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AN OPTIMAL REGULARITY RESULT ON

THE QUASI-INVARIANT GAUSSIAN MEASURES FOR

THE CUBIC FOURTH ORDER NONLINEAR

SCHRÖDINGER EQUATION

by Tadahiro Oh, Philippe Sosoe & Nikolay Tzvetkov

Abstract. — We study the transport properties of the Gaussian measures on Sobolev spaces
under the dynamics of the cubic fourth order nonlinear Schrödinger equation on the circle.
In particular, we establish an optimal regularity result for quasi-invariance of the mean-zero
Gaussian measures on Sobolev spaces. The main new ingredient is an improved energy esti-
mate established by performing an infinite iteration of normal form reductions on the energy
functional. Furthermore, we show that the dispersion is essential for such a quasi-invariance
result by proving non quasi-invariance of the Gaussian measures under the dynamics of the
dispersionless model.

Résumé (Régularité optimale pour la quasi-invariance de mesures gaussiennes par le flot de
l’équation de Schrödinger non linéaire d’ordre 4)

Nous étudions le transport de mesures gaussiennes par le flot de l’équation de Schrödinger
non linéaire d’ordre 4. La nouveauté principale est une estimation d’énergie améliorée faisant
appel à un nombre infini de transformations de forme normale sur la fonctionnelle d’énergie. De
plus, nous démontrons que la dispersion est essentielle dans cette problématique en prouvant
qu’en son absence le même résultat de quasi-invariance ne peut être vrai.
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794 T. Oh, P. Sosoe & N. Tzvetkov

1. Introduction

In this paper, we complete the study of the transport properties of Gaussian mea-
sures on Sobolev spaces for the cubic nonlinear Schrödinger equation (NLS) with
quartic dispersion, initiated by the first and third authors in [34].

The question addressed in this work is motivated by a number of perspectives.
In probability theory, absolute continuity properties for the pushforward of Gaussian
measures under linear and nonlinear transformations have been studied extensively,
starting with the classical work of Cameron-Martin; see [7, 26, 41]. More generally,
questions of absolute continuity of the distribution of solutions to differential and
stochastic differential equations with respect to a given initial distribution or some
chosen reference measure are also central to stochastic analysis. For example, close
to the topic of the current paper, see the work of Cruzeiro [11, 12]. We also note a
recent work [31] establishing absolute continuity of the Gaussian measure associated
to the complex Brownian bridge on the circle under certain gauge transformations.

On the other hand, in the analysis of partial differential equations (PDEs), Hamil-
tonian PDE dynamics with initial data distributed according to measures of Gibbs
type have been studied intensively over the last two decades, starting with the work of
Bourgain [4, 6]. See [34] for the references therein. These Gibbs-type measures are con-
structed as weighted Gaussian measures and are usually supported on Sobolev spaces
of low regularity with the exception of completely integrable Hamiltonian PDEs such
as the cubic NLS on the circle. In the approach initiated by Bourgain and successfully
applied to many equations since then, invariance of such Gibbs-type measures under
the flow of the equation has been established by combining the Hamiltonian structure
of suitable finite dimensional approximations, in particular invariance of the finite
dimensional Gibbs-type measures, with PDE approximation arguments. Invariance of
such weighted Gaussian measures implies absolute continuity of the pushforward of
the base Gaussian measures. If we substitute the underlying measure with a different
Gaussian measure, however, the question of absolute continuity becomes non-trivial.
See also [5] for a related question by Gel’fand on building a direct method to prove
absolute continuity properties without relying on invariant measures.

In [44], the third author initiated the study of transport properties of Gaussian
measures under the flow of a Hamiltonian PDE, combining probabilistic and PDE
techniques. The result proved there for a specific Hamiltonian equation (the gener-
alized BBM equation) went beyond general results on the pushforwards of Gaussian
measures by nonlinear transformations such as Ramer’s [41]. It was shown in [44] that
a key step to showing absolute continuity is to establish a smoothing effect on the
nonlinear part. In [34], the first and third authors studied the transport of Gaussian
measures for the cubic NLS with quartic dispersion. An additional difficulty com-
pared to [44] is the absence of explicit smoothing coming from the nonlinearity, thus
requiring the use of dispersion in an explicit manner. In [34], such dispersion was man-
ifested through the normal form method. In this paper, we improve the result in [34]
to the optimal range of Sobolev exponents by pushing the normal form method to the
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Quasi-invariant measures for the cubic fourth order NLS 795

limit. Furthermore, we present a result showing that, in the absence of dispersion, the
distribution of the solution of the resulting dispersionless equation is not absolutely
continuous with respect to the Gaussian initial data for any non-zero time. This in
particular establishes the necessity of dispersion for an absolute continuity property.
Since the linear equation is easily seen to leave the distribution of the Gaussian initial
data invariant, this highlights that the question of transport properties for a Hamil-
tonian PDE is a probabilistic manifestation of the competition between the dispersion
and the nonlinear part, familiar for the study of nonlinear dispersive equations.

1.1. The equation. — We consider the cubic fourth order nonlinear Schrödinger
equation (4NLS) on the circle T = R/(2πZ):

(1.1)
{
i∂tu = ∂4

xu± |u|2u
u|t=0 = u0,

(x, t) ∈ T× R,

where u is a complex-valued function on T× R. The equation (1.1) is also called the
biharmonic NLS and it was studied in [21, 43] in the context of stability of solitons
in magnetic materials. See also [24, 25, 2, 13] for a more general class of fourth order
NLS:

i∂tu = λ∂2
xu+ µ∂4

xu± |u|2u.(1.2)

The equation (1.1) is a Hamiltonian PDE with the conserved Hamiltonian:

H(u) =
1

2

ˆ
T
|∂2
xu|2dx±

1

4

ˆ
T
|u|4dx.

In addition to the Hamiltonian, the flow of the equation (1.1) preserves the L2-norm,
or the so-called “mass”:

M(u) =

ˆ
T
|u|2dx.

This mass conservation law was used in [34] to prove the following sharp global well-
posedness result.

Proposition 1.1. — The cubic 4NLS (1.1) is globally well-posed in Hσ(T) for σ > 0.

This global well-posedness result in L2(T) is sharp in the sense that the cubic
4NLS (1.1) is ill-posed in negative Sobolev spaces in the sense of non-existence of
solutions. See [19, 34, 37].

The defocusing/focusing nature of the equation (1.1) does not play any role in the
following. Hence, we assume that it is defocusing, i.e., with the + sign in (1.1).

1.2. Quasi-invariance of µs. — Given s > 1/2, we consider the mean-zero Gaussian
measures µs on L2(T) with covariance operator 2(Id−∂2

x)−s, formally written as

dµs = Z−1
s e−

1
2‖u‖

2
Hsdu =

∏
n∈Z

Z−1
s,ne

− 1
2 〈n〉

2s|ûn|2dûn.(1.3)

J.É.P. — M., 2018, tome 5



796 T. Oh, P. Sosoe & N. Tzvetkov

As we see below, the Gaussian measure µs is not supported on Hs(T), i.e.,
µs(H

s(T)) = 0, and we need to work in a larger space. See (1.5). This is due
to the infinite dimensionality of the problem.

The covariance operator is diagonalized by the Fourier basis on T and the Gaussian
measure µs defined above is in fact the induced probability measure under the map(1)

ω ∈ Ω 7−→ uω(x) = u(x;ω) =
∑
n∈Z

gn(ω)

〈n〉s
einx,(1.4)

where 〈 · 〉 = (1+ | · |2)1/2 and {gn}n∈Z is a sequence of independent standard complex-
valued Gaussian random variables on a probability space (Ω,F , P ), i.e., Var(gn) = 2.
From this random Fourier series representation, it is easy to see that uω in (1.4) lies
in Hσ(T) almost surely if and only if

σ < s− 1/2.(1.5)

Lastly, note that, for the same range of σ, the triplet (Hs, Hσ, µs) forms an abstract
Wiener space. See [17, 27].

In the following, we continue to study the transport property of the Gaussian mea-
sure µs under the dynamics of the cubic 4NLS (1.1). Before proceeding further, recall
the following definition of quasi-invariant measures; given a measure space (X,µ), we
say that the measure is quasi-invariant under a measurable transformation T : X → X

if µ and the pushforward of µ under T , defined by T∗µ = µ ◦T−1, are equivalent, i.e.,
mutually absolutely continuous with respect to each other.

Our first result improves the quasi-invariance result in [34] to the optimal range of
Sobolev exponents.

Theorem 1.2. — Let s > 1/2. Then, the Gaussian measure µs is quasi-invariant
under the flow of the cubic 4NLS (1.1).

Theorem 1.2 improves the main result in [34], where the first and the third au-
thors proved quasi-invariance of µs under (1.1) for s > 3/4. Moreover, the regularity
s > 1/2 is optimal since when s = 1/2, the Gaussian measure µs is supported in
H−ε(T) r L2(T), while the cubic 4NLS (1.1) is ill-posed in negative Sobolev spaces
in the sense of non-existence of solutions.

As shown in [44], to prove quasi-invariance of µs, it is essential to exhibit a smooth-
ing of the nonlinear part of the equation. This can be understood at an intuitive
level by an analogy to the Cameron-Martin theorem: the Gaussian measures µs are
quasi-invariant under translations by fixed vectors in their respective Cameron Martin
spaces Hs(T). Since a typical element under µs lies in Hσ(T), σ < s− 1/2, one needs
to show that the nonlinear part represents a perturbation which is smoother in the
Sobolev regularity. The Cameron-Martin theorem applies only to translation by fixed
vectors, but Ramer’s quasi-invariance result [41] applies to a more general nonlinear
transformation on an abstract Wiener space, although it requires the translations to

(1)Henceforth, we drop the harmless factor of 2π, if it does not play an important role.
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Quasi-invariant measures for the cubic fourth order NLS 797

be more regular. This was applied in [44] and [34], where it was noted that a direct
application of Ramer’s result yields a suboptimal range on s. In [34], we applied the
normal form reduction to the equation and exhibited (1+ε)-smoothing on the nonlin-
earity when s > 1. We then proved quasi-invariance of µs by invoking Ramer’s result.
When 3/4 < s 6 1, we followed the general approach introduced by the third author
in the context of the (generalized) BBM equation [44]. This strategy combines an
energy estimate with the analysis of the evolution of truncated measures. As in [34],
showing a smoothing of the nonlinear part for (1.1) requires normal form reductions.
The main improvements over [34] here comes from a more refined implementation of
the normal form reductions, inspired by [18].

In the following, we first describe a rough idea behind this method introduced
in [44]. Let Φ(t) denote the solution map of (1.1) sending initial data u0 to the
solution u(t) at time t ∈ R. Suppose that we have a measurable set A ⊂ L2(T) with
µs(A) = 0. Fix non-zero t ∈ R. In order to prove quasi-invariance of µs, we would
like to prove µs(Φ(t)(A)) = 0.(2) The main idea is to establish the following two
properties:

(i) Energy estimate (with smoothing):

d

dt
‖Φ(t)(u)‖2Hs “ 6 ”C(‖u‖L2)‖Φ(t)u‖2−θ

Hs−1/2−ε(1.6)

for some θ > 0,(3)

(ii) A change-of-variable formula:

µs(Φ(t)(A)) = Z−1
s

ˆ
Φ(t)(A)

e−
1
2‖u‖

2
Hsdu “ = ” Z−1

s

ˆ
A

e−
1
2‖Φ(t)(u)‖2Hsdu.

Step (i) is an example of local analysis, studying a trajectory of a single solution,
while Step (ii) is an example of global analysis on the phase space. Combining (i)
and (ii), we can study the evolution of µs(Φ(t)A) by estimating d

dtµs(Φ(t)(A)). In
particular, by applying Yudovich’s argument [22], we obtain(4)

µs(Φ(t)(A)) 6 C(t, δ)
(
µs(A)

)1−δ(1.7)

for any δ > 0. In particular, if µs(A) = 0, then we would have µs(Φ(t)(A)) = 0. See
[44, 34, 33] for details.

As the quotation marks indicate, both (i) and (ii) are not quite true as they are
stated above. In [34], we first performed two transformations to (1.1) and transformed

(2)By time reversibility, this would also yield Φ(t)∗µs(A) = µs(Φ(−t)(A)) = 0.
(3)In [35], the first and third authors recently proved quasi-invariance of µs ⊗ µs−1 on (u, ∂tu)

under the dynamics of the two-dimensional cubic nonlinear wave equation (NLW), where they showed
that even when θ = 0, we can still apply Yudovich’s argument in the limiting case and establish a
desired estimate of the form (1.7). This was crucial in proving quasi-invariance of µs ⊗ µs−1 under
the cubic NLW on T2.

(4)Compare (1.7) with a much stronger estimate in Lemma 3.9.

J.É.P. — M., 2018, tome 5



798 T. Oh, P. Sosoe & N. Tzvetkov

the equation into the following renormalized equation:

∂tv̂n = −i
∑

n=n1−n2+n3
n 6=n1,n3

e−iφ(n)tv̂n1
v̂n2

v̂n3
+ i|v̂n|2v̂n,(1.8)

where the phase function φ(n) is given by

φ(n) = φ(n1, n2, n3, n) = n4
1 − n4

2 + n4
3 − n4.(1.9)

Note that this reduction of (1.1) to (1.8) via two transformations on the phase space
is another instance of global analysis. See Section 3.1. This reformulation exhibits
resonant and non-resonant structure of the nonlinearity in an explicit manner and
moreover it removes certain resonant interactions, which was crucial in establishing
an effective energy estimate in Step (i). By applying a normal form reduction, we
introduced a modified energy Et = ‖u(t)‖2Hs + Rt for some appropriate correction
term Rt. See (1.10)–(1.12) below. We then established an energy estimate on the
modified energy Et, provided s > 3/4. In Step (ii), in order to justify such a change-
of-variable formula, we considered a truncated dynamics. Moreover, we needed to
introduce and consider a change-of-variable formula for a modified measure associated
with the modified energy Et introduced in Step (i).

The regularity restriction s > 3/4 in the previous paper [34] comes from the energy
estimate in Step (i), where we applied the normal form reduction (namely integration
by parts in time) once to the equation: ∂t‖u‖2Hs = · · · satisfied by the Hs-energy
functional ‖u‖2Hs . In the following, we prove Theorem 1.2 by performing normal form
reductions infinitely many times. Our normal form approach is analogous to the ap-
proach employed in [1, 28, 18]. In particular, in [18], the first author (with Guo and
Kwon) implemented an infinite iteration scheme of normal form reductions to prove
unconditional well-posedness of the cubic NLS on T in low regularity. In [18], we per-
formed integration by parts in a successive manner, introducing nonlinear terms of
higher and higher degrees. While the nonlinear terms thus introduced are of higher
degrees, they satisfy better estimates. In order to keep track of all possible ways to
perform integration by parts, we introduced the notion of ordered trees. See also [8]
for another example of an infinite iteration of normal form reductions to prove un-
conditional well-posedness.

