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HOMOGENIZATION OF A SEMILINEAR HEAT EQUATION

by Annalisa Cesaroni, Nicolas Dirr & Matteo Novaga

Abstract. — We consider the homogenization of a semilinear heat equation with vanishing
viscosity and with oscillating positive potential depending on u/ε. According to the rate between
the frequency of oscillations in the potential and the vanishing factor in the viscosity, we obtain
different regimes in the limit evolution and we discuss the locally uniform convergence of the
solutions to the effective problem. The interesting feature of the model is that in the strong
diffusion regime the effective operator is discontinuous in the gradient entry. We get a complete
characterization of the limit solution in dimension n = 1, whereas in dimension n > 1 we discuss
the main properties of the solutions to the effective problem selected at the limit and we prove
uniqueness for some classes of initial data.

Résumé (Homogénéisation d’une équation de la chaleur semi-linéaire). — Nous considérons
l’homogénéisation d’une équation de la chaleur semi-linéaire avec viscosité tendant vers 0 et un
potentiel positif oscillant dépendant de u/ε. Suivant le rapport entre la fréquence des oscillations
dans le potentiel et le facteur tendant vers 0 dans la viscosité, nous obtenons différents régimes
de l’évolution limite et nous discutons la convergence uniforme locale des solutions du problème
effectif. L’aspect intéressant du modèle est que, dans un régime à forte diffusion, l’opérateur
effectif est discontinu comme fonction du gradient. Nous obtenons une caractérisation complète
de la solution limite en dimension n = 1, alors qu’en dimension n > 1 nous analysons les
propriétés principales des solution du problème effectif sélectionné à la limite, et nous montrons
l’unicité pour certaines classes de données initiales.
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634 A. Cesaroni, N. Dirr & M. Novaga

1. Introduction

We consider the following problem:

(1.1)
{
uεt − εα∆uε − g (uε/ε) = 0 in Rn × (0,+∞)

uε(x, 0) = u0(x) in Rn

where α > 0 and the potential g is a periodic, Lipschitz continuous and positive func-
tion. This is a simple model for the motion of an interface in a heterogeneous medium,
modeled by g. These kind of equations arise e.g. in the study of the propagation of
flame fronts in a solid medium having horizontal periodic striations, see the appen-
dix of [19] for a survey of the physical background motivating this equation (see also
[9, 1]).

In this paper we show that, depending on the value of α, different regimes arise
in the limit evolution. If α = 1, then uε converges locally uniformly to the unique
Lipschitz continuous viscosity solution to

(1.2)
{
ut − c(|∇u|) = 0 in Rn × (0,+∞)

u(x, 0) = u0(x),

where c : [0,+∞)→ [0,+∞) is a continuous, nondecreasing and nonnegative function,
which satisfies

c(0) =

(∫ 1

0

1

g(s)
ds

)−1
and lim

|p|→+∞
c(|p|) =

∫ 1

0

g(s) ds.

In particular, (∫ 1

0

g(s)−1ds

)−1
6 c(|p|) 6

∫ 1

0

g(s) ds,

and the second inequality is strict if g is nonconstant. Since the solution u to (1.2) is
Lipschitz in x, with the same Lipschitz constant of the initial datum, necessarily the
average speed is less than c(‖∇u0‖∞).

In the case α > 1 the limit problem is very simple and reads

(1.3)

ut =

(∫ 1

0

g(s)−1ds

)−1
in Rn × (0,+∞)

u(x, 0) = u0(x).

In particular, the solutions to (1.1) converge locally uniformly to

u0(x) + t

(∫ 1

0

g(s)−1ds

)−1
.

In the case 0 < α < 1, the limit problem is

(1.4)
{
ut − c−(|∇u|) = 0 in Rn × (0,+∞)

u(x, 0) = u0(x),

J.É.P. — M., 2017, tome 4



Homogenization of a semilinear heat equation 635

where

c−(|p|) =


∫ 1

0

g(s) ds p 6= 0(∫ 1

0

g(s)−1ds

)−1
p = 0.

In the limiting case α = 0, the limit problem is given by

(1.5)
{
ut − F (∇u,∇2u) = 0 in Rn × (0,+∞)

u(x, 0) = u0(x)

where

F (p,X)) =


trX +

∫ 1

0
g(s) ds p 6= 0

min

(
trX +

∫ 1

0

g(s) ds,

(∫ 1

0

g(s)−1ds

)−1)
p = 0.

The functions c− and F are both discontinuous functions. Such a phenomenon is
unusual in homogenization problems, and makes the analysis of this limit more chal-
lenging.

Due to the lack of uniqueness of solutions to Hamilton-Jacobi equations with dis-
continuous Hamiltonian, in this case we prove that along subsequences the solution uεα
to (1.1) converges locally uniformly to a viscosity solution of the limit problem. We also
provide a quite detailed description of which are the solutions of the discontinuous
problem selected in the limit, and we identify the asymptotic speed of propagation at
strict maxima, at strict minima and at saddle points (with respect to x) of the limit
function. This result enables us to obtain a complete description of the limit function
for some classes of initial data. In particular, if the initial data are either monotone in
one direction or convex, we prove that the solutions to (1.1) converge locally uniformly
to u0(x) + t

∫ 1

0
g(s) ds when α ∈ (0, 1), and to the solution of ut − ∆u =

∫ 1

0
g(s) ds

with initial datum u0 when α = 0. If, on the other hand, the initial datum is a radially
symmetric function, which has a unique maximum point, then the limit function is
given, for α ∈ (0, 1), by

min

(
u0(x) + t

∫ 1

0

g(s) ds, maxu0 + t

(∫ 1

0

g(s)−1ds

)−1)
.

As a consequence we show further properties of the limit function u, when the initial
datum is bounded from above.

In particular, in the one-dimensional case, we are able to prove the full convergence
of the solutions uεα and the uniqueness of the limit function u for α ∈ (0, 1), see
Theorem 5.12.

Our homogenization results are based on maximum principle type arguments. In
particular, we provide the effective limit problem through the solution of the so-called
cell problem, and then we prove the convergence of solutions by a suitable adaptation
of the perturbed test function method proposed by Evans. The cell problem in our
case reduces to an ordinary differential equation, see (4.3), which permits to define

J.É.P. — M., 2017, tome 4



636 A. Cesaroni, N. Dirr & M. Novaga

the limit differential operator (in terms of the asymptotic speed of propagation of
pulsating traveling waves) and to introduce the so-called correctors, which play the
role of local barriers for the evolution.

Throughout the paper we shall assume that the potential g is strictly positive.
Nevertheless we expect that similar results hold also in the case of a function g which
possibly changes sign and satisfies

∫ 1

0
g(s) ds > 0. In this case, though, the analysis of

the cell problem is much more involved. In the limiting case, i.e., when
∫ 1

0
g(s) ds = 0,

the cell problem has been studied in [15] and [1], for α > 1, and it is possible to
prove that the solution uε(x, t) of (1.1) converges locally uniformly to the initial
datum u0(x). More precisely, in [15] the following long time rescaling of (1.1) has
been considered:

(1.6) uεt −∆uε +
1

εα
g (uε/ε) = 0,

showing that uε converge locally uniformly to a solution of a quasilinear parabolic
equation, see (6.1), which for α > 1 is the level set mean curvature equation. In [1],
the 1-dimensional case has been considered for α = 1, in a more general setting.

Homogenization of periodic structures has been studied by viscosity solution meth-
ods in a long series of papers, we just recall [4, 5, 8, 16] and references therein.
However, only few papers deal with homogenization of equations depending (period-
ically) on u/ε, as in our case, besides the already cited works [15, 1]. For first order
Hamilton-Jacobi equations we recall [14, 3]. Eventually, in [13, 20] the homogeniza-
tion of ordinary differential equations such as u′ε(t) = g (t/ε, uε/ε) have been studied,
using respectively viscosity solutions and G-convergence methods.

One of the main step to solve the homogenization problem is the identification of
the limit operator, as we already noted. This is done by solving a suitable defined cell
problem, or equivalently, by looking to pulsating wave solutions to the equation (1.1),
at the microscopic scale. Pulsating wave solutions with (average) slope p ∈ Rn are
solutions to (1.1) with ε = 1 of the form φ(x, t)− c(p)t, where φ(x, t)−p ·x is a space-
time periodic function and c(p) is the (average) speed of the solution. Notice that,
since g depends only on u, these pulsating waves are in fact traveling waves which
moves horizontally in the p-direction. Such solutions are related to the correctors
used in homogenization problems and are very important in the analysis of long time
behavior of the solutions to (1.1), with ε= 1, since typically they are the long time
attractors of such solutions, see for instance [7, 6, 10, 11, 9, 19]. In particular, in [19],
the existence of horizontal (e.g. with slope p = 0) pulsating wave solutions to ut =

∆u+g(x, u,∇u) is proved, where g is a positive function, which is periodic in x, u. The
same argument also applies to get existence of pulsating wave solutions for rational
slopes p∈Qn. In [9] a similar problem has been studied in the plane, that is existence
for any slope p of pulsating wave solutions (which are traveling horizontally) to

(1.7) ut = δuxx + g(u)
√

1 + u2x ,

with g strictly positive. The authors also provide a complete description of the asymp-
totic speed of propagation c(p), showing that it is increasing with respect to |p| (as in
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Homogenization of a semilinear heat equation 637

our case) and looking also at the limit behavior as the viscosity is vanishing, that is,
δ → 0. Eventually, in [17, 18] a geometric variant of (1.7) has been considered, for
which the author is able to construct planar and V-shaped pulsating waves.

