asymptotics of g1 when α1 →∞.
The metric ga is not exactly asymptotically conical since ga/%(1)1 collapses along

the directions given by the action of Hα2 and the µα̂, when α2 | α̂r, that is, along
the directions of the fibers of the fibration D1 → G/P1, which are isomorphic to the
symmetric space X1; and the metric

w′′|α2|2 + 4w′
∑

α=kα2∈R+

k|dzα|2

is the asymptotically conical Kähler Ricci flat metric on X1.
Of course it is important to note that on the regular part of the Weyl chamber, the

formulas (44) and (45) give the same asymptotic behavior, since then β = a0α̃1+K1+

K2e
−a1α1 +O(e−2a1α1) and the asymptotics of ψ′′(α1) and e−a1α̃1w′′(α2) ∼ a21e−a1α1

match, so we again obtain

|g2 − gmod|gmod
= O(e−a1α1).

Our definitive initial metric g0 derives from the potential % obtained by gluing the
potential %(2) = eβ with the potential %(1)k for some large k as described in § 5.3.
Of course g0 is also asymptotic to gmod when α1 goes to infinity:

|g0 − gmod|gmod
= O(e−a1α1).

If we now replace %(1)1 by the potential %(1)k from Proposition 5.1, leading to the
potential given by (39), then we of course get a higher order coincidence between
ddC%

(1)
k and ddC%(2): more precisely, from Lemma 5.2 we have the estimate (also true

for the derivatives):

%(2) − %(1)k = O
(
ea0α̃1(e−a1α1−2α2 + e−ak+1α1)

)
,

we obtain
|ddC%(2) − ddC%(1)k |gmod

= O
(
e−2α2 + e(a1−ak+1)α1

)
,

and more generally

|∇`(ddC%(2) − ddC%(1)k )|gmod
= O

(
e(`/2)α1(e−2α2 + e(a1−ak+1)α1)

)
.
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The Ricci form is given by

Ric = −1

2
ddCP(%).

From Proposition 5.3, we obtain:

Proposition 6.1. — Given any integer `0, if the coefficient η defining the transition
region is small enough and k is large enough, then for the metric g0 coming from the
potential % given by (39), one has for all ` 6 `0

|∇`P(%)|g0 6 C`e(−1−ε−`/2)β .

In particular, for ` 6 `0 − 2, one has

|∇` Ric |g0 6 C`e(−2−ε−`/2)β .

Proof. — The proof is similar to that of Proposition 5.3, the difference being that we
now calculate the derivatives with respect to the metric g0, hence the weight e−β/2
for each derivative, and additionally ea1α1/2 for derivatives in the direction of Hα2

when we go to D1. Because of this last weight, the proposition is not an immediate
consequence of Proposition 5.3, but the scheme of proof is the same : we check what
happens in the various regions.

– In the direction of D2 (α2 → ∞, α1 bounded), we have P(%) = O(e−2α2) (with
the same estimates for the derivatives), and therefore, given the geometry of the
metric,

|∇`P(%)|g0 = O(e−2α2−`/2β).

– In the direction of D1 (α1 → ∞, this includes the transition region), we have
P(%

(1)
k ) = O(e−akα1); here, because of the geometry of the metric, each derivative in

the Hα2
direction comes with a weight e(a1/2)α1 , and therefore

|∇`P(%
(1)
k )|g0 = O(e(−ak+`/2)α1−(`/2)β).

(Recall β ∼ a0α̃1 in this direction).
If `0 is given, we can take k large enough in order to have −ak + `0/2 as negative as
we want, and we then proceed as in the proof of Proposition 5.3. �

It is clear from the proof that it is impossible to control all the derivatives of the
Ricci tensor when one goes to D1, because of the collapsed directions. This is usually
remedied in the literature by using weighted spaces with two weights, one of the
weights taking care of the collapsed directions. We will use another approach and just
state the bounds in the proposition in order to control the geometry at infinity of g0.

6.2. The Ricci flat Kähler metric

Lemma 6.2. — Fix `0 and then g0 as in Proposition 6.1. If a1 6 a0 then the injec-
tivity radius of g0 is bounded below, and g0 admits a C`0−1,α atlas; in particular the
curvature of g0 is bounded in C`0−3,α.

J.É.P. — M., 2019, tome 6



Ricci flat Kähler metrics on rank two complex symmetric spaces 199

By a Ck,α atlas we mean the local existence of holomorphic diffeomorphisms with
a ball B ⊂ Cn such that C−1gCn 6 g0 6 CgCn and ‖g0‖Ck,α(B) 6 C. The notion of
quasi-atlas is similar but the diffeomorphisms can be only local diffeomorphisms: this
is used in Tian-Yau [TY90] but here we need only the notion of atlas.