In establishing an improved energy estimate (Proposition 3.4), we perform an in-
finite iteration of normal form reductions. It is worthwhile to note that, unlike [18],
we do not work at the level of the equation (1.1). Instead, we work at the level of
the evolution equation ∂t‖u‖2Hs = · · · satisfied by the Hs-energy functional. Let us
first go over the computation performed in [34] to show a flavor of this method. Using
(1.8), we have

(1.10) d

dt

(1

2
‖u(t)‖2Hs

)
=

d

dt

(1

2
‖v(t)‖2Hs

)
= −Re i

∑
n∈Z

∑
n=n1−n2+n3
n 6=n1,n3

e−iφ(n)t〈n〉2sv̂n1
v̂n2

v̂n3
v̂n,
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where v is the renormalized variable as in (1.8). Then, differentiating by parts, i.e.,
integrating by parts without an integral symbol,(5) we obtain

(1.11) d

dt

(1

2
‖v(t)‖2Hs

)
= Re

d

dt

[∑
n∈Z

∑
n=n1−n2+n3
n 6=n1,n3

e−iφ(n)t

φ(n)
〈n〉2sv̂n1 v̂n2 v̂n3 v̂n

]

− Re
∑
n∈Z

∑
n=n1−n2+n3
n 6=n1,n3

e−iφ(n)t

φ(n)
〈n〉2s∂t

(
v̂n1

v̂n2
v̂n3

v̂n
)
.

This motivates us to define the first modified energy E(1)
t (v) with the correction term

R
(1)
t (v) by

E
(1)
t (v) =

1

2
‖v‖2Hs +R

(1)
t (v)

:=
1

2
‖v‖2Hs − Re

∑
n∈Z

∑
n=n1−n2+n3
n 6=n1,n3

e−iφ(n)t

φ(n)
〈n〉2sv̂n1

v̂n2
v̂n3

v̂n.
(1.12)

This is the modified energy used in the previous work [34] (up to a constant factor).
Note that the time derivative of E(1)

t (v) is given by the second term on the right-hand
side of (1.11).

In the second step, we divide the the second term on the right-hand side of (1.11)
into nearly resonant and non-resonant parts and apply differentiation by parts only
to the non-resonant part. When we apply differentiation by parts as in (1.11) in
an iterative manner, the time derivative may fall on any of the factors v̂nj

and v̂n,
generating higher order nonlinear terms. In general, the structure of such terms can
be very complicated, depending on where the time derivative falls. In [18], ordered
(ternary) trees played an important role for indexing such terms. In our case, we
work on the evolution equation satisfied by the Hs-energy functional and we need to
consider tree-like structures that grow in two directions. In Section 4, we introduce
the notion of bi-trees and ordered bi-trees for this purpose.

After J steps of the normal form reductions, we arrive at

(1.13) d

dt

(1

2
‖v(t)‖2Hs

)
=

d

dt

(J+1∑
j=2

N
(j)

0 (v)(t)
)

+

J+1∑
j=2

N
(j)

1 (v)(t)

+

J+1∑
j=2

R(j)(v)(t) + N
(J+1)

2 (v)(t).

Here, N
(j)

0 (v) consists of certain 2j-linear terms, while N
(j)

1 (v) and R(j)(v) consist
of (2j + 2)-linear terms. In practice, we obtain (1.13) for smooth functions with a

(5)This is indeed a Poincaré-Dulac normal form reduction applied to the evolution equation (1.10)
for 1

2
‖v(t)‖2Hs . See [18, §1] for a discussion on the relation between differentiation by parts and normal

form reductions.
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800 T. Oh, P. Sosoe & N. Tzvetkov

truncation parameterN ∈ N. Here, we can only show that the remainder term N
(J+1)

2

satisfies the bound of the form: ∣∣N (J+1)
2

∣∣ 6 F (N, J),

with the upper bound F (N, J) satisfying

lim
N→∞

F (N, J) =∞

for each fixed J ∈ N. This, however, does not cause an issue since we also show that

lim
J→∞

F (N, J) = 0

for each fixed N ∈ N. Therefore, by first taking the limit J → ∞ and then N → ∞,
we conclude that the error term N

(J+1)
2 vanishes in the limit. See Section 4.5. While

it is simple, this observation is crucial in an infinite iteration of the normal form
reductions.

At the end of an infinite iteration of the normal form reductions, we can rewrite
(1.10) as

(1.14) d

dt

(1

2
‖v(t)‖2Hs

)
=

d

dt

( ∞∑
j=2

N
(j)

0 (v)(t)

)
+

∞∑
j=2

N
(j)

1 (v)(t) +

∞∑
j=2

R(j)(v)(t),

involving infinite series. The main point of this normal form approach is that, while
the degrees of the nonlinear terms appearing in (1.14) can be arbitrarily large, we
can show that they are all bounded in L2(T) (in a summable manner over j). In
particular, by defining the modified energy Et(v) by

Et(v) :=
1

2
‖v(t)‖2Hs −

∞∑
j=2

N
(j)

0 (v)(t),(1.15)

we see that its time derivative is bounded:∣∣∣ d
dt

Et(v)
∣∣∣ 6 Cs(‖u‖L2),

satisfying the energy estimate (1.6) in Step (i) with θ = 2. See Proposition 3.4 below.
This is the main new ingredient for proving Theorem 1.2. See also the recent work [37]
by the first author (with Y.Wang) on an infinite iteration of normal form reductions
for establishing a crucial energy estimate on the difference of two solutions in proving
enhanced uniqueness for the renormalized cubic 4NLS (see (1.17) below) in negative
Sobolev spaces.

Remark 1.3
(i) Heuristically speaking, this infinite iteration of normal form reductions allows

us to exchange analytical difficulty with algebraic/combinatorial difficulty.
(ii) The “correction term” R(1)

t in (1.12) is nothing but the correction term in the
spirit of the I-method [9, 10]. In fact, at each step of normal form reductions, we obtain
a correction term N

(j)
0 (v). Hence, our improved energy estimate (Proposition 3.4)

via an infinite iteration of normal form reductions can be basically viewed as an
implementation of the I-method with an infinite sequence

{
N

(j)
0 (v)

}∞
j=2

of correction
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terms. Namely, the modified energy Et(v) defined in (1.15) is a modified energy of an
infinite order in the I-method terminology.(6)

(iii) We point out that a finite iteration of normal form reductions is not sufficient
to go below s > 3/4. See (6.14) in [34], showing the restriction s− 1/2 > 1/4.

Remark 1.4. — Let us briefly discuss the situation for the more general cubic fourth
order NLS (1.2). For this equation, the following phase function

φλ,µ(n) = −λ(n2
1 − n2

2 + n2
3 − n2) + µ(n4

1 − n4
2 + n4

3 − n4)

plays an important role in the analysis. In view of Lemma 3.1 below, we have

(1.16) φλ,µ(n) = (n1 − n2)(n1 − n)
{
− 2λ+ µ

(
n2

1 + n2
2 + n2

3 + n2 + 2(n1 + n3)2
)}
.

If the last factor in (1.16) does not vanish for any n1, n2, n3, n ∈ Z, then we can
establish quasi-invariance of µs under (1.2) for s > 1/2 with the same proof as in [34]
and this paper. It suffices to note that, while we make use of the divisor counting
argument in the proof, we only apply it to µ(n) = (n1 − n2)(n1 − n) and thus the
integer/non-integer character of the last factor in (1.16) is irrelevant.

For example, when λµ < 0, the last factor in (1.16) does not vanish and thus
Theorem 1.2 applies to this case. When λµ > 0, the non-resonant condition 2λ 6∈ µN
also guarantees the non-vanishing of the last factor in (1.16). It seems of interest to
investigate the transport property of the Gaussian measure µs in the resonant case
2λ ∈ µN. In this case, there are more resonant terms and thus further analysis is
required.

Remark 1.5. — On the one hand, the cubic 4NLS (1.1) is ill-posed in negative Sobolev
spaces and hence the quasi-invariance result stated in Theorem 1.2 is sharp. On the
other hand, the first author and Y.Wang [37] considered the following renormalized
cubic 4NLS on T:

i∂tu = ∂4
xu+

(
|u|2 − 2

ffl
|u|2dx

)
u,(1.17)

where
ffl
T f(x)dx := 1

2π

´
T f(x)dx. In particular, they proved global well-posedness

of (1.17) in Hs(T) for s > −1/3. In a very recent work [36], the first and third
authors with Y.Wang went further and constructed global-in-time dynamics for (1.17)
almost surely with respect to the white noise, i.e., the Gaussian measure µs with
s = 0 supported on Hσ(T), σ < −1/2. As a result, they proved invariance of the
white noise µ0 under the renormalized cubic 4NLS (1.17). Invariance is of course a
stronger property than quasi-invariance and hence the white noise is in particular
quasi-invariant under (1.17). The question of quasi-invariance of µs for s ∈ (0, 1/2]

under the dynamics of the renormalized cubic 4NLS (1.17) is therefore a natural
sequel of the analysis of this paper.

(6)The highest order of modified energies used in the literature is three in the application of the
I-method to the KdV equation [10], corresponding to two iterations of normal form reductions.
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1.3. Non quasi-invariance under the dispersionless model. — To motivate our sec-
ond result, note that, by invariance of the complex-valued Gaussian random vari-
able gn in (1.4) under rotations, it is clear that the Gaussian measure µs is invariant
under the linear dynamics:

(1.18)
{
i∂tu = ∂4

xu

u|t=0 = u0,
(x, t) ∈ T× R.

See Lemma 3.2 (i) below. In particular, µs is quasi-invariant under the linear dynam-
ics (1.18).

In the proof of the quasi-invariance of µs under the cubic 4NLS (1.1) (Theorem 1.2
above), the dispersion plays an essential role. The strong dispersion allows us to show
that the nonlinear part in (1.1) is a perturbation to the linear equation (1.18). Our
next result shows that the dispersion is indeed essential for Theorem 1.2 to hold.

Consider the following dispersionless model:

(1.19)
{
i∂tu = |u|2u
u|t=0 = u0,

(x, t) ∈ T× R.

Recall that there is an explicit solution formula for (1.19) given by:

(1.20) u(x, t) = e−it|u0(x)|2u0(x)

at least for continuous initial data such that the pointwise product makes sense.
Let s > 1/2. Then, it is easy to see that the random function uω in (1.4) is

continuous almost surely. Indeed, by the equivalence of Gaussian moments and the
mean value theorem, we have

E
[
|uω(x)− uω(y)|p

]
6 Cp

(
E
[
|uω(x)− uω(y)|2

])p/2
∼
(∑
n∈Z

1

〈n〉2s−2ε

)p/2
|x− y|εp

. |x− y|εp,

provided that ε > 0 is sufficiently small such that 2s − 2ε > 1. Now, by choosing
p� 1 such that εp > 1, we can apply Kolmogorov’s continuity criterion and conclude
that uω in (1.4) is almost surely continuous when s > 1/2. This in particular implies
that the solution formula (1.20) is well defined for initial data distributed according
to µs, s > 1/2, and the corresponding solutions exist globally in time. We denote
by Φ̃(t) the solution map for the dispersionless model (1.19).

We now state our second result.

Theorem 1.6. — Let s > 1/2. Then, given t 6= 0, the pushforward measure Φ̃(t)∗µs
under the dynamics of the dispersionless model (1.19) is not absolutely continuous
with respect to the Gaussian measure µs. Namely, the Gaussian measure µs is not
quasi-invariant under the dispersionless dynamics (1.19).

This is a sharp contrast with the quasi-invariance result for the cubic 4NLS in
Theorem 1.2 and for the cubic NLS for s ∈ N (see [34, Rem. 1.4]). In particular,
Theorem 1.6 shows that dispersion is essential for establishing quasi-invariance of µs.
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We prove this negative result in Theorem 1.6 by establishing that typical elements
under µs, s > 1/2, possess an almost surely constant modulus of continuity at each
point. This is the analogue of the classical law of the iterated logarithm for the Brow-
nian motion. We show that this modulus of continuity is destroyed with a positive
probability by the nonlinear transformation (1.20) for any non-zero time t ∈ Rr {0}.

Our proof is based on three basic tools: the Fourier series representation of the
(fractional) Brownian loops, the law of the iterated logarithm, and the solution for-
mula (1.20) to the dispersionless model (1.19). We will use three different versions
of the law of the iterated logarithm, depending on (i) s = 1 corresponding to the
Brownian/Ornstein-Uhlenbeck loop, (ii) 1/2 < s < 3/2, corresponding to the frac-
tional Brownian loop, and (iii) the critical case s = 3/2. In Cases (i) and (ii), we make
use of the mutual absolute continuity of the function u given in the random Fourier
series (1.4) and the (fractional) Brownian motion on [0, 2π) to deduce the law of the
iterated logarithm for the random function u. In Case (iii), we directly establish the
relevant law of the iterated logarithm for u in (1.4).(7) See Proposition 5.7.

On the one hand, the law of the iterated logarithm yields almost sure constancy of
the modulus of continuity at time t = 0. On the other hand, we combine this almost
sure constancy of the modulus of continuity at time t = 0 and the solution formula
(1.20) to show that the modulus of continuity at non-zero time t 6= 0 does not satisfy
the conclusion of the law of the iterated logarithm with a positive probability. Lastly,
for s > 3/2, we reduce the proof to one of Cases (i), (ii), or (iii) by differentiating the
random function.

Remark 1.7. — The existence of a quasi-invariant measure shows a delicate persis-
tence property of the dynamics. In particular, this persistence property due to the
quasi-invariance is stronger than the persistence of regularity(8) obtained by the usual
well-posedness theory. While the dispersionless model (1.19) enjoys the persistence of
regularity in Hσ(T), σ > 1/2, Theorem 1.6 shows that the Gaussian measure µs is
not quasi-invariant under the dynamics of (1.19).

Remark 1.8
(i) For ε ∈ R, consider the following 4NLS:

(1.21) i∂tu = ε∂4
xu+ |u|2u.

For smooth initial data, it is easy to show that, on the unit time interval [0, 1], the
corresponding solutions to the small dispersion 4NLS, i.e., (1.21) with small ε 6= 0,
converge to those to the dispersionless model (1.19) as ε→ 0. See [38, Lem. 4.1]. In this

(7)We could apply this argument to directly establish the relevant law of the iterated logarithm
in Cases (i) and (ii) as well.

(8)In the scaling sub-critical case, by persistence of regularity, we mean the following; if one
proves local well-posedness in Hs0 for some s0 ∈ R and if u0 lies in a smoother space Hs for some
s > s0, then the corresponding solution remains smoother and lies in C([−T, T ];Hs), where the local
existence time T > 0 depends only on the Hs0 -norm of the initial condition u0.
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sense, the small dispersion 4NLS (1.21) with |ε| � 1 is “close” to the dispersionless
model (1.19).

On the other hand, there is a dichotomy in the statistical behavior of solutions
to the small dispersion 4NLS (1.21) and to the dispersionless model (1.19). When
ε 6= 0, one can easily adapt the proof of Theorem 1.2 and prove quasi-invariance
of the Gaussian measure µs. When ε = 0, however, Theorem 1.6 shows that µs is
not quasi-invariant under (1.19). This shows a dichotomy between quasi-invariance
for ε 6= 0 and non quasi-invariance for ε = 0, while there is a good approximation
property for the deterministic dynamics of the dispersionless model (1.19) by that of
the small dispersion 4NLS (1.21) with |ε| � 1.

(ii) We mention recent work [32, 14] on establishing quasi-invariance of the Gauss-
ian measure µs for Schrödinger-type equations with less dispersion. In particular,
Forlano-Trenberth [14] studied the following fractional NLS:

(1.22) i∂tu = (−∂2
x)α/2u+ |u|2u

and proved quasi-invariance of µs (for some non-optimal range of s > sα), provided
that α > 1. When α = 1, the equation (1.22) corresponds to the half-wave equation,
which does not possess any dispersion. See [15, 40, 16]. It would be of interest to study
the transport properties of the Gaussian measure µs under (1.22) for 0 < α < 1. We
also point out that (1.22) for 0 < α < 1 also appears as a model in the study of one-
dimensional wave turbulence [29] and hence is a natural model for statistical study
of its solutions.