The paper is organized as follows. In Section 2 we recall some notation used in the
paper, including the definition of viscosity solutions. In Section 3, we introduce the
problem and the assumptions and provide a priori estimates on solutions to (1.1) and
on their uniform limits. Section 4 is devoted to the solution to the cell problem, in the
case α = 1 and then in the case α 6= 1, and on the analysis of qualitative properties of
the limit operators. In Section 5 we prove the main results, that is the homogenization
limits. Eventually in Section 6 we discuss some open problems, which in our opinion
could be interesting to investigate.

Acknowledgements. — The second and third authors wish to thank the University of
Padova for the kind hospitality during the preparation of this work.

2. Notation and preliminary definitions

Given z ∈ R, we will denote with [z] the smallest integer bigger than z:

[z] ∈ Z, [z]− 1 < z 6 [z].

Given a smooth function u(x, t) : Rn × (0,+∞) → R, we will denote with ut the
partial derivative with respect to t, with ∇u, ∇2u, ∆u resp. the gradient, the Hessian
and the Laplacian of u with respect to x.

Given a continuous function u : Rn × (0,+∞)→ R, we recall the definition of the
sub and superjets of u at a point (x0, t0) ∈ Rn × (0,+∞) (see [2], [12]):

J+u(x0, t0) :=
{

(∇φ(x0, t0),∇2φ(x0, t0),φt(x0, t0)) :

φ ∈ C2, φ > u, φ(x0, t0) = u(x0, t0)
}
,

J−u(x0, t0) :=
{

(∇φ(x0, t0),∇2
xφ(x0, t0),φt(x0, t0)) :

φ ∈ C2, φ 6 u, φ(x0, t0) = u(x0, t0)
}
.

We recall the definition of viscosity solution for a parabolic system

(2.1)
{
ut − F (∇u,∇2u) = 0 in Rn × (0,+∞)

u(x, 0) = u0(x) in Rn,

where the differential operator F is possibly discontinuous (see [12]). Given a contin-
uous function u : Rn × [0,+∞)→ R, then

– u is a subsolution to (2.1) if u(x, 0) 6 u0(x) and λ − F ?(p,X) 6 0, for every
(x0, t0) ∈ Rn × (0,+∞) and (p,X, λ) ∈ J+u(x0, t0),

– u is a supersolution to (2.1) if u(x, 0) > u0(x) and λ − F?(p,X) > 0, for every
(x0, t0) ∈ Rn × (0,+∞) and (p,X, λ) ∈ J−u(x0, t0),
where F ? and F? denote respectively the upper and lower semicontinuous envelopes
of F .

J.É.P. — M., 2017, tome 4
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3. Assumptions and basic estimates

We assume the following conditions on the forcing term g : R→ R:

(3.1) g is Lipschitz continuous , Z periodic, and g(y) > 0 for every y.

We consider the following Cauchy problem

(3.2)
{
uεt − εα∆uε − g (uε/ε) = 0 in Rn × (0,+∞)

uε(x, 0) = u0(x) in Rn

where α > 0 and

(3.3) u0 is a Lipschitz continuous function, with Lipschitz constant L.

We can assume without loss of generality that L ∈ N. In the case α = 0, we make the
additional assumption that u0 ∈ C1,1.

Proposition 3.1. — Assume (3.1) and (3.3) and let α > 0. Then (3.2) admits a
unique solution uεα ∈ C2+γ,1+γ/2 for all γ ∈ (0, 1). Moreover, up to a subsequence,

uεα −→ u locally uniformly in Rn × [0,+∞).

For α > 0, every limit function u is a Lipschitz continuous function, which satisfies

(3.4) |u(x, t)− u(y, s)| 6 L|x− y|+ ‖g‖∞|t− s| ∀x, y ∈ Rn, t, s > 0.

For α = 0, under the additional assumption that u0 ∈ C1,1(Rn), every limit function u
is a Lipschitz continuous function, which satisfies

(3.5) |u(x, t)−u(y, s)| 6 L|x−y|+(‖g‖∞+‖∇2u0‖∞)|t−s| ∀x, y ∈ Rn, t, s > 0.

Finally, if there exist η ∈ Rn, with |η| = 1, and δ > 0 such that

(3.6) ∇u0(x) · η > δ for a.e. x ∈ Rn,

then ∇u(x, t) · η > δ for a.e. (x, t).

Proof. — Due to the Lipschitz regularity of g, a standard comparison principle among
sub and supersolutions to (3.2) holds (see [21]). So, existence and uniqueness of solu-
tions to (3.2) follow easily, and the regularity comes from standard elliptic regularity
theory (see [21]).

Assume now that the initial datum u0 has bounded Hessian. Indeed it is not re-
strictive, since we can uniformly approximate the initial datum with a sequence of
smooth functions with bounded Hessian. The comparison principle implies that the
associated sequence of solutions converges locally uniformly to the solution to (3.2)
in Rn × [0,+∞).

Let C = ‖∇2u0‖∞. Then for every ε, the functions u0(x) ± (‖g‖∞ + εαC)t are
respectively super and subsolution to (3.2), which implies by the comparison principle
that

|uεα(x, t)− uεα(x, 0)| 6 (‖g‖∞ + Cεα)t.

J.É.P. — M., 2017, tome 4
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Hence, again applying the comparison principle, we get that for every t, s > 0

(3.7) |uεα(x, t+ s)− uεα(x, t)| 6 sup
x
|uεα(x, s)− uεα(x, 0)| 6 (‖g‖∞ + Cεα)s.

This implies that uε are equi-lipschitz in t.
We prove now uniform equi-continuity in x. Let us consider the functions

wε±(x, t) := uεα(x+ z, t)±
[
L|z|/ε

]
ε.

Notice that wε± are both solutions to the equation in (3.2), due to the periodicity of g.
Moreover, we have

wε+(x, 0) = u0(x+ z) +
[
L|z|/ε

]
ε > u0(x+ z) + L|z| > u0(x)

wε−(x, 0) = u0(x+ z)−
[
L|z|/ε

]
ε 6 u0(x+ z)− L|z| 6 u0(x).and

By the comparison principle this implies that

(3.8) |uεα(x+ z, t)− uεα(x, t)| 6
[
L|z|/ε

]
ε 6 L|z|+ ε ∀x, z ∈ Rn, t > 0.

In particular, if we take z = εz where z ∈ Zn, then (3.8) gives
|uεα(x+ εz, t)− uεα(x, t)|

ε|z| 6 L ∀x ∈ Rn, z ∈ Zn, t > 0.

For every ε > 0 we consider a Lipschitz continuous function ũεα, which satisfies (3.7),
|ũεα(x, t) − ũεα(y, t)| 6 L|x − y| for every x, y ∈ Rn and t > 0,and such that uεα ≡ ũεα
on the lattice εZn× (0,+∞). This implies that ‖uεα− ũεα‖∞ 6 Kε. Indeed, let x ∈ Rn

and t > 0. Fix yε ∈ εZn such that |x − yε| 6 ε. Then, using (3.8) and the definition
of ũεα, we get

|uεα(x, t)− ũεα(x, t)| 6 |uεα(x, t)− uεα(yε, t)|+ |ũεα(x, t)− ũεα(yε, t)|
6 L|x− yε|+ ε+ L|x− yε| 6 (2L+ 1)ε.

By Ascoli-Arzelá Theorem, up to subsequences ũεα → u uniformly, then also uεα con-
verges uniformly to the same function, which, by (3.8) and (3.7), satisfies (3.4) if
α > 0 and (3.5) if α = 0.

Finally, Condition (3.6) is equivalent to require that u0(x + ηr) − δr > u0(x) for
all x ∈ Rn and every r > 0. Let us fix r > 0 and define, for all ε > 0, the function

vε(x, t) := uεα(x+ ηr, t)−
[
δr/ε

]
ε.

Then
vε(x, 0) = u0(x+ ηr)−

[
δr/ε

]
ε > u0(x+ ηr)− δr > u0(x)

for every x ∈ Rn. Moreover, by the periodicity of g, vε it is also a solution to equation
in (3.2). So, by the comparison principle we get

vε(x, t) = uεα(x+ ηr, t)−
[
δr/ε

]
ε > uεα(x, t) ∀ (x, t).

Passing to the limit as ε→ 0, we obtain that

u(x+ ηr, t)− δr > u(x, t) ∀ (x, t),

which gives the thesis. �
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We now recall a well-known result of the theory of viscosity solutions (see [2]).

Proposition 3.2. — Let c : [0,+∞) → [0,+∞) be a continuous function, and let u0
as in (3.3). Then there exists a unique Lipschitz continuous viscosity solution to{

ut − c(|∇u|) = 0 in Rn × (0,+∞)

u(x, 0) = u0(x) in Rn.