Proof. — This follows immediately from the model (45) for the metric at infinity : if
a1 > a0 then there is a collapsing in the directions of the fibers X1 when α̃1 → ∞,
and it follows that the injectivity radius goes to zero since it behaves like that
e
a0−a1

2 α̃1 injX1
. But if a1 6 a0 all directions blow up or at least remain bounded

below when one goes to infinity, so the injectivity radius stays bounded below.
A lower bound on the injectivity radius and the bound on `0 − 2 derivatives of

Ricci (Proposition 6.1) gives a lower bound on the C`0−1,α harmonic radius of g0,
which gives a C`0−3,α bound on the curvature of g0. From this it is easy to pass to a
C`0−3,α atlas, see for example [TY90]. �

We produce the Kähler Ricci flat metric by using the Tian-Yau theorem [TY91] in
the version written in the PhD Thesis of Hein [Hei10, Prop. 4.1]. The hypothesis on
the initial metric g0 are:

(1) the existence of a C3,α quasi-atlas, which follows from Lemma 6.2 with `0 > 4;
(2) an initial Ricci potential f ∈ C2,α decaying as O(r−2−ε): this follows from

Proposition 6.1 with `0 > 3;
(3) the condition SOB(n): there exists a point x0 and C > 1 such that if we note

r(x) the distance to x0, then the annuli A(x0, s, t) are connected for all t > s > C,
Vol(B(x0, s)) 6 Csn for all s > C, and Vol(B(x, (1 − C−1)r(x))) > C−1r(x)n and
Ric(x) > −Cr(x)−2: all these conditions are clear given our explicit model.
The theorem of Hein now produces a Kähler Ricci flat metric ω0+ddCu with u ∈ C4,α

for some α 6 α. Therefore this metric has the same asymptotic cone than ω0, and
the theorem is proved.

Remark 6.3. — The function eβ ∼ r2/4 gives the asymptotic potential at infinity,
which implies that ∆(eβ) ∼ n (including when one goes toD1, that is, in the directions
where there is collapsing). The functions eδβ are then well suited to barrier arguments,
and one can then prove that, if we write the Ricci flat metric ω0 + ddCu, then one
has actually u = O(e−εβ), see [Hei10, §4.5].

7. Summary of constants

We gather in Table 2 the expression of notable constants in terms of the multiplic-
ities in the restricted root system, as well as the indexing of simple restricted roots.
Recall that the dimension n of X is n = 2 +

∑
α∈R+ mα, that the dimension of the

fibers of the facets are dim(X1) = 1 +mα2 +m2α2 and dim(X2) = 1 +mα1 +m2α1 .
The coefficients of $ = A1α1 + A2α2 were computed in Section 3.3 and are re-
called in the table. For the Tian-Yau ansatz, we introduced b = 2A2/n, then set

J.É.P. — M., 2019, tome 6



200 O. Biquard & T. Delcroix

A2 B(C)2 (α1 = α) B(C)2 (α1 = β) G2 (α1 = α) G2 (α1 = β)

〈α1, α2〉 −1/2 −1 −1 −3/2 −3/2

〈α1, α1〉 1 2 1 3 1

〈α2, α2〉 1 1 2 1 3

n 2 + 3m 2(1 +m1 +m2 +m3) 2(1 +m1 +m2 +m3) 2 + 6m 2 + 6m

dim(X1) 1 +m 1 +m2 +m3 1 +m1 1 +m 1 +m

dim(X2) 1 +m 1 +m1 1 +m2 +m3 1 +m 1 +m

A1 m m1 +m2/2 +m3 m1 +m2 + 2m3 3m 5m

A2 m m1 +m2 + 2m3 m1 + m2
2

+m3 5m 3m

b 2m
2+3m

m1+m2+2m3
1+m1+m2+m3

2m1+m2+2m3
2(1+m1+m2+m3)

5m
1+3m

3m
1+3m

b1 3b/2 b/2 b b/6 b/2

a0 2b b 2b 2b/3 2b

a1
2m
1+m

m2+2m3
1+m2+m3

2m1
1+m1

2m
3(1+m)

2m
3(1+m)

a1 6 a0 false m3 6 1 m2(m1 − 1) 6 2m3 true true

Ď2 KE? true true true true false

Table 2. Notable constants and conditions

a0 = b|α̃2|2/〈α̃1, α̃2〉 and b1 = b〈α̃2, α2〉/〈α1, α2〉. Finally, the constant a1 appeared
in the expansions, and is equal to nb1 −mα1

− 2m2α1
/(1 +mα2

+m2α2
).

We also include in the table when the condition a1 6 a0 is satisfied, and when the
positive Kähler-Einstein metric needed exists on Ď2. Note that we consider only the
values of multiplicities that appear in symmetric spaces.
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