1.4. Organization of the paper. — In Section 2, we introduce some notations. In
Section 3, we prove Theorem 1.2, assuming the improved energy estimate (Proposi-
tion 3.4). We then present the proof of Proposition 3.4 in Section 4 by implement-
ing an infinite iteration of normal form reductions. Lastly, by studying the random
Fourier series (1.4) and the relevant law of the iterated logarithm, we prove non quasi-
invariance of the Gaussian measure µs under the dispersionless model (Theorem 1.6)
in Section 5.

Acknowledgements. — The authors are also grateful to the anonymous referees for
their helpful comments that have improved the presentation of this paper.

2. Notations

Given N ∈ N, we use P6N to denote the Dirichlet projection onto the frequencies
{|n| 6 N} and set P>N := Id−P6N . When N =∞, it is understood that P6N = Id.
Define EN and E⊥N by

EN = P6NL
2(T) = span{einx : |n| 6 N},

E⊥N = P>NL
2(T) = span{einx : |n| > N}.
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Given s > 1/2, let µs be the Gaussian measure on L2(T) defined in (1.3). Then,
we can write µs as

µs = µs,N ⊗ µ⊥s,N ,

where µs,N and µ⊥s,N are the marginal distributions of µs restricted onto EN and E⊥N ,
respectively. In other words, µs,N and µ⊥s,N are the induced probability measures
under the following maps:

uN : ω ∈ Ω 7−→ uN (x;ω) =
∑
|n|6N

gn(ω)

〈n〉s
einx,

u⊥N : ω ∈ Ω 7−→ u⊥N (x;ω) =
∑
|n|>N

gn(ω)

〈n〉s
einx,

respectively. Formally, we can write µs,N and µ⊥s,N as

dµs,N = Z−1
s,Ne

− 1
2‖P6NuN‖2HsduN and dµ⊥s,N = Ẑ−1

s,Ne
− 1

2‖P>Nu
⊥
N‖

2
Hsdu⊥N .(2.1)

Given r > 0, we also define a probability measure µs,r with an L2-cutoff by

dµs,r = Z−1
s,r1{‖v‖L26r}dµs.

Given a function v ∈ L2(T), we simply use vn to denote the Fourier coefficient v̂n
of v, when there is no confusion. This shorthand notation is especially useful in Sec-
tion 4.

We use a+ (and a−) to denote a+ ε (and a− ε, respectively) for arbitrarily small
ε � 1, where an implicit constant is allowed to depend on ε > 0 (and it usually
diverges as ε→ 0). Given x ∈ R, we use bxc to denote the integer part of x.

In view of the time reversibility of the equations (1.1) and (1.19), we only consider
positive times in the following.

3. Proof of Theorem 1.2: Quasi-invariance of µs under the cubic 4NLS

In this section, we present the proof of Theorem 1.2. The main new ingredient is
the improved energy estimate (Proposition 3.4) whose proof is postponed to Section 4.
The remaining part of the proof follows closely the presentation in [34] and thus we
keep our discussion concise.

3.1. Basic reduction of the problem. — We first go over the basic reduction of the
problem from [34]. Given t ∈ R, we define a gauge transformation Gt on L2(T) by
setting

Gt[f ] := e2it
ffl
|f |2f.

Given a function u ∈ C(R;L2(T)), we define G by setting

G [u](t) := Gt[u(t)].

Note that G is invertible and its inverse is given by G−1[u](t) = G−t[u(t)].
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Given a solution u ∈ C(R;L2(T)) to (1.1), let ũ = G [u]. Then, it follows from the
mass conservation that ũ is a solution to the following renormalized fourth order NLS:

(3.1) i∂tũ = ∂4
xũ+

(
|ũ|2 − 2

ffl
T |ũ|

2dx
)
ũ.

This is precisely the renormalized cubic 4NLS in (1.17).
Let S(t) = e−it∂

4
x be the solution operator for the linear fourth order Schrödinger

equation (1.18). Denoting by v = S(−t)ũ the interaction representation of ũ, we see
that v satisfies the following equation for {vn}n∈Z:

∂tvn = −i
∑
Γ(n)

e−iφ(n)tvn1
vn2

vn3
+ i|vn|2vn

=: N (v)n + R(v)n,

(3.2)

where the phase function φ(n) is as in (1.9) and the plane Γ(n) is given by

Γ(n) = {(n1, n2, n3) ∈ Z3 : n = n1 − n2 + n3 and n1, n3 6= n}.(3.3)

Recall that the phase function φ(n) admits the following factorization. See [34] for
the proof.

Lemma 3.1. — Let n = n1 − n2 + n3. Then, we have

φ(n) = (n1 − n2)(n1 − n)
(
n2

1 + n2
2 + n2

3 + n2 + 2(n1 + n3)2
)
.

It follows from Lemma 3.1 that φ(n) 6= 0 on Γ(n). Namely, N (v) and R(v) on the
right-hand side of (3.2) correspond to the non-resonant and resonant parts, respec-
tively. It follows from Lemma 3.1 that there is a strong smoothing property on the
non-resonant term N (v) due to the fast oscillation caused by φ(n).

Given t, τ ∈ R, let Φ(t) : L2(T) → L2(T) be the solution map for (1.1) and
Ψ(t, τ) : L2(T)→ L2(T) be the solution map for (3.2),(9) sending initial data at time τ
to solutions at time t. When τ = 0, we may denote Ψ(t, 0) by Ψ(t) for simplicity. Then,
from v = S(−t) ◦ G [u], we have

(3.4) Φ(t) = G−1 ◦ S(t) ◦Ψ(t).

Recall the following lemma from [34].

Lemma 3.2
(i) Let s > 1/2 and t ∈ R. Then, the Gaussian measure µs defined in (1.3) is

invariant under the linear map S(t) and the gauge transformation Gt.
(ii) Let (X,µ) be a measure space. Suppose that T1 and T2 are measurable maps

on X into itself such that µ is quasi-invariant under Tj for each j = 1, 2. Then, µ is
quasi-invariant under T = T1 ◦ T2.

(9)Note that (3.2) is non-autonomous. We point out that this non-autonomy does not play an
essential role in the remaining part of the paper, since all the estimates hold uniformly in t ∈ R.
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When s = 1, Lemma 3.2 (i) basically follows from Theorem 3.1 in [31] which exploits
the properties of the Brownian loop under conformal mappings. For general s > 1/2,
such approach does not seem to be appropriate. See [34, §4] for the proof of Lemma 3.2.

In view of this lemma, Theorem 1.2 follows once we prove quasi-invariance of µs
under Ψ(t). Therefore, we focus our attention to (3.2) in the following.

3.2. Truncated dynamics. — Let us first introduce the following truncated approxi-
mation to (3.2):

(3.5) ∂tvn = 1|n|6N

{
−i

∑
ΓN (n)

e−iφ(n)tvn1vn2vn3 + i|vn|2vn
}
,

where ΓN (n) is defined by

ΓN (n) = Γ(n) ∩ {(n1, n2, n3) ∈ Z3 : |nj | 6 N}

= {(n1, n2, n3) ∈ Z3 : n = n1 − n2 + n3, n1, n3, 6= n, and |nj | 6 N}.

Note that (3.5) is an infinite dimensional system of ODEs for the Fourier coefficients
{vn}n∈Z, where the flow is constant on the high frequencies {|n| > N}. We also
consider the following finite dimensional system of ODEs:

(3.6) ∂tvn = −i
∑

ΓN (n)

e−iφ(n)tvn1
vn2

vn3
+ i|vn|2vn, |n| 6 N,

with v|t=0 = P6Nv|t=0, i.e., vn|t=0 = 0 for |n| > N .
Given t, τ ∈ R, denote by ΨN (t, τ) and Ψ̃N (t, τ) the solution maps of (3.5) and

(3.6), sending initial data at time τ to solutions at time t, respectively. For simplicity,
we set

ΨN (t) = ΨN (t, 0) and Ψ̃N (t) = Ψ̃N (t, 0)(3.7)

when τ = 0. Then, we have the following relations:

ΨN (t, τ) = Ψ̃N (t, τ)P6N + P>N and P6NΨN (t, τ) = Ψ̃N (t, τ)P6N .

We now recall the following approximation property of the truncated dynamics
(3.5).

Lemma 3.3 (Proposition 6.21/B.3 in [34]). — Given R > 0, let A ⊂ BR be a compact
set in L2(T). Fix t ∈ R. Then, for any ε > 0, there exists N0 = N0(t, R, ε) ∈ N such
that we have

Ψ(t)(A) ⊂ ΨN (t)(A+Bε)

for all N > N0. Here, Br denotes the ball in L2(T) of radius r centered at the origin.
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3.3. Energy estimate. — In this subsection, we state a crucial energy estimate. The
main goal is to establish an energy estimate of the form (1.6) by introducing a suitable
modified energy functional. We achieve this goal by performing normal form reduc-
tions infinitely many times and thus constructing an infinite sequence of correction
terms.

Let N ∈ N ∪ {∞}. In the following, we simply say that v is a solution to (3.6) if v
is a solution to (3.6) when N ∈ N and to (3.2) when N =∞.

Proposition 3.4. — Let 1/2 < s < 1. Then, given N ∈ N ∪ {∞}, there exist multi-
linear forms

{
N

(j)
0,N

}∞
j=2

,
{
N

(j)
1,N

}∞
j=2

, and
{
R

(j)
N

}∞
j=2

such that

d

dt

(1

2
‖v(t)‖2Hs

)
=

d

dt

( ∞∑
j=2

N
(j)

0,N (v)(t)

)
+

∞∑
j=2

N
(j)

1,N (v)(t) +

∞∑
j=2

R
(j)
N (v)(t),

for any solution v ∈ C(R;Hs(T)) to (3.6). Here, N
(j)

0,N are 2j-linear forms, while N
(j)

1,N

and R
(j)
N are (2j + 2)-linear forms, satisfying the following bounds on L2(T); there

exist positive constants C0(j), C1(j), and C2(j) decaying faster than any exponential
rate(10) as j →∞ such that

|N (j)
0,N (v)(t)| . C0(j)‖v‖2jL2 ,

|N (j)
1,N (v)(t)| . C1(j)‖v‖2j+2

L2 ,

|R(j)
N (v)(t)| . C2(j)‖v‖2j+2

L2 ,

for j = 2, 3, . . . . Note that these constants C0(j), C1(j), and C2(j) are independent
of the cutoff size N ∈ N ∪ {∞} and t ∈ R.

Define the modified energy EN,t(v) by

EN,t(v) :=
1

2
‖v(t)‖2Hs −

∞∑
j=2

N
(j)

0,N (v)(t).(3.8)

Then, the following energy estimate holds:∣∣∣ d
dt

EN,t(v)
∣∣∣ 6 Cs(‖v‖L2)(3.9)

for any solution v ∈ C(R;Hs(T)) to (3.6), uniformly in N ∈ N ∪ {∞} and t ∈ R.

In the remaining part of this section, we continue with the proof of Theorem 1.2,
assuming Proposition 3.4. We present the proof of Proposition 3.4 in Section 4. See
Lemmas 4.10 and 4.11. In the following, we simply denote E∞,t by Et and drop the
subscript N = ∞ from the multilinear forms, when N = ∞. For example, we write
N

(j)
0 for N

(j)
0,∞.

(10)In fact, by slightly modifying the proof, we can make C0(j), C1(j), and C2(j) decay as fast
as we want as j →∞.
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3.4. Weighted Gaussian measures. — Let s > 1/2. As in [34], we would like to define
the weighted Gaussian measures associated with the modified energies EN,t(v) and
Et(v):(11)

dρs,N,r,t = “Z−1
s,N,r1{‖v‖L26r}e

−EN,t(P6Nv)dv”

= Z−1
s,N,rFN,r,tdµs

(3.10)

and
dρs,r,t = “Z−1

s,r1{‖v‖L26r}e
−Et(v)dv”

= Z−1
s,rFr,tdµs,

(3.11)

where EN,t is the modified energy defined in (3.8) and FN,r,t and Fr,t are given by

FN,r,t(v) := 1{‖v‖L26r} exp

( ∞∑
j=2

N
(j)

0,N (P6Nv)(t)

)
,(3.12)

Fr,t(v) = Fr,∞,t(v) := 1{‖v‖L26r} exp

( ∞∑
j=2

N
(j)

0 (v)(t)

)
.

It follows from Proposition 3.4 that

1{‖v‖L26r} exp

( ∞∑
j=2

∣∣N (j)
0,N (P6Nv)

∣∣) 6 exp

( ∞∑
j=2

C0(j)r2j

)
6 C(s, r),

uniformly in N ∈ N ∪ {∞} and t ∈ R. Hence, we have

Zs,N,r =

ˆ
Hs− 1

2
−
FN,r,t(v)dµs 6 C(s, r),

uniformly in N ∈ N ∪ {∞} and t ∈ R. See also Remark 3.6 below. This shows
that ρs,N,r,t and ρs,r,t in (3.10) and (3.11) are well defined probability measures on
Hs−1/2−ε(T), ε > 0. Moreover, the following lemma immediately follows from the
computation above as in [34, Prop. 6.2&Cor. 6.3]. See Section 4.7.

Lemma 3.5. — Let s > 1/2 and r > 0.
(i) Given any finite p > 1, FN,r,t(v) converges to Fr,t(v) in Lp(µs), uniformly in

t ∈ R, as N →∞.
(ii) For any γ > 0, there exists N0 ∈ N such that

|ρs,N,r,t(A)− ρs,r,t(A)| < γ

for any N > N0 and any measurable set A ⊂ L2(T), uniformly in t ∈ R.

Remark 3.6. — The normalizing constants Zs,N,r and Zs,r a priori depend on t ∈ R.
It is, however, easy to see that they are indeed independent of t ∈ R by (i) noticing
that the correction terms

{
N

(j)
0,N

}∞
j=2

defined in Proposition 3.4 is in fact autonomous
in terms of ũ(t) = S(t)v(t) and (ii) the invariance of µs under S(t) (Lemma 3.2).

(11)Noting that we have P6Nv = v for all solutions to (3.6), we have EN,t(P6Nv) = EN,t(v). In
the following, we explicitly insert P6N for clarity. A similar comment applies to N

(j)
0,N .
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See also Remark 4.9 below. The same comment applies to the normalizing constant
Ẑs,N,r defined in (3.13).

3.5. A change-of-variable formula. — Next, we go over an important global aspect
of the proof of Theorem 1.2. GivenN ∈ N, let dLN =

∏
|n|6N dûn denote the Lebesgue

measure on EN ∼= C2N+1. Then, from (3.10) and (3.12) with (2.1), we have

dρs,N,r,t = Z−1
s,N,r1{‖v‖L26r}e

∑∞
j=2 N

(j)
0,N (P6Nv)dµs

= Ẑ−1
s,N,r1{‖v‖L26r}e

−EN,t(P6Nv)dLN ⊗ dµ⊥s,N ,

where Ẑs,N,r is a normalizing constant defined by

(3.13) Ẑs,N,r =

ˆ
L2

1{‖v‖L26r}e
−EN,t(P6Nv)dLN ⊗ dµ⊥s,N .

Then, proceeding as in [34] and exploiting invariance of LN under the map Ψ̃N (t, τ)

for (3.6), we have the following change-of-variable formula.

Lemma 3.7. — Let s > 1/2, N ∈ N, and r > 0. Then, we have

ρs,N,r,t(ΨN (t, τ)(A)) = Z−1
s,N,r

ˆ
ΨN (t,τ)(A)

1{‖v‖L26r}e
∑∞

j=2 N
(j)

0,N (P6Nv)dµs(v)

= Ẑ−1
s,N,r

ˆ
A

1{‖v‖L26r}e
−EN,t(P6NΨN (t,τ)(v))dLN ⊗ dµ⊥s,N

for any t, τ ∈ R and any measurable set A ⊂ L2(T). Here, ΨN (t, τ) is the solution
map to (3.5) defined in (3.7).