4. Cell problem and asymptotic speed of propagation

To study the homogenized limit of solutions to (3.2), first of all we look for special
solutions governing the behavior of the equation on a rescaled framework, that is
almost linear pulsating wave solutions (see [10, 19]). In particular, for every vector
p ∈ Rn we look for a function vp(x, t) moving with average speed c in the vertical
direction, which has average slope p, which means that vp(x, t)−ct−p ·x is space-time
periodic. Since the equation is homogeneous (it does not depend on x) we look for
functions vp of the following form:

(4.1) vp(x, t) = ε χεp

(p · x+ ct

ε

)
where the function χp : R→ R is such that

(4.2) lim
z→±∞

χp(z)

z
= 1.

Finding a pulsating wave of the form (4.1) for Equation (3.2) reduces to showing
that, for every p ∈ Rn, there exists a unique constant cεα(p) = cεα(|p|) such that the
following problem has a solution χ = χεp:

(4.3)


εα−1χ′′(z)|p|2 − cεα(|p|)χ′(z) + g(χ(z)) = 0 z ∈ (0, 1)

χ(1) = χ(0) + 1

χ′(0) = χ′(1).

Observe that, if g is constant, that is, g≡g, then cε(|p|) = g for every p and every ε and
χεp(z) = z. Note that the cell problem (4.3) can be reformulated in a more standard
way as follows. Given p ∈ Rn, α > 0, ε > 0, find the constant cεα(|p|) for which the
equation

(4.4) − |p|2εα−1w′′(z) + cεα(|p|)(w′(z) + 1)− g(w(z) + z) = 0

admits a periodic solution wεp. Therefore, once we have a solution χ to (4.3), we can
extend it to the whole R in the following way: w(z) = χ(z) − z can be extended by
periodicity to the whole space R, and then χ(z) = w(z) + z : R → R is a function
such that

(4.5)
{
εα−1χ′′(z)|p|2 − cεα(|p|)χ′(z) + g(χ(z)) = 0 z ∈ R
limz→±∞ χp(z)/z = 1.

We say that the solution to (4.3) is unique up to horizontal translations if every
solution to (4.3) is the restriction in the interval (0, 1) to a solution to (4.5).
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4.1. Case α = 1, effective Hamiltonian. — In this section we consider the case
α = 1. Under this assumption, the cell problem reads as follows: for every p ∈ Rn, show
that there exists a unique constant c(|p|) such that there exists a solution χ = χp(·)

(4.6)


χ′′(z)|p|2 − c(|p|)χ′(z) + g(χ(z)) = 0 z ∈ (0, 1)

χ(1) = χ(0) + 1

χ′(0) = χ′(1).

We can also state the cell problem using the equivalent formulation: given p ∈ Rn,
find the constant c(|p|) for which there exists a periodic solution wp to

(4.7) − |p|2w′′(z) + c(|p|)(w′(z) + 1)− g(w(z) + z) = 0.

In the following theorem we show that the cell problem has a (unique) solution.

Theorem 4.1. — For every p there exists a unique c(|p|) such that there exists a mono-
tone increasing solution χp to (4.6), which is also unique up to horizontal translations.
Moreover, the map |p| 7→ c(|p|) is continuous, increasing and positive,

(4.8) c(|p|) =


∫ 1

0

g(χp(z))dz =

∫ 1

0
g(s) ds∫ 1

0
(χ′p(z))

2dz
p 6= 0(∫ 1

0

1

g(s)
ds

)−1
p = 0.

In particular,

lim
|p|→0

c(|p|) =

(∫ 1

0

1

g(s)
ds

)−1
and lim

|p|→0
χp(z) = χ0(z) in C(R)(4.9)

lim
|p|→+∞

c(|p|) =

∫ 1

0

g(s) ds and lim
|p|→+∞

χp(z) = z in C1(R),(4.10)

with c(|p|) <
∫ 1

0
g(s) ds if g is nonconstant.

Proof. — The proof is divided in several steps.

Step 1: construction of a solution for p = 0. — For p = 0, we rewrite (4.6) as follows

(4.11)


c(0)χ′(z)− g(χ(z)) = 0 z ∈ (0, 1)

χ(1) = 1, χ(0) = 0

χ′(0) = χ′(1).

We integrate the equation between 0 and 1 and we get∫ 1

0

dχ

g(χ)
=

1

c(0)

which gives the representation formula (4.8), and the uniqueness of c(0). The solu-
tion χ0 is defined implicitly by the formula∫ χ0(z)

0

ds

g(s)
= z

∫ 1

0

ds

g(s)
.
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Step 2: construction of a solution for p 6= 0. — For |p| 6= 0, we perform the change of
variable χp(z) = −h (−z/|p|), so the cell problem (4.6) reads

h′′(z) + c(|p|)h′(z)− g(h(z)) = 0 z ∈ (−1/|p|, 0)

h(0) = 0, h (−1/|p|) = −1

h′ (−1/|p|) = h′(0),

where c(|p|) = c(|p|)/|p|, which is equivalent to

(4.12)


h′′(z) + c(|p|)h′(z)− g(h(z)) = 0 z ∈ (0, 1/|p|)
h(0) = 0, h (1/|p|) = 1

h′ (1/|p|) = h′(0).

Given c > 0 and a > 0, let ha,c be the unique solution to the ODE:

(4.13)


h′′a,c(z) + ch′a,c(z)− g(ha,c(z)) = 0 z > 0

ha,c(0) = 0

h′a,c(0) = a.

We multiply (4.13) by ecz and we estimate g from above and below with max g and
min g respectively. Integrating in (0, z) the two inequalities

h′′a,c(z)e
cz + ch′a,c(z)e

cz > ecz min g, h′′a,c(z)e
cz + ch′a,c(z)e

cz 6 ecz max g

we get the estimate

(4.14) 0 < ae−cz +
min g

c

(
1− e−cz

)
6 h′a,c(z) 6 ae

−cz +
max g

c

(
1− e−cz

)
.

Let z := sup{z : ha,c(z) < 1} ∈ (0,+∞). Notice that from (4.14) it follows that for c
small enough there holds h′a,c(z) > a for all z > 0, whereas for c big enough we have
h′a,c(z) < a for all z > 0. As a consequence, for all a > 0 there exists c(a) > 0 such
that

(4.15) min g

a
6 c(a) 6

max g

a
h′a,c(a) (z(a)) = a.

From (4.14) and (4.15) it also follows that

(4.16) min g

c(a)
6 h′a,c(a)(z) 6

max g

c(a)
∀ z.

Since
∫ z(a)
0

h′a,c(a)(z)dz = 1, (4.16) yields

c(a)

max g
6 z(a) 6

c(a)

min g
,

which gives

(4.17) min g

max g

1

a
6 z(a) 6

max g

min g

1

a
.

In particular, there holds

lim
a→0

z(a) = +∞ and lim
a→+∞

z(a) = 0.
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Hence for all |p| > 0 there exists at least one a(|p|) such that z(a(|p|)) = 1/|p|, and
the solution of (4.13) with a = a(|p|) and c = c(a(|p|)) is also a solution of (4.12).

Step 3: uniqueness of c(|p|) and χp. — The case p = 0 has already been considered
in Step 1. Assume by contradiction that there exists p ∈ Rn, p 6= 0, such that the
problem (4.7) admits two periodic solutions w1, w2, with constants c1 < c2. Let z
a minimum point of w1 − w2. Note that if w is a periodic solution to (4.7), then
w̃(z) = w(z + k) + k is still a periodic solution of the same equation for all k ∈ R. So
we can assume that w1(z) = w2(z) and w′1(z) = w′2(z).

At this minimum point, recalling that χ′(z) = w′(z) + 1 > 0, we have

0 = −|p|2w′′1 (z) + c1(w′1(z) + 1)− g(w1(z) + z)

6 −|p|2w′′2 (z) + c1(w′2(z) + 1)− g(w2(z) + z)

< −|p|2w′′2 (z) + c2(w′2(z) + 1)− g(w2(z) + z) = 0

which gives a contradiction and proves the uniqueness of c(|p|).
Let now w1, w2 be two solutions to (4.7), as above, with w1(z) = w2(z) and w′1(z) =

w′2(z) for some z. By uniqueness of solutions to the Cauchy problem associated to
(4.7), it follows that w1 = w2, which yields the uniqueness of χp up to horizontal
translations.

Step 4: properties of c(|p|). — Note that integrating the equation (4.6) in (0, 1)

we get c(|p|) =
∫ 1

0
g(χp(z))dz and from integrating (4.6) multiplied by χ′p we get

c(|p|)
∫ 1

0
(χ′p(z))

2dz =
∫ 1

0
g(s) ds, and then the representation formulas (4.8). In

particular, from c(p) =
∫ 1

0
g(χp(z))dz we deduce that c(p) > min g > 0. Moreover,

note that, if g is nonconstant, then χ′p(z) cannot be constant and∫ 1

0

(χ′p(z))
2dz >

(∫ 1

0

χ′p(z)dz

)2

= 1.

So, by (4.8), we deduce that c(p) <
∫ 1

0
g(s) ds for every p.

We prove continuity in 0, since continuity in p 6= 0 is much simpler and follows
the same argument. Let |pn| → 0, with |pn| 6= 0 for every n. So c(pn) is a bounded
sequence and, by (4.8), ∫ 1

0

|χ′pn(z)|2dz 6
∫ 1

0
g(s) ds

min g
.