3.6. On the measure evolution property and the proof of Theorem 1.2. — In this
subsection, we use the energy estimate (Proposition 3.4) and the change-of-variable
formula (Lemma 3.7) to establish a growth estimate on the truncated weighted Gauss-
ian measure ρs,N,r,t under ΨN (t) = ΨN (t, 0) for (3.5). Thanks to the improved energy
estimate, the following estimates are simpler than those presented in [34].

Lemma 3.8. — Let 1/2 < s < 1. Then, given r > 0, there exists C = C(r) > 0 such
that

d

dt
ρs,N,r,t(ΨN (t)(A)) 6 Cρs,N,r,t(ΨN (t)(A))(3.14)

for any N ∈ N, any t ∈ R, and any measurable set A ⊂ L2(T). As a consequence, we
have the following estimate; given t ∈ R and r > 0, there exists C = C(t, r) > 0 such
that

ρs,N,r,t(ΨN (t)(A)) 6 Cρs,N,r,t(A)(3.15)

for any N ∈ N and any measurable set A ⊂ L2(T).

Proof. — As in [45, 46, 44, 34], the main idea of the proof of Lemma 3.8 is to re-
duce the analysis to that at t = 0 in the spirit of the classical Liouville theorem
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on Hamiltonian dynamics. Let t0 ∈ R. By the definition of Ψ(t, τ), Lemma 3.7, and
Proposition 3.4, we have
d

dt
ρs,N,r,t(ΨN (t)(A))

∣∣∣
t=t0

=
d

dt
ρs,N,r,t0+t

(
ΨN (t0 + t, t0)(ΨN (t0)(A))

)∣∣∣
t=0

= Ẑ−1
s,N,r

d

dt

ˆ
ΨN (t0)(A)

1{‖v‖L26r}e
−EN,t0+t(P6NΨN (t0+t,t0)(v))dLN ⊗ dµ⊥s,N

∣∣∣
t=0

= −
ˆ

ΨN (t0)(A)

d

dt
EN,t0+t

(
P6NΨN (t0 + t, t0)(v)

)∣∣∣
t=0

dρs,N,r,t0

6 Crρs,N,r,t0(ΨN (t0)(A)).

This proves (3.14). The second estimate (3.15) follows from a direct integration of
(3.14). �

As in [34], we can upgrade Lemma 3.8 to the untruncated measure ρs,r,t.

Lemma 3.9. — Let 1/2 < s < 1. Then, given t ∈ R and r > 0, there exists C =

C(t, r) > 0 such that

ρs,r,t(Ψ(t)(A)) 6 Cρs,r,t(A)

for any measurable set A ⊂ L2(T).

This lemma follows from the approximation properties of ΨN (t) to Ψ(t) (Lem-
ma 3.3) and ρs,N,r,t to ρs,r,t (Lemma 3.5 (ii)) along with some limiting argument. See
[34, Lem. 6.10] for the details of the proof.

Once we have Lemma 3.9, the proof of Theorem 1.2 follows just as in [34]. We
present its proof for the convenience of readers. Recall that in view of (3.4) and
Lemmas 3.2, that it suffices to prove that µs is quasi-invariant under Ψ(t), i.e., under
the dynamics of (3.2).

Fix t ∈ R. Let A ⊂ L2(T) be a measurable set such that µs(A) = 0. Then, for any
r > 0, we have

µs,r(A) = 0.

By the mutual absolute continuity of µs,r and ρs,r,t, we obtain

ρs,r,t(A) = 0

for any r > 0. Then, by Lemma 3.9, we have

ρs,r,t(Ψ(t)(A)) = 0.

By invoking the mutual absolute continuity of µs,r and ρs,r,t once again, we have

µs,r(Ψ(t)(A)) = 0.

Then, the dominated convergence theorem yields

µs
(
Ψ(t)(A)

)
= lim
r→∞

µs,r
(
Ψ(t)(A)

)
= 0.
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This proves Theorem 1.2, assuming Proposition 3.4. In the next section, we implement
an infinite iteration of normal form reductions and prove the improved energy estimate
(Proposition 3.4).

4. Proof of Proposition 3.4: Normal form reductions

In this section, we present the proof of Proposition 3.4 by implementing an infinite
iteration scheme of normal form reductions. This procedure allows us to construct
an infinite sequences of correction terms and thus build the desired modified energies
EN,t(v) and Et(v) in (3.8).

Our main goal is to obtain an effective estimate on the growth of the Hs-norm of
a solution v to the truncated equation (3.6), independent of N ∈ N. For simplicity
of presentation, however, we work on the equation (3.2) without the frequency cut-
off 1|n|6N in the following. We point out that the same normal form reductions and
estimates hold for the truncated equation (3.6), uniformly in N ∈ N, with straight-
forward modifications: (i) set v̂n = 0 for all |n| > N and (ii) the multilinear forms for
(3.6) are obtained by inserting the frequency cutoff 1|n|6N in appropriate places.(12)

In the following, we introduce multilinear forms such as N
(j)

0 , N
(j)

1 , and R(j) for the
untruncated equation (3.2). With a small modification, these multilinear forms give
rise to N

(j)
0,N , N

(j)
1,N , and R

(j)
N , N ∈ N, for the truncated equation (3.6), appearing in

Proposition 3.4. See Section 4.7.

4.1. First few steps of normal form reductions. — In the following, we describe
the first few steps of normal form reductions. We keep the following discussion only
at a formal level since its purpose is to show the complexity of the problem and the
necessity of effective book-keeping notations that we introduce in Section 4.2. We will
present the full procedure in Sections 4.4 and 4.5.

Let v ∈ C(R;H∞(T)) be a global solution to (3.2).(13) With φ(n) and Γ(n) as
in (1.9) and (3.3), we have(14)

d

dt

(1

2
‖v(t)‖2Hs

)
= −Re i

∑
n∈Z

∑
Γ(n)

〈n〉2se−iφ(n)tvn1vn2vn3vn

=: N (1)(v)(t).

(4.1)

In view of Lemma 3.1 with (3.3), we have |φ(n)| > 1 in the summation above. Then,
by performing a normal form reduction, namely, differentiating by parts as in (1.11),

(12)Using the bi-trees introduced in Section 4.2 below, it follows from (3.6) that we simply need
to insert the frequency cutoff 1|n(j)|6N on the parental frequency n(j) assigned to each non-terminal
node a ∈ T 0.

(13)While we work with (3.2) without a frequency cutoff in the following, it follows from the
uniform boundedness of the frequency truncation operator P6N that our argument and estimates
also hold for (3.6), uniformly in N ∈ N. Noting that any solution to (3.6) (for some N ∈ N) is smooth,
the following computation can be easily justified for solutions to (3.6).

(14)Recall our convention of using vn to denote the Fourier coefficient v̂n.
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we obtain

N (1)(v)(t) = Re
d

dt

[∑
n∈Z

∑
Γ(n)

e−iφ(n)t

φ(n)
〈n〉2svn1

vn2
vn3

vn

]

− Re
∑
n∈Z

∑
Γ(n)

e−iφ(n)t

φ(n)
〈n〉2s∂t

(
vn1

vn2vn3vn
)

= Re
d

dt

[∑
n∈Z

∑
Γ(n)

e−iφ(n)t

φ(n)
〈n〉2svn1vn2vn3vn

]

− Re
∑
n∈Z

∑
Γ(n)

e−iφ(n)t

φ(n)
〈n〉2s

{
R(v)n1

vn2
vn3

vn

+ vn1
R(v)n2

vn3
vn + vn1

vn2
R(v)n3

vn + vn1
vn2

vn3
R(v)n

}
− Re

∑
n∈Z

∑
Γ(n)

e−iφ(n)t

φ(n)
〈n〉2s

{
N (v)n1vn2vn3vn

+ vn1
N (v)n2

vn3
vn + vn1

vn2
N (v)n3

vn + vn1
vn2

vn3
N (v)n

}
=: ∂tN

(2)
0 (v)(t) + R(2)(v)(t) + N (2)(v)(t).

(4.2)

In the second equality, we applied the product rule and used the equation (3.2) to
replace ∂tvnj

(and ∂tvn, respectively) by the resonant part R(v)nj
(and R(v)n, respec-

tively) and the non-resonant part N (v)nj (and N (v)n, respectively).
As we see below, we can estimate the boundary term N

(2)
0 and the contribution

R(2) from the resonant part in a straightforward manner.

Lemma 4.1. — Let N
(2)

0 and R(2) be as in (4.2). Then, we have

|N (2)
0 (v)| . ‖v‖4L2 , |R(2)(v)| . ‖v‖6L2 .

See Lemma 4.10 (with J = 1) for the proof.
It remains to treat the last term N (2) in (4.2). For an expository purpose, we

only consider the first term among the four terms in N (2) in the following. A full
consideration is given in Section 4.4 once we introduce proper notations in Section
4.2. With (3.2), we have

(4.3) N (2)(v)(t) = Re i
∑
n∈Z

∑
Γ(n)

∑
n1=m1−m2+m3
n1 6=m1,m3

e−i(φ1+φ2)t

φ1
〈n〉2s(vm1

vm2
vm3

)vn2
vn3

vn,

where φ1 = φ(n) and φ2 = φ(m1,m2,m3, n1) = m4
1−m4

2 +m4
3−n4

1 denote the phase
functions from the first and second “generations”.(15) It turns out that we can not
establish a direct 6-linear estimate on N (2) in (4.3).

(15)In Section 4.2, we make a precise definition of what we mean by “generation”.
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We divide the frequency space in (4.3) into

(4.4) C1 =
{
|φ1 + φ2| 6 63

}
and its complement Cc1.(16) We then write N (2) as

(4.5) N (2) = N
(2)

1 + N
(2)

2 ,

where N
(2)

1 is the restriction of N (2) onto C1 and N
(2)

2 := N (2) −N
(2)

1 . On the
one hand, we can estimate the contribution N

(2)
1 from C1 in an effective manner

(Lemma 4.11 with J = 1) thanks to the frequency restriction on C1. On the other
hand, N

(2)
2 can not be handled as it is and thus we apply the second step of normal

form reductions to N
(2)

2 . After differentiation by parts with (3.2) as in (4.2), we
arrive at

N
(2)

2 (v) = ∂tN
(3)

0 (v) + R(3)(v) + N (3)(v),

where N
(3)

0 is a 6-linear form and R(3) and N (3) are 8-linear forms, corresponding
to the contributions from the resonant part R(v) and the non-resonant part N (v)

upon the substitution of (3.2). See (4.19) below for the precise computation.
As in the previous step, we can estimate N

(3)
0 and R(3) in a straightforward manner

(Lemma 4.10 with J = 2). On the other hand, we can not estimate N (3) as it is and
hence we need to split it as

(4.6) N (3) = N
(3)

1 + N
(3)

2 ,

where N
(3)

1 is the restriction of N (3) onto

(4.7) C2 =
{
|φ1 + φ2 + φ3| 6 83

}
and N

(3)
2 := N (3) −N

(3)
1 . Here, φj , j = 1, 2, 3, denotes the phase function from the

jth “generation”. As we see below, N (3)
1 satisfies a good 8-linear estimate (Lemma 4.11

with J = 2) thanks to the frequency restriction on C2. On the other hand, N
(3)

2 can
not be handled as it is and thus we apply the third step of normal form reductions
to N

(3)
2 . In this way, we iterate normal form reductions in an indefinite manner.

As we iteratively apply normal form reductions, the degrees of the multilinear
terms increase linearly. After J steps, we obtain the multilinear terms N

(J+1)
0 of

degree 2J+2 and R(J+1) and N (J+1) of degree 2J+4. See (4.20). As in the first and
second steps described above, we also divide N (J+1) into “good” and “bad” parts
and apply another normal form reduction to the bad part of degree 2J + 4, where
time differentiation can fall on any of the 2J + 4 factors. An easy computation shows
that the number of terms grows factorially (see (4.9)) and hence we need to introduce
an effective way to handle this combinatorial complexity. In Section 4.2, we introduce
indexing notation by bi-trees, which allows us to denote a factorially growing number
of multilinear terms in a concise manner.

(16)Clearly, the number 63 in (4.4) does not make any difference at this point. However, we insert
it to match with (4.11). See also (4.7).
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4.2. Notations: index by ordered bi-trees. — In [18], the first author with Guo
and Kwon implemented an infinite iteration of normal form reductions to study the
cubic NLS on T, where differentiation by parts was applied to the evolution equation
satisfied by the interaction representation. In [18], (ternary) trees and ordered trees
played an important role for indexing various multilinear terms and frequencies arising
in the general steps of the Poincaré-Dulac normal form reductions.

Our main goal here is to implement an infinite iteration scheme of normal form
reduction applied to the Hs-energy functional(17) ‖v(t)‖2Hs , as we saw above. In par-
ticular, we need tree-like structures that grow in two directions. For this purpose, we
introduce the notion of bi-trees and ordered bi-trees in the following. Once we replace
trees and ordered trees by bi-trees and ordered bi-trees, other related notions can be
defined in a similar manner as in [18] with certain differences to be noted.

Definition 4.2. — Given a partially ordered set T with partial order 6, we say that
b ∈ T with b 6 a and b 6= a is a child of a ∈ T , if b 6 c 6 a implies either c = a or
c = b. If the latter condition holds, we also say that a is the parent of b.

As in [18], our trees in this paper refer to a particular subclass of usual trees with
the following properties.

Definition 4.3
(i) A tree T is a finite partially ordered set satisfying the following properties:

(a) Let a1, a2, a3, a4 ∈ T . If a4 6 a2 6 a1 and a4 6 a3 6 a1, then we have
a2 6 a3 or a3 6 a2,

(b) A node a ∈ T is called terminal, if it has no child. A non-terminal node
a ∈ T is a node with exactly three ordered(18) children denoted by a1, a2, and
a3,

(c) There exists a maximal element r ∈ T (called the root node) such that
a 6 r for all a ∈ T ,

(d) T consists of the disjoint union of T 0 and T ∞, where T 0 and T ∞

denote the collections of non-terminal nodes and terminal nodes, respectively.
(ii) A bi-tree T = T1 ∪ T2 is a disjoint union of two trees T1 and T2, where the

root nodes rj of Tj , j = 1, 2, are joined by an edge. A bi-tree T consists of the
disjoint union of T 0 and T ∞, where T 0 and T ∞ denote the collections of non-
terminal nodes and terminal nodes, respectively. By convention, we assume that the
root node r1 of the tree T1 is non-terminal, while the root node r2 of the tree T2 may
be terminal.

(17)More precisely, to the evolution equation satisfied by the Hs-energy functional.
(18)For example, we simply label the three children as a1, a2, and a3 by moving from left to

right in the planar graphical representation of the tree T . As we see below, we assign the Fourier
coefficients of the interaction representation v at a1 and a3, while we assign the complex conjugate
of the Fourier coefficients of v at the second child a2.
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(iii) Given a bi-tree T = T1 ∪T2, we define a projection Πj , j = 1, 2, onto a tree
by setting

Πj(T ) = Tj .(4.8)

In Figure 1, Π1(T ) corresponds to the tree on the left under the root node r1, while
Π2(T ) corresponds to the tree on the right under the root node r2.

Note that the number |T | of nodes in a bi-tree T is 3j + 2 for some j ∈ N, where
|T 0| = j and |T ∞| = 2j+2. Let us denote the collection of trees in the jth generation
(namely, with j parental nodes) by BT (j), i.e.,

BT (j) := {T : T is a bi-tree with |T | = 3j + 2}.

r1 r2

j = 1

r1 r2

j = 2

r1 r2

j = 3

Figure 1. Examples of bi-trees of the jth generation, j = 1, 2, 3.