We recall that χpn(z) ∈ [0, 1] for z ∈ [0, 1], so these estimates give an apriori bound
in H1(0, 1) for χpn . So, up to passing to a subsequence, we get that c(pn) → c̃ and
χpn → χ locally uniformly. Then, by stability of viscosity solutions, χ is a solution to
(4.11), and by uniqueness c̃ = c(0) and χ = χ0. Moreover, since both χpn(z)− z and
χ0(z)− z are periodic functions such that their difference converges locally uniformly
to 0, then we can conclude using periodicity that the convergence is uniform on R.
This gives (4.9).

Now we prove (4.10). Reasoning as above, we get that c(|p|) and χ′p are equibounded
respectively in R and in L2(0, 1), uniformly with respect to |p|. By Equation (4.6) we
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get χ′′p = (c(|p|)χ′ − g(χ))/|p|2, so the uniform L2 bound on χ′p implies a uniform L2

bound on χ′′p , uniform in |p| > 1. Eventually passing to a subsequence, c(|p|) → c,
χp → χ and χ′p → χ′ locally uniformly as |p| → +∞. By stability of viscosity solutions,
we get that χ solves χ′′(z) = 0, with χ(0) = 0, χ(1) = 1. So χ(z) = z. Moreover, since
χp(z)− z is a periodic function converging locally uniformly in C1 to 0, we get that
actually it converges uniformly in C1 to 0 in the whole R. Therefore g(χp(z))→ g(z)

uniformly and then we conclude, using (4.8), that

lim
|p|→+∞

c(|p|) = lim
|p|→+∞

∫ 1

0

g(χp(z))dz =

∫ 1

0

g(s) ds.

Finally we prove monotonicity of c(|p|). Assume by contradiction that there exist
p1, p2 ∈ Rn, |p1| > |p2|, such that c(|p1|) < c(|p2|). Let w1, w2 two solutions to (4.7)
associated to p1, p2. Let z a minimum point of w1 − w2, reasoning as in Step 3, we
can assume w1(z) = w2(z). Then, at this minimum point,

0 = −|p1|2w′′1 (z) + c(|p1|)(w′1(z) + 1)− g(w1(z) + z)

< −|p2|2w′′2 (z) + c(|p2|)(w′2(z) + 1)− g(w2(z) + z) = 0,

which gives a contradiction. Therefore c(|p1|) > c(|p2|). �

Remark 4.2. — We expect that the same result holds also for
∫ 1

0
g(s) ds > 0. In this

case though, the ODE arguments are much more involved. Observe that, if g changes
sign, then necessarily we have c(0) = 0 and χ0(z) ≡ s0 for z ∈ (0, 1), where s0 ∈ [0, 1]

is such that g(s0) = 0.
In the limiting case that

∫ 1

0
g(s) ds = 0, the same cell problem has been solved

in [15], see also [1, Prop. 1.3], showing that there exists a solution to (4.6) with
c(|p|) ≡ 0 for every p.

4.2. Case α 6= 1, the weak and strong diffusion regimes. — In this section we
analyze the solution of the cell problem (4.6) in the case α 6= 1.

The solution to the cell problem is an easy corollary to Theorem 4.1. Moreover,
we can also compute the asymptotic behavior as ε → 0 to the solutions to the cell
problem.

Proposition 4.3. — Let α 6= 1 and ε > 0. Then there exists a unique constant cεα(|p|)
such that (4.3) admits a solution χεp, which is monotone increasing, and unique up to
horizontal translations. Moreover,

(i) if α > 1 then we have that

lim
ε→0+

cεα(|p|) = c+(|p|) :=

(∫ 1

0

g−1(s)ds

)−1
∀ p ∈ Rn

and χεp → χ0 uniformly in C(R), for every p, where χ0 is the solution to (4.11);
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(ii) if α < 1 then we have that

lim
ε→0+

cεα(|p|) = c−(|p|) :=


(∫ 1

0

g−1(s)ds

)−1
p = 0∫ 1

0

g(s) ds p 6= 0

and, for p 6= 0, χεp(z)→ z uniformly in C1(R), whereas χε0 = χ0.

Proof. — Note that (4.3) coincides with the cell problem (4.6) associated to pε =

pε(α−1)/2. Therefore by uniqueness of c proved in Theorem 4.1, for every ε > 0 and
every α 6= 1, there exists a unique cεα(|p|) = c(|p|ε(α−1)/2), such that there exists a
solution χεp to (4.3). Note that χεp = χpε(α−1)/2 .

Moreover, if α > 1, since |p|ε(α−1)/2 → 0 for every p, then by (4.9), cεα(|p|)→ c(0)

and χεp → χ0 uniformly.
If α < 1, then for p 6= 0, |p|ε(1−α)/2 → +∞ and then, by (4.10), cεα(|p|)→

∫ 1

0
g(s) ds

and χεp(z)→ z uniformly in C1 for p 6= 0 as ε→ 0. �

5. Convergence of solutions

In this section we study the asymptotic limit as ε→ 0 of the solutions to (3.2) in
the different regimes, α = 1, α > 1, 0 < α < 1 and α = 0.

According to Proposition 3.1, the solutions uεα to (3.2) converge locally uniformly,
up to subsequences, to a Lipschitz function u. Our aim is to show that the limit u is
a viscosity solution of an effective equation, given by ut − c(|∇u|) = 0. The effective
operator has been defined in Theorem 4.1 for α = 1, and it coincides with the con-
tinuous function c(|p|). In the case α 6= 1, the effective operator has been defined in
Proposition 4.3. It coincides in the case α > 1 with the constant value

c+(|p|) ≡
(∫ 1

0

(g(s))−1ds

)−1
,

whereas in the case 0 < α < 1, it is c−(|p|), which coincides with
∫ 1

0
g for p 6= 0, and

with
(∫ 1

0
(g(s))−1ds

)−1 for p = 0. We consider also the limiting case α = 0, where the
effective equation is given by ut − F (∇u,∇2u) = 0.

We start with a preliminary estimate which follows from the comparison principle
for (3.2) .

Proposition 5.1. — Let uεα be the solution to (3.2) with α > 0. Then every uniform
limit u of uεα satisfies

inf
Rn
u0 + t

(∫ 1

0

1

g(s)
ds

)−1
6 u(x, t) 6 sup

Rn
u0 + t

(∫ 1

0

1

g(s)
ds

)−1
where infRn u0 = −∞ if u0 is not bounded from below and supRn u0 = +∞ if u0 is
not bounded from above.

J.É.P. — M., 2017, tome 4



646 A. Cesaroni, N. Dirr & M. Novaga

Proof. — It is enough to prove the result when u0 ≡ k, for some constant k ∈ R. The
thesis then follows by the comparison principle for (3.2).

Recall that c(0) =
(∫ 1

0
1
g(s) ds

)−1 and observe that, if χ0 is the solutions to (4.11),
the functions

vε(x, t) = εχ0 (tc(0)/ε) + ε
[
k/ε
]
− ε and V ε(x, t) = εχ0 (tc(0)/ε) + ε

[
k/ε
]

are respectively a sub and a supersolution to (3.2), for every α > 0. So, by comparison

vε(x, t) 6 uεα(x, t) 6 V ε(x, t).

Letting ε→ 0 and recalling that χ0(z)/z → 1 as z → +∞, we get the conclusion. �

5.1. Case α = 1

Theorem 5.2. — Let uε be the solution to (3.2) for ε > 0 and α = 1. Then uε

converges as ε → 0 locally uniformly to the unique Lipschitz continuous viscosity
solution to

(5.1)
{
ut − c(|∇u|) = 0,

u(x, 0) = u0(x).

Proof. — By Proposition 3.1, up to passing to subsequences uε → u locally uniformly,
where u is a Lipschitz continuous function which satisfies (3.4). So, if we prove that u
is a solution to (5.1), we conclude using uniqueness of solutions to (5.1) as stated in
Proposition 3.2 the convergence of the whole sequence uε to u.

We show that u is a subsolution to the effective equation in (5.1), the proof of the
supersolution property being completely analogous.

Let (x0, t0) and φ a smooth function such that u − φ has a strict maximum at
(x0, t0) and u(x0, t0) = φ(x0, t0). Let R > 0 and let B the closed ball centered at
(x0, t0) and with radius R. Define a family of perturbed test functions, parametrized
by a parameter s ∈ R, as follows:

φεs(x, t) = εχp

(φ(x, t)

ε
+ s
)

where χp is a solution to (4.6) with p = ∇φ(x0, t0). By the properties of χp,
φεs+1(x, t) = φεs(x, t) + ε. Note that φεs → φ as ε → 0, locally uniformly in x, t, s. So
for every s there exists a sequence (xεs, t

ε
s) → (x0, t0) as ε → 0 such that (xεs, t

ε
s) is a

maximum point for uε − φεs in B and (uε − φεs)(xεs, tεs) → u(x0, t0) − φ(x0, t0) = 0.
We claim that for every ε > 0 we can choose sε such that (uε−φεsε)(xεsε , tεsε) = 0. In-
deed, letm(s) = maxB(uε−φεs). Note thatm(s) is continuous andm(s+k) = m(s)−εk
for every k ∈ Z. Therefore by continuity there exists sε such that m(sε) = 0.