Next, we introduce the notion of ordered bi-trees, for which we keep track of how
a bi-tree “grew” into a given shape.

Definition 4.4
(i) We say that a sequence {Tj}Jj=1 is a chronicle of J generations, if

(a) Tj ∈ BT (j) for each j = 1, . . . , J ,
(b) Tj+1 is obtained by changing one of the terminal nodes in Tj into a

non-terminal node (with three children), j = 1, . . . , J − 1.
Given a chronicle {Tj}Jj=1 of J generations, we refer to TJ as an ordered bi-tree of the
Jth generation. We denote the collection of the ordered trees of the Jth generation
by BT(J). Note that the cardinality of BT(J) is given by |BT(1)| = 1 and

(4.9) |BT(J)| = 4 · 6 · 8 · · · · · 2J = 2J−1 · J ! =: cJ , J > 2.

(ii) Given an ordered bi-tree TJ ∈ BT(J) as above, we define projections πj ,
j = 1, . . . , J − 1, onto the previous generations by setting

πj(TJ) = Tj ∈ BT(j).

We stress that the notion of ordered bi-trees comes with associated chronicles. For
example, given two ordered bi-trees TJ and T̃J of the Jth generation, it may happen
that TJ = T̃J as bi-trees (namely as planar graphs) according to Definition 4.3, while
TJ 6= T̃J as ordered bi-trees according to Definition 4.4. In the following, when we
refer to an ordered bi-tree TJ of the Jth generation, it is understood that there is an
underlying chronicle {Tj}Jj=1.
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Given a bi-tree T , we associate each terminal node a ∈ T ∞ with the Fourier
coefficient (or its complex conjugate) of the interaction representation v and sum over
all possible frequency assignments. In order to do this, we introduce index functions,
assigning integers to all the nodes in T in a consistent manner.

Definition 4.5
(i) Given a bi-tree T = T1∪T2, we define an index function n : T → Z such that

(a) nr1 = nr2 , where rj is the root node of the tree Tj , j = 1, 2,
(b) na = na1−na2 +na3 for a ∈ T 0, where a1, a2, and a3 denote the children

of a,
(c) {na, na2} ∩ {na1 , na3} = ∅ for a ∈ T 0,

where we identified n : T → Z with {na}a∈T ∈ ZT . We use N(T ) ⊂ ZT to denote
the collection of such index functions n on T .

Given N ∈ N, we define a subcollection NN (T ) ⊂ N(T ) by imposing |na| 6 N

for any a ∈ T . We also define N0
N (T ) ⊂ N(T ) by imposing |na| 6 N for any

non-terminal nodes a ∈ T 0.
(ii) Given a tree T , we also define an index function n : T → Z by omitting the

condition (a) and denote by N(T ) ⊂ ZT the collection of index functions n on T .

Remark 4.6
(i) In view of the consistency condition (a), we can refer to nr1 = nr2 as the

frequency at the root node without ambiguity. We shall simply denote it by nr in the
following.

(ii) Just like index functions for (ordered) trees considered in [18], an index function
n = {na}a∈T for a bi-tree T is completely determined once we specify the values
na ∈ Z for all the terminal nodes a ∈ T ∞. An index function n for a bi-tree T =

T1 ∪ T2 is basically a pair (n1,n2) of index functions nj for the trees Tj , j = 1, 2,
(omitting the non-resonance condition in [18, Def. 3.5 (iii)]), satisfying the consistency
condition (a): nr1 = nr2 .

(iii) Given a bi-tree T ∈ BT(J) and n ∈ Z, consider the summation of all possible
frequency assignments {n ∈ N(T ) : nr = n}. While |T ∞| = 2J+2, there are 2J free
variables in this summation. Namely, the condition nr = n reduces two summation
variables. It is easy to see this by separately considering the cases Π2(T ) = {r2} and
Π2(T ) 6= {r2}.

Given an ordered bi-tree TJ of the Jth generation with a chronicle {Tj}Jj=1 and
associated index functions n ∈ N(TJ), we would like to keep track of the “generations”
of frequencies. In the following, we use superscripts to denote such generations of
frequencies.

Fix n ∈ N(TJ). Consider T1 of the first generation. Its nodes consist of the two
root nodes r1, r2, and the children r11, r12, and r13 of the first root node r1. See
Figure 1. We define the first generation of frequencies by(

n(1), n
(1)
1 , n

(1)
2 , n

(1)
3

)
:= (nr1 , nr11 , nr12 , nr13).
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From Definition 4.5, we have

n(1) = nr2 , n(1) = n
(1)
1 − n

(1)
2 + n

(1)
3 , n

(1)
2 6= n

(1)
1 , n

(1)
3 .

Next, we construct an ordered bi-tree T2 of the second generation from T1 by
changing one of its terminal nodes a ∈ T ∞1 = {r2, r11, r12, r13} into a non-terminal
node. Then, we define the second generation of frequencies by setting(

n(2), n
(2)
1 , n

(2)
2 , n

(2)
3

)
:= (na, na1 , na2 , na3).

Note that we have n(2) = n(1) or n(1)
k for some k ∈ {1, 2, 3},

n(2) = n
(2)
1 − n

(2)
2 + n

(2)
3 , n

(2)
2 6= n

(2)
1 , n

(2)
3 ,

where the last identities follow from Definition 4.5. This extension of T1 ∈ BT(1)

to T2 ∈ BT(2) corresponds to introducing a new set of frequencies after the first
differentiation by parts, where the time derivative may fall on any of vn and vnj

,
j = 1, 2, 3.(19)

In general, we construct an ordered bi-tree Tj of the jth generation from Tj−1

by changing one of its terminal nodes a ∈ T ∞j−1 into a non-terminal node. Then, we
define the jth generation of frequencies by(

n(j), n
(j)
1 , n

(j)
2 , n

(j)
3

)
:= (na, na1 , na2 , na3).

As before, it follows from Definition 4.5 that

n(j) = n
(j)
1 − n

(j)
2 + n

(j)
3 , n

(j)
2 6= n

(j)
1 , n

(j)
3 .

Given an ordered bi-tree T , we denote by Bj = Bj(T ) the set of all possible fre-
quencies in the jth generation.

We denote by φj the phase function for the frequencies introduced at the jth
generation:

φj = φj
(
n(j), n

(j)
1 , n

(j)
2 , n

(j)
3

)
:=
(
n

(j)
1

)4 − (n(j)
2

)4
+
(
n

(j)
3

)4 − (n(j)
)4
.

Note that we have |φ1| > 1 in view of Definition 4.5 and Lemma 3.1. We also denote
by µj the phase function corresponding to the usual cubic NLS (at the jth generation):

µj = µj
(
n(j), n

(j)
1 , n

(j)
2 , n

(j)
3

)
:=
(
n

(j)
1

)2 − (n(j)
2

)2
+
(
n

(j)
3

)2 − (n(j)
)2

= −2
(
n(j) − n(j)

1

)(
n(j) − n(j)

3

)
.

Then, by Lemma 3.1, we have

|φj | ∼ (n(j)
max)2 · |

(
n(j) − n(j)

1

)(
n(j) − n(j)

3

)
| ∼ (n(j)

max)2 · |µj |,(4.10)

where n(j)
max := max

(
|n(j)|, |n(j)

1 |, |n
(j)
2 |, |n

(j)
3 |
)
.

Given an ordered bi-tree T ∈ BT(J) for some J ∈ N, define Cj ⊂ N(T ) by

(4.11) Cj =
{
|φ̃j+1| 6 (2j + 4)3

}
,

(19)The complex conjugate signs on vn and vnj do not play any significant role. Hereafter, we
drop the complex conjugate sign, when it does not play any important role.
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where φ̃j is defined by

φ̃j =

j∑
k=1

φk.(4.12)

In Section 4.4, we perform normal form reductions in an iterative manner. At each
step, we divide multilinear forms into “nearly resonant” part (corresponding to the
frequencies belonging to Cj) and highly non-resonant part (corresponding to the fre-
quencies belonging to Ccj ) and apply a normal form reduction only to the highly
non-resonant part.

4.3. Arithmetic lemma. — As we see in Section 4.4, normal form reductions gener-
ate multilinear forms of higher and higher degrees, where we need to sum over all
possible ordered bi-trees in BT(J). The main issue is then to control the rapidly
growing cardinality cJ = |BT(J)| defined in (4.9). On the one hand, we utilize the
divisor counting estimate (see (4.15) below) as in [18]. On the other hand, we split
the argument into two parts. The following lemma shows the heart of the matter in
the multilinear estimates presented in Section 4.4. This allows us to show that there
is a sufficiently fast decay at each step of normal form reductions.

Lemma 4.7. — Let s < 1 and J ∈ N. Then, the following estimates hold:
(i)

(4.13) sup
TJ∈BT(J)

sup
n∈Z

∑
n∈N(TJ )
nr=n

1⋂J−1

j=1
Cc

j

〈n〉4s

|φ1|2
J∏
j=2

1

|φ̃j |2
.

1∏J
j=2(2j + 2)3−

,

(ii)
(4.14) sup

TJ+1∈BT(J+1)

sup
n∈Z

∑
n∈N(TJ+1)

nr=n

1(⋂J−1

j=1
Cc

j

)
∩CJ

〈n〉4s

|φ1|2
J∏
j=2

1

|φ̃j |2
.

J3+∏J
j=2(2j + 2)3−

.

Before proceeding further, let us recall the following arithmetic fact [20]. Given
n ∈ N, the number d(n) of the divisors of n satisfies

d(n) 6 Cδn
δ(4.15)

for any δ > 0. This divisor counting estimate will be used iteratively in the following
proof.

Proof of Lemma 4.7

(i) We first consider the case J = 1. In this case, from Lemma 3.1 with s 6 1, we
have

LHS of (4.13) 6 sup
n∈Z

∑
n1,n3∈Z
n1,n3 6=n
|φ1|>1

〈n〉4s

|φ1|2
. sup

n∈Z

∑
n1,n3∈Z
n1,n3 6=n

1

|(n− n1)(n− n3)|2
. 1.(4.16)

Next, we consider the case J > 2. Fix TJ ∈ BT(J). For simplicity of notations, we
drop the supremum over TJ ∈ BT(J) in the following with the understanding that
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the implicit constants are independent of TJ ∈ BT(J). A similar comment applies to
the proof of the estimate (4.14) presented in (ii) below.

The main idea is to apply the divisor counting argument in an iterative man-
ner. It follows from the divisor counting estimate (4.15) with the factorization of φj
(Lemma 3.1) that for fixed n(j) and φj , there are at most O(|φj |0+) many choices for
n

(j)
1 , n(j)

2 , and n(j)
3 on Bj . Also, note that φj is determined by φ̃1, . . . , φ̃j and

(4.17) |φj | 6 max(|φ̃j−1|, |φ̃j |)

since φj = φ̃j − φ̃j−1. In the following, we apply the divisor counting argument to
sum over the frequencies in BJ , BJ−1, . . . , B2. From Definition 4.4 (ii) and (4.11), we
have

LHS of (4.13) = sup
n∈Z

∑
n∈N(π1(TJ ))

nr=n
|φ1|>1

〈n〉4s

|φ1|2
∑
ψ2∈Z
|ψ2|>63

∑
B2

φ̃2=ψ2

1

|ψ2|2
· · ·

∑
ψJ∈Z

|ψJ |>(2J+2)3

∑
BJ

φ̃J=ψJ

1

|ψJ |2
.

By applying the divisor counting argument in BJ with (4.17), we have

. sup
n∈Z

∑
n∈N(π1(TJ ))

nr=n
|φ1|>1

〈n〉4s

|φ1|2
∑
ψ2∈Z
|ψ2|>63

∑
B2

φ̃2=ψ2

1

|ψ2|2
· · ·

∑
ψJ−1∈Z

|ψJ−1|>(2J)3

∑
BJ−1

φ̃J−1=ψJ−1

1

|ψJ−1|2
∑
ψJ∈Z

|ψJ |>(2J+2)3

1

|ψJ |2
|ψJ−1|0+|ψJ |0+.

By iteratively applying the divisor counting argument in BJ−1, . . . , B2, we have

. sup
n∈Z

∑
n∈N(π1(TJ ))

nr=n
|φ1|>1

〈n〉4s

|φ1|2−
∑

ψ2,...,ψJ∈Z
|ψj |>(2j+2)3

j=2,...,J

J∏
j=2

1

|ψj |2−

.
1∏J

j=2(2j + 2)3−
,

where the last inequality follows from (4.16).
(ii) Fix TJ+1 ∈ BT(J + 1). We proceed with the divisor counting argument as

in (i). From (4.11), we have |φJ+1| . |φ̃J | + J3 on CJ and thus for fixed n(J+1) and
φJ+1, there are at most O(J0+|φ̃J |0+) many choices for n(J+1)

1 , n(J+1)
2 , and n

(J+1)
3

on BJ+1. Also, on CJ , there are at most O
(
J3
)
many choices for φ̃J+1. Hence, for

fixed φ̃J , there are also at most O
(
J3
)
many choices for φJ+1 = φ̃J+1 − φ̃J on CJ .
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Then, the contribution to (4.14) in this case is estimate by

LHS of (4.14) = sup
n∈Z

∑
n∈N(π1(TJ+1))

nr=n
|φ1|>1

〈n〉4s

|φ1|2
∑
ψ2∈Z
|ψ2|>63

∑
B2

φ̃2=ψ2

1

|ψ2|2
· · ·

∑
ψJ∈Z

|ψJ |>(2J+2)3

∑
BJ

φ̃J=ψJ

1

|ψJ |2
∑
BJ+1

|φJ+1+ψJ |6(2J+4)3

1.

By applying the divisor counting argument in BJ+1, we have

. J3+ sup
n∈Z

∑
n∈N(π1(TJ+1))

nr=n
|φ1|>1

〈n〉4s

|φ1|2
∑
ψ2∈Z
|ψ2|>63

∑
B2

φ̃2=ψ2

1

|ψ2|2
· · ·

∑
ψJ∈Z

|ψJ |>(2J+2)3

∑
BJ

φ̃J=ψJ

1

|ψJ |2
|ψJ |0+.

By iteratively applying the divisor counting argument in BJ , . . . , B2 and then apply-
ing (4.16), we have

. J3+ sup
n∈Z

∑
n∈N(π1(TJ+1))

nr=n
|φ1|>1

〈n〉4s

|φ1|2−
∑
ψJ∈Z

|ψJ |>(2j+2)3

j=2,...,J

J∏
j=2

1

|ψj |2−

.
J3+∏J

j=2(2j + 2)3−
.

This proves (4.14). �

Remark 4.8. — In [18], the authors applied the divisor counting argument even to
the frequencies of the first generation. On the other hand, we did not apply the divisor
counting argument to the frequencies of the first generation in the proof of Lemma 4.7
above. Instead, we simply used (4.16) to control the first generation. By using only
the factor µ1 = −2(n(1)−n(1)

1 )(n(1)−n(1)
3 ) (and not the entire φ1) for the summation,

(4.16) allows us to exhibit the required smoothing in Proposition 3.4.