From now on we fix the test function φε = φεsε and the maximum point (xεsε , t
ε
sε) =

(xε, tε). So, uε(xε, tε) = φε(xε, tε), uε 6 φε in B and (xε, tε) → (x0, t0) as ε → 0.
Indeed, let s̃ε ∈ [0, 1) be the fractional part of sε, then by the properties of χp
we get that (xεs̃ε , t

ε
s̃ε) = (xεsε , t

ε
sε). So the conclusion follows by the locally uniform

convergence of φεsε to φ.
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Let us denote zε = (φ(xε, tε)/ε) + sε, so that uε(xε, tε) = εχp(z
ε). We compute

uεt (x
ε, tε) = φεt (x

ε, tε) = χ′p(zε)φt(x
ε, tε)

and

−ε∆uε(xε, tε) > −ε∆φε(xε, tε) = −εχ′p(zε)∆φ(xε, tε)− χ′′p(zε)|∇φ(xε, tε)|2.
Plugging these quantities into Equation (3.2) computed at (xε, tε), we obtain

0 = uεt − ε∆uε − g (uε/ε) > χ′p(z
ε)φt(x

ε, tε)− εχ′p(zε)∆φ(xε, tε)

− χ′′p(zε)|∇φ(xε, tε)|2 − g(χp(z
ε)).

Using the fact that χp solves (4.6), we get

0 > χ′p(zε)(φt(x0, t0)− c(|∇φ(x0, t0)|))
− χ′p(zε) (φt(x0, t0)− φt(xε, tε) + ε∆φ(xε, tε))(5.2)
− χ′′p(zε)

(
|∇φ(xε, tε)|2 − |∇φ(x0, t0)|2

)
.(5.3)

Computing (4.6) at minima and maxima of χ′p we deduce that

(5.4) χ′p(z) ∈
[

min g∫ 1

0
g(s) ds

,
max g

min g

]
∀ p, ∀ z.

Moreover, from Equation (4.6), we deduce that also

(5.5) ‖χ′′p‖∞ 6
max g −min g

|p|2 if p 6= 0 and ‖χ′′0‖∞ 6
‖g‖∞‖g′‖∞

c(0)2
.

Therefore, as ε→ 0, we get that the terms in (5.2), (5.3) go to zero by the smoothness
of φ, and we are left with φt(x0, t0)− c(|∇φ(x0, t0)|) 6 0. �

5.2. Case α > 1

Theorem 5.3. — Let uεα be the solution to (3.2) with α > 1. Then

lim
ε→0

uεα(x, t) = u0(x) + t

(∫ 1

0

1

g(s)
ds

)−1
locally uniformly.

Proof. — The argument is similar (in fact easier) of that in the proof of Theorem 5.2.
We sketch it briefly. Up to subsequences, we know that uεα is converging locally uni-
formly to some function u (eventually depending on the subsequence).

We show that ut 6
(∫ 1

0
1
g(s) ds

)−1 in the viscosity sense. A completely analo-
gous argument shows that ut >

(∫ 1

0
1
g(s) ds

)−1 in the viscosity sense. Recalling that
u(x, 0) = u0(x), we conclude that therefore u(x, t) = u0(x) + t

(∫ 1

0
1
g(s) ds

)−1.
Let (x0, t0) and φ a smooth function such that u − φ has a strict maximum at

(x0, t0) and u(x0, t0) = φ(x0, t0). Let R > 0 and let B the closed ball centered at
(x0, t0) and with radius R. We define a perturbed test function as follows:

φε(x, t) = εχ0

(φ(x, t)

ε
+ s
)
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where χ0 is the solution to (4.11) and the parameter s is chosen as in the proof
of Theorem 5.2. So, (xε, tε) is a maximum point for uε − φε in B and uε(xε, tε) =

φε(xε, tε), uε 6 φε in B and (xε, tε)→ (x0, t0) as ε→ 0.
Let us denote zε = (φ(xε, tε)/ε)+s, so that uε(xε, tε) = εχ0(zε). So, using the fact

that (xε, tε) is a maximum point for uε − φε, we plug φε into (3.2) and we obtain

0 = uεt − εα∆uε − g (uε/ε)

> χ′0φt(x
ε, tε)− εαχ′0∆φ(xε, tε)− εα−1χ′′0 |∇φ(xε, tε)|2 − g(χ0).

By regularity of φ and using the estimates (5.4), (5.5), we get that, as ε → 0,
εαχ′0∆φ(xε, tε) → 0 and εα−1χ′′0 |∇φ(xε, tε)|2 → 0. So, we conclude recalling that
χ′0 > 0 and that χ0 solves (4.11) that

0 > φt(x0, t0)− c(0) +O(ε). �

5.3. Case 0 < α < 1. — In this case, the limit differential operator c−(|p|) is not
continuous, but just lower semicontinuous. In particular, the lower semicontinuous
envelope of c− coincides with the function itself, whereas the upper semicontinuous
envelope is the constant function c−(|p|)∗ ≡

∫ 1

0
g(s) ds.

We now show that every limit of uεα is a viscosity solution of the limit problem
(1.4). According to the definition recalled in Section 2, this means the following. If φ
is a smooth test function such that u(x0, t0) = φ(x0, t0) and u 6 φ, then φt(x0, t0) 6∫ 1

0
g(s) ds. If, on the other hand, u > φ, then φt(x0, t0) > c−(|∇φ(x0, t0)|), so in

particular φt(x0, t0) >
∫ 1

0
g(s) ds at points where ∇φ(x0, t0) 6= 0 and φt(x0, t0) >

c−(0) = (
∫ 1

0
g−1(s)ds)−1 at points where ∇φ(x0, t0) = 0.

We recall that, due to the discontinuity of the operator, differently to the case
α > 1, viscosity solutions to (1.4) are in general not unique.

Theorem 5.4. — Let uεα be the solution to (3.2) with 0 < α < 1. Every locally uniform
limit u of uεα is a Lipschitz continuous function, which satisfies (3.4), and solves in
the viscosity sense the problem{

ut − c−(∇u) = 0 in Rn × (0 +∞)

u(x, 0) = u0(x) in Rn.

Moreover,
(i) u satisfies in the viscosity sense

ut =

∫ 1

0

g(s) ds

in every open set Ω ⊂ Rn × [0,+∞), such that ∇u 6= 0 a.e. in Ω.
(ii) u is a viscosity subsolution to

ut =

(∫ 1

0

1

g(s)
ds

)−1
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at every point (x0, t0) such that (0, X, λ) ∈ J+u(x0, t0) with X < 0 in the sense of
matrices.

(iii) u is a viscosity supersolution to

ut =

∫ 1

0

g(s) ds

at every point (x0, t0) such that (0, X, λ) ∈ J−u(x0, t0), and there exist η ∈ Rnr {0},
δ > 0, such that ηtXη > δ|η|2.

Proof. — The fact that, up to a subsequence, uεα converges locally uniformly to a
Lipschitz function u is proved in Proposition 3.1. Since u is Lipschitz continuous,
then it is differentiable almost everywhere.

We prove now that u is a viscosity solution to the limit problem. We show the
statement for supersolutions, since for subsolutions is completely analogous.

Fix φ a smooth test function such that u(x0, t0) = φ(x0, t0) and u < φ elsewhere.
We consider two cases, depending on the value of ∇φ(x0, t0).

Case 1:∇φ(x0, t0) = p 6= 0. — In this case we shall prove that φt(x0, t0) >
∫ 1

0
g(s) ds.

Define pε = ε(α−1)/2p and χpε the solution to (4.6), with c(ε(α−1)/2|p|). We define
the perturbed test function as in the proof of Theorem 5.2:

φε(x, t) = εχpε
(φ(x, t)

ε
+ s
)
.

Since χpε(z) converges uniformly to z as ε→ 0 by Proposition 4.3, we get that φε → φ

locally uniformly for every s. Reasoning as in the proof of Theorem 5.2, we get that
there exist sε, xε tε such that uε(xε, tε) = φε(xε, tε), uε > φε and (xε, tε) → (x0, t0)

as ε→ 0. So, plugging φε into Equation (3.2) computed at (xε, tε) we obtain

0 = uεt − εα∆uε − g (uε/ε) 6 χ′pεφt − εαχ′pε∆φ− χ′′pεεα−1|∇φ|2 − g(χpε).

Using the fact that χpε solves (4.6), we get

0 6 χ′pε

(
φt(x0, t0)−

∫ 1

0

g(s) ds

)
− χ′pε

(
c(ε(α−1)/2|p|)−

∫ 1

0

g(s) ds

)
− χ′pε (φt(x0, t0)− φt(xε, tε) + εα∆φ(xε, tε))

− χ′′pεεα−1
(
|∇φ(xε, tε)|2 − |∇φ(x0, t0)|2

)
.

Using (5.4), (5.5), (4.10) and the regularity of φ, letting ε → 0 we conclude that
φt(x0, t0) >

∫ 1

0
g(s) ds.