4.4. Normal form reductions. — With the notations introduced in Section 4.2, let
us revisit the discussion in Section 4.1 and then discuss the general Jth step. We
first implement a formal infinite iteration scheme of normal form reductions without
justifying switching of limits and summations. We justify formal computations at the
end of this subsection. Let v ∈ C(R;H∞(T)) be a global solution to (3.2). Using the
notations introduced in Section 4.2, we write (4.1) as

d

dt

(1

2
‖v(t)‖2Hs

)
= −Re i

∑
T1∈BT(1)

∑
n∈N(T1)

〈nr〉2se−iφ1t
∏

a∈T∞1

vna
=: N (1)(v)(t).
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By performing a normal form reduction, we then obtain

N (1)(v)(t) = Re ∂t

[ ∑
T1∈BT(1)

∑
n∈N(T1)

〈nr〉2se−iφ1t

φ1

∏
a∈T∞1

vna

]

− Re
∑

T1∈BT(1)

∑
n∈N(T1)

〈nr〉2se−iφ1t

φ1
∂t

( ∏
a∈T∞1

vna

)

= Re ∂t

[ ∑
T1∈BT(1)

∑
n∈N(T1)

〈nr〉2se−iφ1t

φ1

∏
a∈T∞1

vna

]

− Re
∑

T1∈BT(1)

∑
b∈T∞1

∑
n∈N(T1)

〈nr〉2se−iφ1t

φ1
R(v)nb

∏
a∈T∞1 r{b}

vna

+ Re i
∑

T2∈BT(2)

∑
n∈N(T2)

〈nr〉2se−i(φ1+φ2)t

φ1

∏
a∈T∞2

vna

=: ∂tN
(2)

0 (v)(t) + R(2)(v)(t) + N (2)(v)(t).

(4.18)

Compare (4.18) with (4.2). In the second equality, we applied the product rule and
used the equation (3.2) to replace ∂tvnb

by the resonant part R(v)nb
and the non-

resonant part N (v)nb
. In substituting the non-resonant part N (v)nb

, we turned the
terminal node b ∈ T ∞1 into a non-terminal node with three children b1, b2, and b3,
which corresponds to extending the tree T1 ∈ BT(1) (and n ∈ N(T1)) to T2 ∈ BT(2)

(and to n ∈ N(T2), respectively).

Remark 4.9

(i) Strictly speaking, the phase factor appearing in N (2)(v) may be φ1 − φ2 when
the time derivative falls on the terms with the complex conjugate. In the following,
however, we simply write it as φ1 + φ2 since it does not make any difference in our
analysis. Also, we often replace ±1 and ±i by 1 for simplicity when they do not play
an important role. Lastly, for notational simplicity, we drop the real part symbol on
multilinear forms with the understanding that all the multilinear forms appear with
the real part symbol.

(ii) Due to the presence of e−iφ1t in their definitions, the multilinear forms such
as N

(2)
0 (v) are non-autonomous in t. Therefore, strictly speaking, they should be

denoted as N
(2)

0 (t)(v(t)). In the following, however, we establish nonlinear estimates
on these multilinear forms, uniformly in t ∈ R, by simply using |e−iφ1t| = 1. Hence, we
simply suppress such t-dependence when there is no confusion. The same comment
applies to other multilinear forms. Note that this convention was already used in
Proposition 3.4.

It is worthwhile to note that the multilinear forms introduced in this section are
non-autonomous when they are expressed in terms of the interaction representation v,
solving (3.2). When they are expressed in terms of the original solution u to (1.1) (or ũ
to (3.1)), however, it is easy to see that these multilinear terms are indeed autonomous.
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Thanks to Lemma 4.7, the terms N
(2)

0 and R(2) can be estimated in a straightfor-
ward manner; see Lemma 4.10 below. We split N (2) as in (4.5). As mentioned above,
the good part N

(2)
1 is handled in an effective manner (Lemma 4.11) thanks to the

frequency restriction on C1. We then apply the second step of normal form reductions
to N

(2)
2 and obtain

N
(2)

2 (v) = ∂t

[ ∑
T2∈BT(2)

∑
n∈N(T2)

1Cc
1

〈nr〉2se−i(φ1+φ2)t

φ1(φ1 + φ2)

∏
a∈T∞2

vna

]

−
∑

T2∈BT(2)

∑
b∈T∞2

∑
n∈N(T2)

1Cc
1

〈nr〉2se−i(φ1+φ2)t

φ1(φ1 + φ2)
R(v)nb

∏
a∈T∞2 r{b}

vna

−
∑

T3∈BT(3)

∑
n∈N(T3)

1Cc
1

〈nr〉2se−i(φ1+φ2+φ3)t

φ1(φ1 + φ2)

∏
a∈T∞3

vna

=: ∂tN
(3)

0 (v) + R(3)(v) + N (3)(v).

(4.19)

As in the previous step, we can estimate N
(3)

0 and R(3) in a straightforward manner
(Lemma 4.10), while we split N (3) into the good part N

(3)
1 and the bad part N

(3)
2

as in (4.6), where N
(3)

1 is the restriction of N (3) onto C2 defined in (4.11). We then
apply the third step of normal form reductions to the bad part N

(3)
2 . In this way, we

iterate normal form reductions in an indefinite manner.
After the Jth step, we have

N
(J)

2 (v) = ∂t

[ ∑
TJ∈BT(J)

∑
n∈N(TJ )

1⋂J−1

j=1
Cc

j

〈nr〉2se−iφ̃J t∏J
j=1 φ̃j

∏
a∈T∞J

vna

]

−
∑

TJ∈BT(J)

∑
b∈T∞J

∑
n∈N(TJ )

1⋂J−1

j=1
Cc

j

〈nr〉2se−iφ̃J t∏J
j=1 φ̃j

R(v)nb

∏
a∈T∞J r{b}

vna

−
∑

TJ+1∈BT(J+1)

∑
n∈N(TJ+1)

1⋂J−1

j=1
Cc

j

〈nr〉2se−iφ̃J+1t∏J
j=1 φ̃j

∏
a∈T∞J+1

vna

=: ∂tN
(J+1)

0 (v) + R(J+1)(v) + N (J+1)(v),

(4.20)

where φ̃J is as in (4.12). In the following, we first estimate N
(J+1)

0 and R(J+1) by
applying Cauchy-Schwarz inequality and then applying the divisor counting argument
(Lemma 4.7).

Lemma 4.10. — Let N
(J+1)

0 and R(J+1) be as in (4.20). Then, for any s < 1, we
have

|N (J+1)
0 (v)| . cJ∏J

j=2(2j + 2)
3
2−
‖v‖2J+2

L2 ,(4.21)

|R(J+1)(v)| . (2J + 2) · cJ∏J
j=2(2j + 2)

3
2−
‖v‖2J+4

L2 .(4.22)
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Proof. — We split the proof into the following two cases:

(i) Π2(TJ) = {r2} and (ii) Π2(TJ) 6= {r2},

where Π2 denotes the projection defined in (4.8).

Case (i). — We first consider the case Π2(TJ) = {r2}. Recall that for general J ∈ N,
we need to control the rapidly growing cardinality cJ = |BT(J)| defined in (4.9). By
Cauchy-Schwarz inequality and Lemma 4.7, we have

|N (J+1)
0 (v)| . ‖v‖L2

∑
TJ∈BT(J)

Π2(TJ )={r2}

{∑
n∈Z

( ∑
n∈N(TJ )
nr=n

1⋂J−1

j=1
Cc

j

〈n〉4s

|φ1|2
J∏
j=2

1

|φ̃j |2

)

×
( ∑

n∈N(TJ )
nr=n

∏
a∈T∞J r{r2}

|vna |2
)}1/2

.
cJ∏J

j=2(2j + 2)
3
2−
‖v‖2J+2

L2 .

Case (ii). — Next, we consider the case Π2(TJ) 6= {r2}. In this case, we need to
modify the argument above since the frequency nr = n does not correspond to a
terminal node. Note that T ∞J = Π1(TJ)∞ ∪Π2(TJ)∞ and∑

n∈N(TJ )
nr=n

∏
a∈T∞J

|vna |2 =

2∏
j=1

( ∑
n∈N(Πj(TJ ))

nrj
=n

∏
aj∈Πj(TJ )∞

|vnaj
|2
)
.(4.23)

Then, by Cauchy-Schwarz inequality and Lemma 4.7 with (4.23), we have

|N (J+1)
0 (v)| .

∑
TJ∈BT(J)

Π2(TJ )={r2}

∑
n∈Z

{( ∑
n∈N(TJ )
nr=n

1⋂J−1

j=1
Cc

j

〈n〉4s

|φ1|2
J∏
j=2

1

|φ̃j |2

)

×
( ∑

n∈N(TJ )
nr=n

∏
a∈T∞J

|vna
|2
)}1/2

.
cJ∏J

j=2(2j + 2)
3
2−

sup
TJ∈BT(2)

Π2(TJ ) 6={r2}

∑
n∈Z

{
2∏
j=1

( ∑
n∈N(Πj(TJ ))

nrj
=n

∏
aj∈Πj(TJ )∞

|vnaj
|2
)}1/2

.

By Cauchy-Schwarz inequality in n,

.
cJ∏J

j=2(2j + 2)
3
2−

sup
TJ∈BT(2)

Π2(TJ ) 6={r2}

2∏
j=1

{(∑
n

∑
n∈N(Πj(TJ ))

nrj
=n

∏
aj∈Πj(TJ )∞

|vnaj
|2
)}1/2

.
cJ∏J

j=2(2j + 2)
3
2−
‖v‖2J+2

L2 .

This proves the first estimate (4.21).
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The second estimate (4.22) follows from (4.21) and `2n ⊂ `6n, noting that, given
TJ ∈ BT(J), we have #{b : b ∈ T ∞J } = 2J + 2. �

Next, we treat N (J+1) in (4.20). As before, we write

(4.24) N (J+1) = N
(J+1)

1 + N
(J+1)

2 ,

where N
(J+1)

1 is the restriction of N (J+1) onto CJ defined in (4.11) and N
(J+1)

2 :=

N (J+1) −N
(J+1)

1 . In the following lemma, we estimate the first term in (4.26):

(4.25) N
(J+1)

1 (v) = −
∑

TJ+1∈BT(J+1)

∑
n∈N(TJ+1)

1
(
⋂J−1

j=1
Cc

j )∩CJ

〈nr〉2se−iφ̃J+1t∏J
j=1 φ̃j

∏
a∈T∞J+1

vna
.

Then, we apply a normal form reduction once again to the second term N
(J+1)

2 as
in (4.20). In Section 4.5, we show that the error term N

(J+1)
2 tends to 0 as J →∞.

Lemma 4.11. — Let N
(J+1)

1 be as in (4.25). Then, for any s < 1, we have

|N (J+1)
1 (v)| . J

3
2 + · cJ+1∏J

j=2(2j + 2)
3
2−
‖v‖2J+4

L2 .(4.26)

Proof. — We only discuss the case Π2(TJ+1) = {r2} since the modification for the
case Π2(TJ+1) 6= {r2} is straightforward as in the proof of Lemma 4.10. By Cauchy-
Schwarz inequality and Lemma 4.13, we have

|N (J+1)
1 (v)| . ‖v‖L2

∑
TJ+1∈BT(J+1)
Π2(TJ+1)={r2}

{∑
n∈Z

( ∑
n∈N(TJ+1)

nr=n

1
(
⋂J−1

j=1
Cc

j )∩CJ

〈n〉4s

|φ1|2
J∏
j=2

1

|φ̃j |2

)

×
( ∑

n∈N(TJ+1)
nr=n

∏
a∈T∞J+1r{r2}

|vna
|2
)}1/2

.
J

3
2 + · cJ+1∏J

j=2(2j + 2)
3
2−
‖v‖2J+4

L2 .

This proves (4.26). �

Remark 4.12. — A notable difference from [18] appears in our definition of Cj in
(4.11); on the one hand, the cutoff size on φ̃j+1 in [18] depended on φ̃j and φ1. On
the other hand, our choice of the cutoff size on φ̃j+1 in (4.11) is independent of φ̃j
or φ1, thus providing simplification of the argument.

Another difference appears in the first step of the normal form reductions. On
the one hand, we simply applied the first normal form reduction in (4.18) without
introducing a cutoff on the phase function φ1. On the other hand, in [18], a cutoff of the
form(20) |φ1| > K was introduced to separate the first multilinear term into the nearly

(20)In [18], this parameter was denoted by N . Here, we use K to avoid the confusion with the
frequency truncation parameter N ∈ N.
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resonant and non-resonant parts. The use of this extra parameter K = K(‖u0‖L2)

allowed the authors to show that the local existence time can be given by T ∼ ‖u0‖−αL2

for some α > 0. See [18] for details. Since our argument only requires the summability
(in J) of the multilinear forms, we do not need to introduce this extra parameter.

We conclude this subsection by briefly discussing how to justify all the formal steps
performed in the normal form reductions. In particular, we need to justify

(i) the application of the product rule and
(ii) switching time derivatives and summations
Suppose that a solution v to (3.2) lies in C(R;H1/6(T)). Then, from (3.2), we have

‖∂tvn‖CT `∞n
6
∥∥F−1(|v̂n|)

∥∥3

CTL3
x
.
∥∥F−1(|v̂n|)

∥∥3

CTH
1/6
x

= ‖v‖3
CTH

1/6
x

for each T > 0, where CTBx = C([−T, T ];Bx). Hence, ∂tvn ∈ C([−T, T ]; `∞n ), justi-
fying (i) the application of the product rule. Note that given N ∈ N, any solution v
to (3.6) belongs to C(R;H∞(T)) and hence (i) is justified. Moreover, the summations
over spatial frequencies in the normal form reductions applied to solutions to (3.6) are
all finite and therefore, (ii) the switching time derivatives and summations over spatial
frequencies trivially hold true for (3.6). In general, the proof of Lemma 4.10 shows
that the summation defining N

(j)
0 converges (absolutely and uniformly in time).

Then, Lemma 5.1 in [18] allows us to switch the time derivative with the summations
as temporal distributions, thus justifying differentiation by parts.

4.5. On the error term N
(J+1)

2 . — In this subsection, we prove that N
(J+1)

2 in
(4.24) tends to 0 as J →∞ under some regularity assumption on v. From (4.20), we
have

N
(J+1)

2 (v) = −
∑

TJ+1∈BT(J+1)

∑
n∈N(TJ+1)

1⋂J

j=1
Cc

j

〈nr〉2se−iφ̃J+1t∏J
j=1 φ̃j

∏
a∈T∞J+1

vna
.(4.27)

Lemma 4.13. — Let N
(J+1)

2 be as in (4.27). Then, given v∈Hs(T), s>1/2, we have

|N (J+1)
2 (v)| −→ 0,(4.28)

as J →∞.

We point out that one can actually prove Lemma 4.13 under a weaker regularity
assumption s > 1/6. See [37]. For our purpose, however, we only need to prove
the vanishing of the error term N

(J+1)
2 for sufficiently regular functions; our main

objective is to obtain an energy estimate (on the modified energy EN,t defined in (3.8))
for solutions to the truncated equation (3.6). Given N ∈ N, any solution v to (3.6)
belongs to C(R;H∞(T)). Therefore, while the convergence speed in (4.28) depends
on N ∈ N, the final energy estimate (3.9) holds with an implicit constant independent
of N ∈ N.
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Proof. — Given n ∈ N(TJ+1), it follows from Definition 4.5 and the triangle inequal-
ity that there exists C0 > 0 such that

|nr| 6 CJ0 |nbk |(4.29)

for (at least) two terminal nodes b1, b2 ∈ T ∞J+1 Then, by Young’s inequality (placing
vnbk

in `2n, k = 1, 2, and the rest in `1n) with (4.9), (4.11), and (4.29), we have

|N (J+1)
2 (v)| . C2sJ

0 · cJ∏J
j=2(2j + 2)3

× sup
TJ+1∈BT(J+1)

∑
n∈N(TJ+1)

( 2∏
k=1

〈nbk〉s|vnbk
|
)( ∏

a∈T∞J+1r{b1,b2}

|vna
|
)

.
C2sJ

0 · cJ∏J
j=2(2j + 2)3

‖v‖2J+4
Hs −→ 0,

as J →∞. �

4.6. Improved energy bound. — We are now ready to establish the improved energy
estimate (3.9). Let v be a smooth global solution(21) to (3.2). Then, by applying the
normal form reduction J times, we obtain(22)

∂t

(1

2
‖v‖2Hs

)
= ∂t

J+1∑
j=2

N
(j)

0 (v) +

J+1∑
j=2

N
(j)

1 (v) +

J+1∑
j=2

R(j)(v) + N
(J+1)

2 .

Thanks to Lemma 4.13, by taking the limit as J →∞, we obtain

∂t

(1

2
‖v‖2Hs

)
= ∂t

∞∑
j=2

N
(j)

0 (v) +
∞∑
j=2

N
(j)

1 (v) +
∞∑
j=2

R(j)(v).

In other words, defining the modified energy Et(v) by

Et(v) :=
1

2
‖v(t)‖2Hs −

∞∑
j=2

N
(j)

0 (v)(t),

we have

∂tEt(v) =

∞∑
j=2

N
(j)

1 (v)(t) +

∞∑
j=2

R(j)(v)(t).

(21)In fact, it suffices to assume that v ∈ C(R;H1/6(T)). See [18, 37].
(22)Once again, we are replacing ±1 and ±i by 1 for simplicity since they play no role in our

analysis.
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Suppose that ‖v‖C(R;L2) 6 r. Then, applying Lemmas 4.10 and 4.11 with (4.9), we
obtain

|∂tEt(v)| .
∞∑
j=2

cj−1∏j−1
k=2(2k + 2)

3
2−
r2j +

∞∑
j=2

j
3
2 + · cj∏j−1

k=2(2k + 2)
3
2−
r2j+2

+

∞∑
j=2

j · cj−1∏j−1
k=2(2k + 2)

3
2−
r2j+2

6 C(r).

In view of the boundedness of the frequency projections and noting that any solution
to (3.6) is in H∞(T), the same energy estimate holds for solutions to the truncated
equation (3.6), uniformly in N ∈ N.

4.7. On the proof of Lemma 3.5. — We conclude this section with a brief discussion
on the proof of Lemma 3.5. First, note that Lemma 3.5 (ii) is an immediate corollary
of Lemma 3.5 (i). Moreover, Lemma 3.5 (i) follows from Egoroff’s theorem once we
prove that

SN (v) =

∞∑
j=2

N
(j)

0,N (v)

converges almost surely to

S∞(v) =

∞∑
j=2

N
(j)

0 (v).

See [34, Prop. 6.2]. In fact, one can show that SN (v) converges to S∞(v) for any
v ∈ L2(T).

Recall from (4.20) that N
(j)

0 (v) consists of a sum of the multilinear forms asso-
ciated with ordered bi-trees Tj−1 ∈ BT(j − 1). Given N ∈ N, the multilinear form
N

(j)
0,N (v) is obtained in a similar manner with the following modifications:
(i) We set vn = 0 for all |n| > N . This corresponds to setting vna

= 0 for all
|n| > N and all terminal nodes a ∈ T ∞j−1.

(ii) In view of (3.6), we also set vna = 0 for all |n| > N and all parental nodes in
Tj−1. This amounts to setting vna = 0 for all |n| > N and all non-terminal nodes
a ∈ T 0

j−1.
In particular, we have

N
(j)

0,N (v) =
∑

Tj−1∈BT(j−1)

∑
n∈NN (Tj−1)

1⋂j−2

k=1
Cc

k

〈nr〉2se−iφ̃j−1t∏j−1
k=1 φ̃k

∏
a∈T∞j−1

vna ,(4.30)

where NN (Tj−1) is as in Definition 4.5. Namely, N (j)
0,N (v) is obtained from N

(j)
0 (v) by

simply truncating all the frequencies (including the “hidden”(23) parental frequencies)
by N ∈ N.

(23)Namely, the parental frequencies at the non-terminal nodes do not appear explicitly in the
sum in (4.30) but they implicitly appear through the relation in Definition 4.5.
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Write

N
(j)

0 (v)−N
(j)

0,N (v) =
{

N
(j)

0 (v)− Ñ
(j)

0,N (v)
}

+
{

Ñ
(j)

0,N (v)−N
(j)

0,N (v)
}

=: I j + IIj ,
(4.31)

where Ñ
(j)

0,N (v) is obtained from N
(j)

0,N (v) by replacing n ∈ NN (Tj−1) with n ∈
N0
N (Tj−1). i.e., we are truncating only the parental frequencies at non-terminal nodes

a ∈ T 0
j−1. Then, by writing

IIj = Ñ
(j)

0,N (v)− Ñ
(j)

0,N (P6Nv),

it follows from the multilinearity and the boundedness in L2(T) (Lemma 4.10) that
the second term IIj tends to 0 as N → ∞, by simply writing the difference in a
telescoping sum. More precisely, we write II as a telescoping sum, replacing 2j factors
of vna

, a ∈ T ∞j−1, into 2j factors of (P6Nv)na
. This introduces 2j differences, each

containing exactly one factor of v−P6Nv (tending to 0 as N →∞). We then simply
apply Lemma 4.10 on each difference.

Similarly, we can show that I j in (4.31) tends to 0 as N → ∞ by writing the
difference in a telescoping sum. Namely, noting only the difference between N

(j)
0 (v)

and Ñ
(j)

0,N (v) is the frequency cutoffs 1|na|6N at each non-terminal node a ∈ T 0
j−1,

we introduce j − 1 differences by adding the frequency cutoff 1|na|6N at each non-
terminal node in a sequential manner. By construction, each of the j − 1 differences
has one non-terminal node a∗ ∈ T 0

j−1 with the restriction |na∗ | > N . Then, from
Definition 4.5, we see that there exists at least one terminal node b ∈ T ∞j−1 which is
a descendants of a∗ such that

|nb| > C−J0 |na∗ | > C−J0 N

for some C0 > 0 (compare this with (4.29)). This forces each of the j − 1 differences
in the telescoping sum to tend to 0 as N →∞, and hence I j in (4.31) tends to 0 as
N → 0.

Therefore, N
(j)

0,N (v) converges to N
(j)

0 (v) as n → ∞ for any v ∈ L2(T). Finally,
in view of the fast decay in j in Lemma 4.10, the convergence of SN (v) to S∞(v)

follows from the dominated convergence theorem.

5. Proof of Theorem 1.6: Non quasi-invariance under
the dispersionless model

In this section, we present the proof of Theorem 1.6. The basic ingredients are the
Fourier series representation of the (fractional) Brownian loops, the law of the iterated
logarithm, and the solution formula (1.20) to the dispersionless model (1.19). More
precisely, we show that, while the Gaussian random initial data distributed according
to µs satisfies the law of the iterated logarithm, the solution given by (1.20) does not
satisfy the law of the iterated logarithm for any non-zero time. We divide the argument
into three cases: (i) s = 1 corresponding to the Brownian/Ornstein-Uhlenbeck loop,
(ii) 1/2 < s < 3/2, corresponding to the fractional Brownian loop (and s > 3/2 with
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s /∈ 1/2 + N), and (iii) s ∈ 1/2 + N: the critical case. For simplicity, we set t = 1 in
the following. The proof for non-zero t 6= 1 follows in a similar manner.

5.1. Brownian/Ornstein-Uhlenbeck loop. — We first consider the s = 1 case. Un-
der the law of the random Fourier series

(5.1) u(x) = u(x;ω) =
∑
n∈Z

gn(ω)

〈n〉
einx

corresponding to the Gaussian measure µ1, Reu and Imu are independent station-
ary Ornstein-Uhlenbeck (OU) processes (in x) on [0, 2π). Recall that the law of this
process can be written as

(5.2) u(x)
d
= P 6=0w(x) + g0 = w(x)−

 2π

0

w(y)dy + g0,

where w is a complex OU bridge with w(0) = w(2π) = 0 and g0 is a standard
complex-valued Gaussian random variable (independent from w).

We now recall the law of the iterated logarithm for the Brownian motion (see [42,
I.16.1]):

Proposition 5.1. — Let B(t) be a standard Brownian motion on R+. Then, for each
t > 0,

(5.3) lim sup
h↓0

B(t+ h)−B(t)√
2h log log 1/h

= 1,

almost surely.

It follows from the representation (5.2), the absolute continuity(24) of the Brownian
bridge with respect to the Brownian motion on any interval [0, γ), γ < 2π, and the
absolute continuity of the OU bridge with respect to the Brownian bridge also on any
interval [0, γ), that the limit (5.3) also holds for Reu and Imu on [0, 2π).

Define ψ by
ψ(h) =

√
2h log log 1/h, 0 < h < 1.

Let 0 6 x < 2π. As a corollary to Proposition 5.1, we have

lim sup
h↓0

Reu(x+ h)− Reu(x)

ψ(h)
= 1(5.4)

almost surely.
In the following, by a direct calculation, we show that Re[e−i|u|

2

u] does not satisfy
(5.4) with a positive probability. This will show that the pushforward measure Φ̃(t)∗µs

(24)The absolute continuity property claimed here can be easily seen by the Fourier series repre-
sentations of the Brownian motion/bridge (with (5.1) and (5.2)) and Kakutani’s theorem (Lemma
5.3 below). For example, the Brownian motion B(t) on [0, 2π) has the following Fourier-Wiener series

B(t) = g0t+
∑

n∈Zr{0}

gn

n
eint.
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under the dynamics of the dispersionless model (1.19) is not absolutely continuous
with respect to the Gaussian measure µs.

On the one hand, we have

Re[e−i|u(y)|2u(y)]− Re[e−i|u(x)|2u(x)]

= (Reu(y)− Reu(x)) cos |u(y)|2 + (cos |u(y)|2 − cos |u(x)|2) Reu(x)

+ (Imu(y)− Imu(x)) sin |u(y)|2 + (sin |u(y)|2 − sin |u(x)|2) Imu(x).

On the other hand, by the Taylor expansion with η(x, y) = |u(y)|2 − |u(x)|2, we have

cos |u(y)|2 = cos |u(x)|2 − sin |u(x)|2 · η(x, y) +O
(
η2(x, y)

)
,

sin |u(y)|2 = sin |u(x)|2 + cos |u(x)|2 · η(x, y) +O
(
η2(x, y)

)
.

Putting together, we obtain

Re[e−i|u(y)|2u(y)]− Re[e−i|u(x)|2u(x)]

= (Reu(y)− Reu(x)) cos |u(y)|2 − sin |u(x)|2 · η(x, y) Reu(x)

+ (Imu(y)− Imu(x)) sin |u(y)|2 + cos |u(x)|2 · η(x, y) Imu(x)

+O
(
η2(x, y)

)
· (|Reu(x)|+ | Imu(x)|)

= (Reu(y)− Reu(x)) cos |u(y)|2

− sin |u(x)|2 ·
{

(Reu(y)− Reu(x))(Reu(y) + Reu(x))
}

Reu(x)(5.5)
− sin |u(x)|2 ·

{
(Imu(y)− Imu(x))(Imu(y) + Imu(x))

}
Reu(x)

+ (Imu(y)− Imu(x)) sin |u(y)|2

+ cos |u(x)|2 ·
{

(Reu(y)− Reu(x))(Reu(y) + Reu(x))
}

Imu(x)

+ cos |u(x)|2 ·
{

(Imu(y)− Imu(x))(Imu(y) + Imu(x))
}

Imu(x)

+O
(
η2(x, y)

)
· (|Reu(x)|+ | Imu(x)|).

Fix 0 6 x < 2π. Let {hn = hn(ω)}n∈N be a (random) sequence achieving the limit
supremum in (5.4) almost surely. Then, for this sequence {hn}n∈N, we have

lim sup
n→∞

| Imu(x+ hn)− Imu(x)|
ψ(hn)

6 1(5.6)

almost surely. Divide the expression in (5.5) by ψ(hn), after replacing y by x + hn.
Then, by taking the limit as n→∞ and applying (5.4) and (5.6), we have

(5.7) lim sup
n→∞

Re[e−i|u(x+hn)|2u(x+ hn)]− Re[e−i|u(x)|2u(x)]

ψ(hn)

> −2 sin |u(x)|2 · (Reu(x))2

−
∣∣ cos |u(x)|2

∣∣− ∣∣ sin |u(x)|2
∣∣− 2 ·

∣∣ sin |u(x)|2 · Imu(x) Reu(x)
∣∣

− 2 ·
∣∣ cos |u(x)|2 · Reu(x) Imu(x)

∣∣− 2 ·
∣∣ cos |u(x)|2

∣∣(Imu(x))2,

almost surely.
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Fix M � 1 by

M2 = −π
2

+ 2kπ,(5.8)

for some large k ∈ N (to be chosen later). Given ε > 0, define the set

A =
{
ω ∈ Ω : |Reu(x;ω)−M | 6 ε, | Imu(x;ω)| 6 ε

}
.

Noting that under the law of the OU loop, Reu(x) and Imu(x) are independent
Gaussian random variables, we have

P (A) > δ(M, ε) > 0

for any ε > 0. By choosing ε > 0 sufficiently small such that εM � 1, we have∣∣|u(x)|2 −M2
∣∣ 6 2ε(M + ε) = o(1).(5.9)

Then, from (5.8) and (5.9), we have

RHS of (5.7) > 2
∣∣ sin |u(x)|2

∣∣ ·M(M − 3ε)− 2(1 + ε(M + 2ε))

>M2

on A. By choosing M � 1, we see that the set

A1 =

{
lim sup
h↓0

Re[e−i|u(x+h)|2u(x+ h)]− Re[e−i|u(x)|2]u(x)]

ψ(h)
= 1

}
does not have probability 1 under the law of u. Therefore, µ1 is not quasi-invariant
under the flow of the dispersionless model (1.19).

5.2. Fractional Brownian motion. — In this subsection, we extend the previous re-
sult to the distribution of the random Fourier series

us(x) =
∑
n∈Z

gn
〈n〉s

einx,(5.10)

corresponding to µs. For 1/2 < s < 3/2, the series (5.10) is related to a fractional
Brownian motion. Recall that a fractional Brownian motion with Hurst parameter H,
0 < H < 1, is the Gaussian process BH(t), t > 0 with stationary increments and
covariance

(5.11) E[BH(t1)BH(t2)] =
ρ(H)

2
(t2H1 + t2H2 − |t2 − t1|2H),

where

ρ(H) = E
[(
BH(1)

)2]
= −2σ

cos(πH)

π
Γ(−2H) when H 6= 1/2 and ρ(1/2) = 1.

When H = 1/2, a fractional Brownian motion becomes the standard Brownian mo-
tion. In the following, we only consider the case H 6= 1/2.
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It is known that there is a subtle issue on building a series representation for a
fractional Brownian motion BH . Instead, we consider the following series(25)

B̂H(t) = g̃0t+
√

2
∑
n>1

(
g̃n

cos(nt)− 1

nH+1/2
+ g̃′n

sin(nt)

nH+1/2

)
,

for t ∈ [0, 2π], where g̃n and g̃′n are now independent real-valued standard Gaussians.
Then, Picard [39] showed the following result on the relation between BH and B̂H .

Lemma 5.2 ([39, Th. 24&27, §6]). — The processes BH(t) and B̂H(t) can be coupled
in such a way that

BH(t)− B̂H(t)

is a C∞-function on (0, 2π]. Moreover, if H 6= 1/2, then the laws of BH and B̂H are
equivalent on [0, T ] for T < 2π (and mutually singular if T = 2π).