Case 2:∇φ(x0, t0) = 0. — In this case we shall prove that φt(x0, t0)>
(∫ 1

0
g−1(s)ds

)−1.
As in Case 1, we let

φε(x, t) = εχp

(φ(x, t)

ε
+ sε

)
,

where p ∈ Rn will be determined later. As above, there exist sε, xε tε, depending
continuously on p, such that uε(xε, tε) = φε(xε, tε), uε > φε and (xε, tε)→ (x0, t0) as
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ε→ 0. Plugging φε into (3.2), evaluating the equation at (xε, tε), and recalling (4.6)
we obtain

0 6 χ′pφt(x
ε, tε)− εαχ′p∆φ(xε, tε)− χ′′pεα−1|∇φ(xε, tε)|2 − g(χp)

= χ′p (φt(x
ε, tε)− c(|p|))− εαχ′p∆φ(xε, tε)− χ′′p

(
εα−1|∇φ(xε, tε)|2 − |p|2

)
.

We now consider two subcases:

Case 2 a: for p = 0 we have εα−1|∇φ(xε, tε)|2 → 0, up to a subsequence as ε→ 0

We choose p = 0 and we get

0 6 χ′0 (φt(x
ε, tε)− c(0))− εαχ′0∆φ(xε, tε)− χ′′0εα−1|∇φ(xε, tε)|2.

Using the assumption and passing to the limit as ε→ 0, we then get φt(x0, t0) > c(0).

Case 2 b: for p = 0 we have εα−1|∇φ(xε, tε)|2 > δ, for some δ > 0 and ε small enough

For p 6= 0 we have

0 6 χ′p (φt(x
ε, tε)− c(|p|))− εαχ′p∆φ(xε, tε)− χ′′p |p|2

(εα−1|∇φ(xε, tε)|2
|p|2 − 1

)
.

Notice that, recalling our assumption, we have

lim
|p|→0

εα−1|∇φ(xε, tε)|2
|p|2 = +∞ and lim

|p|→∞

εα−1|∇φ(xε, tε)|2
|p|2 = 0.

Then, by a continuity argument, there exists pε 6=0 such that εα−1|∇φ(xε, tε)|2 = |pε|2.
For p = pε it then follows

0 6 χ′p (φt(x
ε, tε)− c(|pε|))− εαχ′p∆φ(xε, tε),

which gives φt(x0, t0) > c(0), in the limit ε → 0, recalling that c(|p|) > c(0) for any
p ∈ Rn.

We now prove assertions (i), (ii), (iii).
Proof of (i). First of all observe that repeating the proof of Case 1, we get that

that ut =
∫ 1

0
g(s) ds almost everywhere in Ω. If this is true, then ut =

∫ 1

0
g(s) ds

in the viscosity sense in Ω. Indeed, let ρδ be a sequence of standard mollifiers. So
uδ = u ∗ ρδ → u uniformly and (uδ)t =

∫
(ut ∗ ρδ) =

∫ 1

0
g(s) ds everywhere in Ω. The

conclusion then follows from the stability of viscosity solutions.

Proof of (ii). — Let φ such that u − φ has a strict maximum at (x0, t0), with
∇φ(x0, t0) = 0, and ∇2φ(x0, t0) < 0 in the sense of matrices. Then we show that
φt(x0, t0) 6 (

∫ 1

0
1/g)−1.

We define the function

φ̃(t) = u(x0, t0) + φt(x0, t0)(t− t0) + C(t− t0)2.

Choosing appropriately C and using the fact that∇2φ(x0, t0) < 0, there exists r, τ > 0

such that u(x, t) 6 φ(x, t) 6 φ̃(t) for every (x, t) ∈ B(x0, r)× (t0− τ, t0 + τ). Observe
also that u(x0, t0) = φ̃(t0) and φ̃t(t0) = φt(x0, t0).
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As above, we let

φε(t) = εχ0

( φ̃(t)

ε
+ s
)
,

where χ0 is the solution to (4.11). Note that by the properties of χ0, we have
φε(t)→ φ̃(t) locally uniformly as ε→ 0. As in the proof of Theorem 5.2, we choose s
such that there exists (xε, tε)→ (x0, t0), with uε(xε, tε) = φε(tε) and uε 6 φε.

Plugging φε into Equation (3.2) computed at (xε, tε), we get

0 = uεt − εα∆uε − g (uε/ε) > (φε)t − g (φε/ε) = φ̃t(t0)χ′0 − g(χ0) = χ′0(φ̃t(t0)− c(0))

from which we conclude.

Proof of (iii). — Let φ such that u − φ has a strict minimum at (x0, t0), with
∇φ(x0, t0) = 0, and ηt∇2φ(x0, t0)η > δ|η|2. We shall show that φt(x0, t0) >

∫ 1

0
g(s) ds.

Let V be a neighborhood of (x0, t0) such that ηt∇2φ(x, t)η > δ > 0 for every
(x, t) ∈ V . Let φh(x, t) = φ(x+ hη, t). Observe that φh → φ uniformly as h→ 0. Let
(xh, th) a minimum point of u− φh in V . Then, eventually passing to a subsequence,
we have (xh, th)→ (x0, t0).

Observe that at points (x, t) where ∇φh(x, t) = ∇φ(x + hη, t) = 0, then u(x, t) −
φh(x, t) > 0. Indeed

u(x, t)− φh(x, t) > φ(x, t)− φ(x+ hη, t) =
1

2
h2ηt∇2φ(x+ hη, t)η + o(h2) > 0.

Since for h sufficiently small

(u− φh)(xh, th) 6 u(x0, t0)− φh(x0, t0) = φ(x0, t0)− φ(x0 + hη, t0)

= −1

2
h2ηt∇2φ(x0, t0)η + o(h2) < 0,

it follows that ∇φh(xh, th) 6= 0 and u− φh has a minimum at (xh, th). Repeating the
proof of Case 1, we get that φht (xh, th) = φt(xh + hη, th) >

∫ 1

0
g. Letting h → 0 we

obtain the result. �

From Theorem 5.4 and Corollary 5.1 we deduce immediately the following esti-
mates.

Corollary 5.5. — Every uniform limit u of uεα satisfies

u0(x) + t

(∫ 1

0

1

g(s)
ds

)−1
6 u(x, t)

6 min

(
u0(x) + t

∫ 1

0

g(s) ds, sup
Rn

u0 + t

(∫ 1

0

1

g(s)
ds

)−1)
.

We now analyze more in detail the behavior of the limit function for some classes
of initial data.

Corollary 5.6. — Assume that either u0 is convex and nonconstant or u0 is un-
bounded from above and there exists η ∈ Rn, with |η| = 1, such that

(5.6) ∇u0(x) · η > δ for some δ > 0, and for a.e. x ∈ Rn.
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Then the solutions uεα converge (locally) uniformly to the function

(5.7) u(x, t) = u0(x) + t

∫ 1

0

g(s) ds.

Proof. — Assume first that u0 satisfies (5.6). By Proposition 3.1, every uniform limit u
to uεα satisfies (5.6). In particular, {(x, t) | ∇u(x, t) 6= 0} = Rn, so that by Theo-
rem 5.4 (i), we get (5.7).

If u0 is convex and nonconstant then it is the supremum of all the linear functions
va,b(x) = a · x + b such that va,b 6 u0 and a 6= 0. Notice that, letting ua,b be the
a uniform limit of the solutions to (3.2) with initial datum va,b with a 6= 0, by the
previous discussion we know that ua,b(x, t) = a · x + b + t

∫ 1

0
g(s) ds, for all x ∈ Rn

and t > 0. As a consequence, by the comparison principle we get

u(x, t) > sup
a,b: va,b6u0

ua,b(x, t) = sup
a,b: va,b6u0

(a·x+b)+t

∫ 1

0

g(s) ds = u0(x)+t

∫ 1

0

g(s) ds.

The opposite inequality follows from Corollary 5.5. �

Proposition 5.7. — Let u0(x) = −C|x| with C > 0 and let uεα be the solutions to
(3.2). Then uεα converges locally uniformly to the function

(5.8) v(x, t) := min

[
u0(x) + t

∫ 1

0

g(s) ds, t

(∫ 1

0

1

g(s)
ds

)−1]
.

Proof. — Letting u be a limit of uεα given by Proposition 3.1, we want to show that
u = v. By Corollary 5.5 we know that u 6 v, so we are left to prove the opposite
inequality.

First of all, we observe that, since u0 is radially symmetric, then also uεα(·, t) is ra-
dially symmetric for every t, and then also u(·, t). So, we can write u(x, t) = f(|x|, t),
where f(r, t) : [0,+∞) × [0,+∞) → R is a Lipschitz continuous function, with Lips-
chitz constant in r less or equal to C. By Theorem 5.4,

ft ∈
[(∫ 1

0

1

g(s)
ds

)−1
,

∫ 1

0

g(s) ds

]
for a.e. (r, t) and ft =

∫ 1

0

g(s) ds if fr 6= 0.

By Corollary 5.5 we also have that

f(0, t) = u(0, t) = t

(∫ 1

0

1

g(s)
ds

)−1
for every t > 0.

Let f̃(r, t) := minr′6r f(r′, t) be the largest nonincreasing function less or equal
to f . Notice that f̃(r, 0) = −Cr, and moreover f̃ satisfies the same conditions as f ,
that is, there holds

f̃r ∈ [−C, 0], f̃t ∈
[(∫ 1

0

1

g(s)
ds

)−1
,

∫ 1

0

g(s) ds

]
for a.e. (r, t)

f̃t =

∫ 1

0

g(s) ds if f̃r < 0, and f̃(0, t) = t

(∫ 1

0

1

g(s)
ds

)−1
for every t > 0.and
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Since f̃ 6 f it is enough to show that

(5.9) f̃(r, t) > min

[
−Cr + t

∫ 1

0

g(s) ds, t

(∫ 1

0

1

g(s)
ds

)−1]
∀ r, t > 0.

For t > 0 we let

h(·, t) :

(
−∞, t

(∫ 1

0

1

g(s)
ds

)−1]
−→ [0,+∞)

be the inverse of f̃(·, t), that is,

f̃(h(u, t), t) = u for a.e. u ∈
(
−∞, t

(∫ 1

0

1

g(s)
ds

)−1]
.

In particular, h(u, 0) = −u/C. Then h is nonincreasing in u, hu(u, t) 6 −1/C a.e.,
and

ht(u, t) = −
(∫ 1

0

g(s) ds

)
hu(u, t) >

(∫ 1

0

g(s) ds

)/
C for a.e. (u, t).

Let also h̃(u, t) : (−∞, 0]× [0,+∞)→ [0,+∞) be defined as

h̃(u, t) := h

(
u+ t

(∫ 1

0

1

g(s)
ds

)−1
, t

)
,

so that there holds h̃(u, 0) = −u/C, h̃u(u, t) 6 −1/C and

h̃t(u, t) =

[(∫ 1

0

1

g(s)
ds

)−1
−
∫ 1

0

g(s) ds

]
hu(u, t)

>
1

C

[∫ 1

0

g(s) ds−
(∫ 1

0

1

g(s)
ds

)−1]
for a.e. (u, t). As a consequence, we get

h̃(u, t) > − u
C

+
t

C

[∫ 1

0

g(s) ds−
(∫ 1

0

1

g(s)
ds

)−1]
∀u, t > 0.

This, by definition, reads

Ch(u, t) > −u+ t

∫ 1

0

g(s) ds = −f̃(h(u, t), t) + t

∫ 1

0

g(s) ds,

which is equivalent to (5.9). This concludes the proof. �

Remark 5.8. — It is easy to check that the same conclusion of Proposition 5.7 applies
to the case in which u0(x) = φ(|x − x0|), for some x0 ∈ Rn, with φ : [0,+∞) →
[0,+∞) is a Lipschitz nonincreasing function. When n = 1, it also applies to any
Lipschitz initial datum such that u0 is nondecreasing on (−∞, x0] and nonincreasing
on [x0,+∞), for some x0 ∈ R.

From Proposition 5.7, Corollary 5.5 and the comparison principle, we get the fol-
lowing convergence result.
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Corollary 5.9. — Let u0(x) be a Lipschitz function bounded from above, let uεα be
the solutions to (3.2) and let u be a limit of uεα. Then

lim
t→+∞

[
u(x, t)− sup

Rn
u0 − t

(∫ 1

0

1

g(s)
ds

)−1]
= 0 locally uniformly.

Proof. — Let C = ‖∇u0‖∞. Fix δ > 0 and choose xδ ∈ Rn such that u0(xδ) >
supRn u0 − δ. Up to a translation, we can assume xδ = 0. Then u0(x) > supu0 − δ −
C|x|, therefore by Proposition 5.7 and by the comparison principle we get that

u(x, t) > min

[
sup
Rn

u0 − δ − C|x|+ t

∫ 1

0

g(s) ds, sup
Rn

u0 − δ + t

(∫ 1

0

1

g(s)
ds

)−1]
.

From this we deduce that for every compact set K ⊂ Rn, there exists tK such that

(5.10) u(x, t) > sup
Rn

u0 − δ + t

(∫ 1

0

1

g(s)
ds

)−1
∀x ∈ K, t > tK .

Recall that by Corollary 5.5, we have that

u(x, t) 6 sup
Rn

u0 + t

(∫ 1

0

1

g(s)
ds

)−1
.

So, we conclude by (5.10) and the arbitrariness of δ > 0. �

The one-dimensional case. — In the one-dimensional case n = 1, we provide a com-
plete convergence result.

We first introduce the following class of initial data, which we will denote by L .
A Lipschitz function u0 belongs to L if there exists a sequence of points {xi}i∈I ,
with I ⊂ Z, such that xi < xi+1 for all i ∈ I, the sequence xi has no accumulation
points in R, and u0 is monotone on all the segments of the form [xi, xi+1], with
u(xi) 6= u(xi+1). Moreover, if u0 is nonincreasing on [xi, xi+1], then it is nondecreasing
on [xi+1, xi+2], and viceversa. If I is bounded from below (resp. from above), we also
require that u0 is monotone on the half-line (−∞,min I] (resp. [max I,+∞)).

We start by proving the whole convergence for solutions uεα to (3.2) with initial
data belonging to L . Given u0 ∈ L , we let M ⊂ R ∪ {±∞} be the set of points xi
such that u0(xi) > max(u0(xi−1), u0(xi+1)). If I is bounded from below (resp. from
above) and u0 is decreasing on (−∞,min I] (resp. increasing on [max I,+∞)), we also
add −∞ (resp. +∞) to M , and we set u0(−∞) := sup(−∞,min I) u0 (resp. u0(+∞) :=

sup(max I,+∞) u0).
Setting for simplicity xmin I−1 := −∞ and xmax I+1 := +∞, for x ∈M we let

Ix :=


[xi−1, xi+1] if x = xi for some i ∈ I,
(−∞, xmin I ] if x = −∞,
[xmax I ,+∞) if x = +∞.
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For x ∈M we also let

Tx :=



u0(xi)−max(u0(xi−1), u0(xi+1))∫ 1

0
g(s) ds−

(∫ 1

0
1/g(s) ds

)−1 if x = xi for some i ∈ I,

u0(−∞)− u0(xmin I)∫ 1

0
g(s) ds−

(∫ 1

0
1/g(s) ds

)−1 if x = −∞,

u0(+∞)− u0(xmax I)∫ 1

0
g(s) ds−

(∫ 1

0
1/g(s) ds

)−1 if x = +∞.

Notice that Tx > 0 for all x ∈M .

Proposition 5.10. — Let n = 1 and let u0 ∈ L . Then uεα converges locally uniformly
to a function u satisfying

(5.11) u(x, t) = min

[
u0(x) + t

∫ 1

0

g(s) ds, u0(x) + t

(∫ 1

0

1

g(s)
ds

)−1]
for (x, t) ∈ Ix × [0, Tx] and for all x ∈M .

Proof. — Let C be the Lipschitz constant of u0. For x ∈M we let u0,x be defined as

u0,x(x) :=


u0(xi−1)− Cxi−1 + Cx for x 6 xi−1
u0(x) for x ∈ [xi−1, xi+1]

u0(xi+1) + Cxi+1 − Cx for x > xi+1

if x = xi for some i,

u0,x(x) :=

{
u0(x) for x ∈ (−∞, xmin I ]

u0(xmin I) + Cxmin I − Cx for x > xmin I

if x = −∞,

u0,x(x) :=

{
u0(xmax I)− Cxmax I + Cx for x 6 xmax I

u0(x) for x ∈ [xmax I ,+∞)
if x = +∞.

By construction, u0,x 6 u0 for every x ∈ M , and u0(x) = supx∈M u0,x(x). Then
by comparison we get that uεα > uεα,x, where uεα,x is the solution to (3.2) with initial
datum u0,x. By Proposition 5.7 and Remark 5.8 we know that

lim
ε→0

uεα,x(x, t) = min

[
u0,x(x) + t

∫ 1

0

g(s) ds, u0(x) + t

(∫ 1

0

1

g(s)
ds

)−1]
locally uniformly. Therefore, letting u be a limit of uεα, we conclude that

(5.12) u(x, t) > max
x∈M

uεα,x ∀ (x, t) ∈ R× [0,+∞).

On the other hand, reasoning as in Corollary 5.5, for all x ∈M we also get

(5.13) u(x, t) 6 min

[
u0,x(x) + t

∫ 1

0

g(s) ds, u0(x) + t

(∫ 1

0

1

g(s)
ds

)−1]
for all (x, t) ∈ Ix × [0, Tx], which gives (5.11).

J.É.P. — M., 2017, tome 4



656 A. Cesaroni, N. Dirr & M. Novaga

x1 x2 x3

u0(·)

u(·, t1)

u(·, t2)

u(·, t3)

Figure 5.1. Example of the solution (5.11) selected as ε → 0, with
initial datum u0.

Indeed, by Corollary 5.5 we know that

(5.14) u(x, t) 6 u0(x) + t

∫ 1

0

g(s) ds = u0,x(x) + t

∫ 1

0

g(s) ds

for all (x, t) ∈ Ix × [0, Tx]. By the comparison principle, it follows that

(5.15) u(x, t) 6 u0(x) + t

(∫ 1

0

1

g(s)
ds

)−1
∀ (x, t) ∈ Ix × [0, Tx].