Recall Kakutani’s criterion [23] in the Gaussian case.

Lemma 5.3. — Let {gn}n∈N and {g̃n}n∈N be two sequences of centered Gaussian ran-
dom variables with variances E[g2

n] = σ2
n > 0 and E[g̃2

n] = σ̃2
n > 0. Then, the laws of

the sequences {gn}n∈N and {g̃n}n∈N are equivalent if and only if∑
n∈N

( σ̃2
n

σ2
n

− 1
)2

<∞.

From (5.10), we have

(5.12) Reus(x)

= Re g0 +
∑
n>1

(Re gn + Re g−n
〈n〉s

cos(nx) +
− Im gn + Im g−n

〈n〉s
sin(nx)

)
.

Then, applying Lemma 5.3 to the sequences{
g̃0t,
√

2
g̃n

nH+1/2
,
√

2
g̃′n

nH+1/2

}
and

{
Re g0,

Re gn + Re g−n
〈n〉s

,
− Im gn + Im g−n

〈n〉s
}
,

we see that if s = H + 1/2, then the series (5.12) for Reus and

(5.13) B̃H := B̂H −
 2π

0

(B̂H(α)− g̃0α)dα

have laws that are mutually absolutely continuous. Therefore, in view of the compu-
tation above and Lemma 5.2 with [39, Th. 35], we see that the laws of BH and Reus
are equivalent on [0, T ] for T < 2π. The same holds for Imus.

We use the following version of the law of the iterated logarithm for Gaussian pro-
cesses with stationary increments [30, Th. 7.2.15]. First, recall the following definition.
We say that a function f is called a normalized regularly varying function at zero with
index α > 0 if it can be written in the form

f(x) = Cxα exp

(ˆ x

1

ε(u)

u
du

)
for some constant C 6= 0 and limu→0 ε(u) = 0.

(25)As mentioned in Section 1, we drop the factor of 2π.
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Proposition 5.4. — Let G =
{
G(x) : x ∈ [0, 2π]

}
be a Gaussian process with station-

ary increments and let
σ2(h) = E

[
|G(h)−G(0)|2

]
.

If σ2(h) is a normalized regularly varying function at zero with index 0 < α < 2, then

lim
δ→0

sup
|h|6δ

|G(h)−G(0)|√
2σ2(|h|) log log 1/|h|

= 1

almost surely.

Using the covariance (5.11), we have

σ2(h) = E
[
|BH(h)−BH(0)|2

]
= Ch2H .(5.14)

Hence, Proposition 5.4 holds for G(x) = BH(x), H < 1. Then, by the absolute
continuity, the conclusion of Proposition 5.4 with 0 replaced by any x ∈ (0, 2π) also
holds for Reus and Imus; for any 1/2 < s < 3/2, we have

lim
δ→0

sup
|h|6δ

|Reus(x+ h)− Reus(x)|√
2σ2(|h|) log log 1/|h|

= 1(5.15)

almost surely. Applying the law of the iterated logarithm conditionally on the set
where (5.15) holds, we also have

lim
δ→0

sup
|h|6δ

| Imus(x+ h)− Imus(x)|√
2σ2(|h|) log log 1/|h|

6 1

almost surely. We can now reproduce exactly the proof in Section 5.1 for 1
2 < s < 3

2 .
This proves Theorem 1.6 for 1/2 < s < 3/2.

Next, we consider the case s > 3/2 such that s /∈ 1/2 +N. We consider the critical
case s ∈ 1/2 + N in Section 5.3. The main point is to note that us in (5.10) has a
Cr-version for each integer r < bs− 1/2c. Indeed, we have the following:

Lemma 5.5. — Let X(t), t ∈ R, be a stationary Gaussian process with the covariance
function

ρ(t) =

ˆ
eiαtν(dα).

If
´
|α|2+εν(dα) < ∞ for some ε > 0, then there is a version of the process X(t)

such that ∂tX(t) exists and is continuous. Moreover, ∂tX(t) is a stationary Gaussian
process with covariance ˆ

eiαtα2ν(dα).

Since we work on T, the spectral measure ν(dα) is the counting measure on Z and

ρ(x) = 2
∑
n∈Z

einx

〈n〉2s
.

Note that when s > 3/2, we have

2
∑
n∈Z

|n|2+ε

〈n〉2s
<∞
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for sufficiently small ε > 0 and thus we can apply Lemma 5.5. Differentiating us in
(5.10) bs− 1/2c times, we obtain a process

∂rxus(x)
d
=

∑
n∈Zr{0}

gn
|n|−r〈n〉s

einx

with r = bs−1/2c. Given s ∈ (1/2+j, 3/2+j) for some j ∈ N, we have s−r = s−j ∈
(1/2, 3/2). Noting that |n|−r〈n〉s ∼ 〈n〉s−r, we can apply Lemma 5.3 to show the laws
of B̃H defined in (5.13), Re ∂rxus, and Im ∂rxus are equivalent. Hence, proceeding as
before, we can apply Proposition 5.4 to Re ∂rxus and Im ∂rxus. Namely, we obtain

lim
δ→0

sup
|h|6δ

|Re ∂rxus(x+ h)− Re ∂rxus(x)|√
2σ2(|h|) log log 1/|h|

= 1(5.16)

almost surely. Applying the law of the iterated logarithm conditionally on the set
where (5.16) holds, we also have

lim
δ→0

sup
|h|6δ

| Im ∂rxus(x+ h)− Im ∂rxus(x)|√
2σ2(|h|) log log 1/|h|

6 1(5.17)

almost surely.
With (5.16) and (5.17) at hand, we can basically repeat the proof in Section 5.1

by differentiating (5.5) and applying (5.16) and (5.17). A straightforward application
of the product rule to compute ∂rx(e−i|us(x)|2us(x)) would be computationally cum-
bersome. Thus, we perform some simplification before taking derivatives. First, note
that from (5.16) and (5.17) with (5.14), we have

lim
δ→0

sup
|h|6δ

|Re ∂jxus(x+ h)− Re ∂jxus(x)|√
2σ2(|h|) log log 1/|h|

= 0,(5.18)

lim
δ→0

sup
|h|6δ

| Im ∂jxus(x+ h)− Im ∂jxus(x)|√
2σ2(|h|) log log 1/|h|

= 0(5.19)

almost surely, for j = 0, 1, . . . , r − 1.
In the following, we will take r derivatives (in x) of both sides of (5.5) by setting

y = x+ h. In view of (5.18) and (5.19), we see that, after taking r derivatives, dividing
by
√

2σ2(|h|) log log 1/|h|, and taking limδ→0 sup|h|6δ, the only terms in (5.5) that
survive are those terms where all the r derivatives falls only on Reus(x+h)−Reus(x)

(or Imus(x+ h)− Imus(x)) to which we can apply (5.16) and (5.17). Therefore, we
obtain

lim
δ→0

sup
|h|6δ

Re[∂rx(e−i|us(x+h)|2us(x+ h))]− Re[∂rx(e−i|us(x)|2us(x))]√
2σ2(|h|) log log 1/|h|

> −2 sin |us(x)|2(Reus(x))2

−
∣∣ cos |us(x)|2

∣∣− ∣∣ sin |us(x)|2
∣∣− 2 ·

∣∣ sin |us(x)|2 Imus(x) Reus(x)
∣∣

− 2 ·
∣∣ cos |us(x)|2 Imus(x) Reus(x)

∣∣− 2 ·
∣∣ cos |us(x)|2

∣∣(Imus(x))2,

which is exactly the right-hand side of (5.7). The rest follows as in Section 5.1.
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5.3. Critical case: s ∈ 1/2 +N. — In this case, we cannot simply apply Proposition
5.4 directly, because, taking s = 3/2 for example, we have(26)

σ3/2(x) = E
[
|u3/2(x)− u3/2(0)|2

]
= 2

∑
n∈Z

|1− einx|2

(1 + n2)3/2

= 2

∞∑
n=1

(1− cos(nx))2 + sin2(nx)

(1 + n2)3/2

∼ x2 · log 1/|x|,

(5.20)

as x→ 0. In particular, σ3/2(x) is not a normalized regularly varying function at zero
with index 0 < α < 2. Hence, Proposition 5.4 is not applicable.

In [3], the authors considered the Gaussian process on Rn with covariance function
given by the kernel of the inverse of a quite general elliptic pseudodifferential operator
and studied the precise regularity of the process. In particular, they obtained a result
generalizing Proposition 5.4 by very different methods from those in [30].

For us, the relevant operator is 2−1(Id−∂2
x)s on T. In this case, which the authors

of [3] call “critical” owing to the behavior (5.20) of the increments, the relevant result
from [3, Th. 1.3 (ii)] reads as follows.

Proposition 5.6. — Let X3/2 be the stationary Gaussian process on R with the covari-
ance operator 2(Id− ∂2

x)−3/2. Then, X3/2(x) has continuous sample paths. Moreover,
there exists a constant c3/2 > 0 such that for each y ∈ R, we have

lim sup
x→y

|X3/2(x)−X3/2(y)|

|x− y|
√

log 1
|x−y| log log log 1

|x−y|

= c3/2

almost surely.

The log log from the classical law of the iterated logarithm and Proposition 5.4 is
now replaced by a factor involving the triply iterated logarithm log log log. In the fol-
lowing, we state and prove an analogue of Proposition 5.6 on T in a direct manner. See
Proposition 5.7 below. Using this almost sure constancy of the modulus of continuity
(Proposition 5.7), we can once again repeat the argument presented in Section 5.1.

The results in [3] are much more general than Proposition 5.6. In particular, they
apply to operators with variable coefficients. In that case, the local modulus of con-
tinuity of the process can change from point to point (although it is constant across
different realizations of the sample path). In our specific case, it is possible to give a
more elementary proof, using the classical Khintchine’s law of the iterated logarithm
for independent sums, that the process u3/2 has an exact modulus of continuity almost
surely. In terms of the setting in [3], this simplified proof comes as no surprise since
our process u3/2 has a particularly simple representation as a sum of independent
terms with respect to which the covariance operator is diagonal.

(26)This computation follows from the computations in the proof of Proposition 5.7 below.
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Proposition 5.7. — Let u3/2 be given by the random Fourier series in (5.10) with
s = 3/2. Then, for each y ∈ T, we have

lim sup
x→y

|u3/2(x)− u3/2(y)|

23/2|x− y|
√

log 1
|x−y| log log log 1

|x−y|

= 1(5.21)

almost surely.

Once we prove Proposition 5.7, we can proceed as in Section 5.1 when s = 3/2. For
s ∈ 3/2 + N, the modification is straightforward following the second half of Section
5.2 and thus we omit details.

Proof. — Without loss of generality, set y = 0. By writing

u3/2(x)− u3/2(0) =

∞∑
n∈Zr{0}

einx − 1

〈n〉3/2
gn

=

∞∑
n=1

cos(nx)− 1

〈n〉3/2
(gn + g−n) + i

∞∑
n=1

sin(nx)

〈n〉3/2
(gn − g−n),

(5.22)

we first show that the first term on the right-hand side of (5.22) does not contribute
to the limit in (5.21). Then, we break up the second sum into log 1/|x| pieces, each
with variance of order 1, plus a small remainder, and then apply the classical law
of the iterated logarithm for a sum of i.i.d. random variables. As we see below, the
leading order contribution comes from the sum

(5.23)
b1/|x|c∑
n=1

sin(nx)

〈n〉3/2
(gn − g−n).

We split the first sum on the right-hand side of (5.22) into
{
n > b1/|x|c

}
and{

1 6 n 6 b1/|x|c
}
. The contribution from

{
n > b1/|x|c

}
is a mean-zero Gaussian

random variable with variance

σ2
L := 4

∞∑
n=L

(cos(nx)− 1)2

〈n〉3
. L−2.(5.24)

In particular, when L = b1/|x|c+ 1, we have σ2
L = O(x2). Then, for λ > 0, we have

P

(∣∣∣∣ ∞∑
n=L

cos(nx)− 1

〈n〉3/2
(gn + g−n)

∣∣∣∣ > σLλ) . e−cλ2

.

Taking λ = c
√

logL for sufficiently large c > 1, the right-hand side is summable in L.
Hence, by the Borel-Cantelli lemma and the variance bound (5.24), there exists C > 0

such that

sup
L>L0

∣∣∣∑∞n=L
cos(nx)−1
〈n〉3/2 (gn + g−n)

∣∣∣
CL−1

√
logL

6 1
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for some L0 = L0(ω) <∞ with probability 1. As a consequence, we obtain

lim sup
x→0

∣∣∣∑n>b1/|x|c
cos(nx)−1
〈n〉3/2 (gn + g−n)

∣∣∣
|x|
√

log 1/|x| log log log 1/|x|
= 0

almost surely.
The contribution from {1 6 n 6 b1/|x|c} to the first sum on the right-hand side

of (5.22) can be estimated in a similar manner by noticing that it is a mean-zero
Gaussian random variable with variance

b1/|x|c∑
n=1

(cos(nx)− 1)2

〈n〉3
. x4

b1/|x|c∑
n=1

n4

〈n〉3
. x2.

This shows that the contribution from the first sum on the right-hand side of (5.22)
to the limit (5.21) is 0.

Next, we consider the second sum on the right-hand side of (5.22). The contribution
from {n > b1/|x|c} can be estimated as above. We split the main term in (5.23) as
follows. Write

(5.25)
b1/|x|c∑
n=1

sin(nx)

〈n〉3/2
(gn−g−n) = x

b1/|x|c∑
n=1

n

〈n〉3/2
(gn−g−n)+

b1/|x|c∑
n=1

h(nx)

〈n〉3/2
(gn−g−n),

where
h(z) = sin z − z ∼ z3(1 + o(1)).

The second term in (5.25) can be treated as a remainder by noticing that that it is a
mean-zero Gaussian random variable with variance

4

b1/|x|c∑
n=1

h2(nx)

〈n〉3
. x6

b1/|x|c∑
n=1

n6

〈n〉3
. x2.

It remains to consider the first term in (5.25). First, define a sequence {N(k)}∞k=0⊂N
by setting N(0) = 0 and

N(k) = min

{
N > N(k − 1) :

N∑
n=N(k−1)+1

n2

〈n〉3
> 1

}
for k ∈ N. Noting that

N∑
n=M

n2

〈n〉3
=

N∑
n=M

1

n
+O

( N∑
n=M

1

n3

)
= logN − logM +O (1/M)(5.26)

for N > M > 1, we first see that N(k) > C1e
k. Using (5.26) once again,

logN(k) +O(1) =

N(k)∑
n=1

n2

〈n〉3
6 k +

k∑
n=1

1

N(n) + 1
6 k +O(1),

giving N(k) 6 C2e
k. Putting together, we have

C1e
k 6 N(k) 6 C2e

k.(5.27)
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Now, we define a sequence {Xk}k∈N of independent Gaussian random variables by
setting

Xk = x

N(k)∑
n=N(k−1)+1

n

〈n〉3/2
(gn − g−n).

Then, we have

E
[
|ReXk|2

]
= E

[
| ImXk|2

]
= x2

(
1 +O(N(k)−1)

)
.

Finally, define L(|x|) by

L(|x|) = inf {k : N(k) > b1/|x|c} .

Then, from (5.27), we have

L(|x|) = log 1/|x| · (1 + o(1)).

Applying Khintchine’s law of the iterated logarithm to the sum

S(x) =

L(|x|)∑
k=1

Xk,

we find
lim sup
x→0

S(x)

23/2|x|
√

log 1/|x| log log log 1/|x|
= 1

almost surely. This completes the proof of Proposition 5.7. �
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