Inequality (5.13) then follows from (5.14) and (5.15), and the proof is concluded. �

Given δ > 0, we denote by Lδ ⊂ L the class of functions u0 ∈ L such that
(i) Tx > δ for any x ∈M ;
(ii) for any x, y ∈M either Tx = Ty or |Tx − Ty| > δ.
Notice that, for u0 ∈ Lδ, there exists an increasing sequence of times Ti, with

T0 = 0, such that Ti+1 > Ti + δ and for any x ∈ M there exist an index i(x) such
that Tx = Ti(x).

Proposition 5.10 enables us to obtain the uniqueness of the limit function u for
initial data in Lδ.

Corollary 5.11. — Let n = 1 and let u0 ∈ Lδ for some δ > 0. Then uεα converges
locally uniformly in R× [0,+∞) to a unique function u.

Proof. — For (x, t) ∈ R× [0, T1] the result follows directly from Propositions 3.1 and
5.10. Then, it is enough to observe that the function u(x, T1), given by the right-
hand side in (5.11), still belongs to Lδ, possibly with a smaller set M . Hence we can
iteratively apply Proposition 5.10 on all the sets of the form R× [Ti, Ti+1], and obtain
the thesis. �

We now show an analogous result for general Lipschitz continuous initial data.

Theorem 5.12. — Let n = 1, let u0 be a Lipschitz function, and let uεα be the solution
to (3.2). Then uεα converges locally uniformly to a unique function u.

Proof. — By Corollary 5.11 the result is true if u0 ∈ Lδ for some δ > 0. Fix now
a Lipschitz function u0, with Lipschitz constant C > 0. We observe that for any
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δ > 0 it is possible to construct a function uδ, with Lipschitz constant C, such that
‖u0 − uδ‖∞ 6 2δ and uδ ∈ Lδ′ with δ′ = δ/(

∫ 1

0
g(s) ds − (

∫ 1

0
1/g(s) ds)−1). Indeed,

fix δ > 0 and let xn = nδ/C, for n ∈ Z. We then define uδ as a piecewise linear
function with slope ±C on each interval of the form [xn−1, xn], satisfying u0(xn)−δ 6
uδ(xn) 6 u0(xn) + δ for every n ∈ Z. This in turn implies that uδ ∈ Lδ′ , and
uδ(x)− 2δ 6 u0(x) 6 uδ(x) + 2δ for every x ∈ R.

Let now uεα,δ, uεα,δ and uεα be the solutions to (3.2) with initial data uδ+2δ, uδ−2δ

and u0 respectively. By the comparison principle we get that

uεα,δ(x, t) 6 u
ε
α(x, t) 6 uεα,δ(x, t) ∀ (x, t) ∈ R× [0,+∞).

By Corollary 5.11, we knnow that there exist two functions uδ and uδ such that

lim
ε→0

uεα,δ(x, t) = uδ(x, t) and lim
ε→0

uεα,δ(x, t) = uδ(x, t) locally uniformly.

Moreover, by the explicit formula (5.11) we have that uδ = uδ + 4δ. Hence, if u is a
locally uniform limit of uεα given by Proposition 3.1, then it satisfies

uδ(x, t) 6 u(x, t) 6 uδ(x, t) = uδ(x, t) + 4δ for every (x, t) and every δ > 0.

Letting δ → 0, this implies that, if u1 and u2 are uniform limits of uεα, then u1 = u2.
�

5.4. Case α = 0. — The case α = 0 is completely analogous to the case α ∈ (0, 1),
the only difference is that in this case the limit problem (1.5) is of second order. The
differential operator F appearing in the limit problem is defined as follows:

F (p,X) =


trX +

∫ 1

0
g(s) ds p 6= 0

min

(
trX +

∫ 1

0

g(s) ds,

(∫ 1

0

g(s)−1ds

)−1)
p = 0.

In particular, F ∗(p,X) = trX +
∫ 1

0
g(s) ds and F ∗(p,X) = F (p,X) for every (p,X).

According to the definition recalled in Section 2, u is a viscosity solution of the
limit problem (1.5) if the following holds: if φ is a smooth test function such that
u(x0, t0) = φ(x0, t0) and u 6 φ, then

φt(x0, t0)−∆φ(x0, t0) 6
∫ 1

0

g(s) ds.

If, on the other hand, u > φ, then
φt(x0, t0)−∆φ(x0, t0) >

∫ 1

0

g(s) ds if ∇φ(x0, t0) 6= 0

and

φt(x0, t0) > min

(
∆φ(x0, t0) +

∫ 1

0

g(s) ds,

(∫ 1

0

g−1(s)ds

)−1)
if ∇φ(x0, t0) = 0.

Theorem 5.13. — Let uεα be the solution to (3.2) with α = 0 and with u0 ∈ C1,1. Every
locally uniform limit u of uεα is a Lipschitz continuous function which satisfies (3.5)
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and solves in the viscosity sense the Cauchy problem{
ut − F (∇u,∇2u) = 0 in Rn × (0,+∞)

u(x, 0) = u0(x) in Rn.

Moreover,
(i) u is a viscosity solution to

ut −∆u =

∫ 1

0

g(s) ds

in every open set Ω ⊂ Rn × [0,+∞), such that ∇u 6= 0 a.e. in Ω.
(ii) u is a viscosity subsolution to

ut =

(∫ 1

0

1

g(s)
ds

)−1
at every point (x0, t0) such that (0, X, λ) ∈ J+u(x0, t0) with X < 0 in the sense of
matrices.

(iii) u is a viscosity supersolution to
ut −∆u =

∫ 1

0

g(s) ds

at every point (x0, t0) such that (0, X, λ) ∈ J−u(x0, t0), and there exist η ∈ Rn, δ > 0,
such that ηtXη > δ|η|2 > 0.

(iv) If u0 is as in Corollary 5.6, then u is the solution to

(5.16)
{
ut −∆u =

∫ 1

0
g(s) ds

u(x, 0) = u0(x).

Proof. — The proofs are completely analogous to those of Theorem 5.4 and Corollary
5.6. We just note that we need to use the fact that χ′pε → 1 uniformly, as ε→ 0. �

6. Open problems

We list some open problems which could be interesting to investigate in future
works.

(1) An important question is the complete characterization of the limit function u
in the case 0 6 α < 1, and its uniqueness given the initial datum u0. At the moment,
we are able to show uniqueness only in one-dimension, for 0 < α < 1. We recall that in
general there is no uniqueness of viscosity solutions to the equations (1.4) and (1.5),
due to the discontinuity of the operators c− and F .

(2) In this paper we only consider the case g > 0. We expect that the same results
are still valid in the case that

∫ 1

0
g(s) ds > 0. We also expect that the cell problem

could still be solved using an ODE argument, possibly more involved. Note that if
min g 6 0, we get c(0) = 0.

In the limiting case
∫ 1

0
g(s) ds = 0, it is possible to solve the cell problem (4.3),

with c(p) ≡ 0 for every p, which means that the solutions uεα to (3.2) converge locally
uniformly to the initial datum u0(x) for every α > 0, and to the solution of the heat
equation with initial datum u0 for α = 0.
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(3) In [15] the long time rescaling (1.6) of (3.2) has been considered, with∫ 1

0
g(s) ds = 0 and α > 1. In particular, the author proved that uεα converge lo-

cally uniformly to a solution of a quasilinear parabolic equation, which in the case
α > 1 coincides the level set equation of the mean curvature flow. For α = 1, in
[15, Th. 1.1] it is proved that there exists a function θ : [0,+∞) → R with θ(0) = 1

and θ(s) ∈ (0, 1) for every s > 0 such that the solutions to (1.6) with initial datum
uε(x, 0) = u0(x) converge locally uniformly to the solution to

(6.1)

ut − tr
(
I − θ(|∇u|2)

∇u
|∇u| ⊗

∇u
|∇u|

)
∇2u = 0 in Rn × (0,+∞)

u(x, 0) = u0(x) in Rn.

In [1], the 1-dimensional case has been considered, for α = 1. In particular, it is
proved that lim|p|→+∞ θ(|p|) = l > 0 (see [1, Th. 1.1]). The description of the long
time rescaling in the case

∫ 1

0
g(s) ds = 0 and α < 1 is completely open.

(4) Another interesting issue is the case in which the forcing term g depends on
both variables x and u. In particular, if we assume that g : Rn+1 → R is Lipschitz
continuous, Zn+1-periodic, and strictly positive, then the homogenization problem
reads as follows

(6.2) uεt = εα∆uε + g (x/ε, uε/ε) in (0,+∞)× Rn

with initial data uε(0, x) = u0(x), where u0 satisfies (3.3).
When α = 1, we obtain the following cell problem for (6.2):

for every p 6= 0 there exists a unique c(p) such that there exists a solution to

(6.3)


−∆yχ−|p|2χzz−2p·∇yχz+c(p)χz(y, z)−g(y, χ(y, z))=0 (y, z)∈ [0, 1]n+1

χ(y, z + 1) = χ(y, z) + 1

χ(·, z) periodic,

for p = 0 there exists a unique c(0) such that there exists a solution to
−∆yχ+ c(0)χz(y, z)− g(y, χ(y, z)) = 0 (y, z) ∈ (0, 1)n+1

χ(y, z + 1) = χ(y, z) + 1

χ(·, z) periodic.

Existence of traveling wave solutions for such problem and a homogenization result
for plane-like initial data have been proved in [6].
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