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ISOMETRIES OF NILPOTENT METRIC GROUPS

by Ville Kivioja & Enrico Le Donne

Abstract. — We consider Lie groups equipped with arbitrary distances. We only assume that
the distances are left-invariant and induce the manifold topology. For brevity, we call such
objects metric Lie groups. Apart from Riemannian Lie groups, distinguished examples are sub-
Riemannian Lie groups, homogeneous groups, and, in particular, Carnot groups equipped with
Carnot–Carathéodory distances. We study the regularity of isometries, i.e., distance-preserving
homeomorphisms. Our first result is the analyticity of such maps between metric Lie groups. The
second result is that if two metric Lie groups are connected and nilpotent then every isometry
between the groups is the composition of a left translation and an isomorphism. There are
counterexamples if one does not assume the groups to be either connected or nilpotent. The
first result is based on a solution of the Hilbert’s fifth problem by Montgomery and Zippin.
The second result is proved, via the first result, reducing the problem to the Riemannian case,
which was essentially solved by Wolf.

Résumé (Isométries de groupes métriques nilpotents). — Nous considérons des groupes de Lie
munis de distances arbitraires. Nous supposons seulement que ces distances sont invariantes
à gauche et induisent la topologie de la variété sous-jacente. Nous appelons groupes de Lie
métriques de tel objets. Mis à part les groupes de Lie riemanniens, des exemples remarquables
sont donnés par les groupes de Lie sous-riemanniens, les groupes homogènes et, en particulier, les
groupes de Carnot munis de distances de Carnot–Carathéodory. Nous montrons la régularité des
isométries, c’est-à-dire des homéomorphismes qui préservent la distance. Notre premier résultat
est l’analyticité de telles applications entre des groupes de Lie métriques. Le second résultat est
que, si deux groupes de Lie métriques sont connexes et nilpotents, alors toute isométrie entre
ces groupes est la composition d’une translation à gauche et d’un isomorphisme. Il y a des
contre-exemples si on ne suppose pas que les groupes sont connexes ou nilpotents. Le premier
résultat repose sur la solution du cinquième problème de Hilbert par Montgomery et Zippin. Le
second résultat est démontré à l’aide du premier, en réduisant le problème au cas riemannien,
cas qui a été essentiellement résolu par Wolf.
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474 V. Kivioja & E. Le Donne

1. Introduction

In this paper, with the term metric Lie group we mean a Lie group equipped with a
left-invariant distance that induces the manifold topology. An isometry is a distance-
preserving bijection. Hence, a priori it is only a homeomorphism. As a general fact
we show the following regularity result.

Theorem 1.1. — Isometries between metric Lie groups are analytic maps.

We say that a map between groups is affine if it is the composition of a left
translation and a group homomorphism. For nilpotent groups we have the following
stronger result.

Theorem 1.2. — Isometries between nilpotent connected metric Lie groups are affine.

In particular we have that
(1.2.i) two isometric nilpotent connected metric Lie groups are isomorphic;
(1.2.ii) given a connected metric Lie group N , its isometry group Isom(N), which

always is a Lie group, is a semidirect product if N is nilpotent. Namely,

Isom(N) = N o AutIsom(N),

where N is seen inside Isom(N) as left translations and AutIsom(N) denotes the
group of automorphisms of N that are isometries.

Moreover, with the above notation, we have
(1.2.iii) N is a maximal connected nilpotent subgroup of Isom(N) and the Lie

algebra of N is the nilradical of the Lie algebra of Isom(N), see Section 3.2.
Theorem 1.2 is a generalization of previous results. On the one hand, in the case

of nilpotent Lie groups equipped with left-invariant Riemannian distances the result
is essentially known from the work of Wolf, see [Wol63, Wil82] and Remark 3.3. On
the other hand, Theorem 1.2 has been shown in the case of Carnot groups equipped
with Carnot–Carathéodory distances, see [Pan89, Ham90, Kis03, LO16]. In fact our
strategy of proofs is built on both [Wol63] and [LO16].

Examples of groups not considered before are sub-Riemannian, and more generally
sub-Finsler, groups that are not Carnot groups (i.e., the sub-Riemannian structure
is not coming from the first layer of a stratification), together with their subgroups,
and their snowflakes. Other examples are given by the Heisenberg group equipped
with the Korányi gauge and, more generally, by any other homogeneous group (in the
sense of Folland and Stein), i.e., a graded group equipped with a homogeneous norm,
see more in [LN16, LR17].

We remark that both assumptions ‘connectedness’ and ‘nilpotency’ are necessary
for Theorem 1.2 to hold. In this respect in Section 4 we provide some counterexamples.

The large-scale analogue of Theorem 1.2 is a challenging open problem that has
raised a lot of attention since the papers of Pansu and Shalom [Pan89, Sha04]. What
is expected is that if two finitely generated nilpotent groups are torsion-free, then
every quasi-isometry between them induces an isomorphism between their Malcev
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Isometries of nilpotent metric groups 475

completions. The quasi-isometric classification of locally compact groups is also a
very active area, see the (quasi-)survey [Cor15].

We spend the rest of the introduction to explain the strategy of the proofs of
the two theorems and the structure of the paper. To study isometries between two
metric Lie groups, we first treat the case when the two groups are the same, i.e., they
are isometric via a Lie group isomorphism. If M is a connected metric Lie group,
we consider its isometry group G, that is, the set of self-isometries of M equipped
with the composition rule and the compact-open topology. Hence, the group G acts
continuously, transitively and by isometries on M . It is crucial that G is a locally
compact group. This latter fact follows from Ascoli–Arzelà Theorem but it needs
some argument since closed balls are not necessarily assumed to be compact. At this
point, the theory of locally compact groups, [MZ74], provides a Lie group structure
on G such that the action GyM is smooth, see Section 2.1.

Assume that M1,M2 are metric Lie groups and F : M1 → M2 is an isometry.
We consider the above-mentioned Lie group structures on the respective isometry
groups G1, G2. The conjugation by F provides a map from G1 to G2 that is a contin-
uous homomorphism between Lie groups, hence it is analytic. This observation will
give the conclusion of the proof of Theorem 1.1, see Section 2.2.

An important consequence of Theorem 1.1 is that every isometry between metric
Lie groups can be seen as a Riemannian isometry. Namely, for every map F : M1 →M2

as above there are Riemannian left-invariant structures g1, g2 such that F : (M1, g1)→
(M2, g2) is a Riemannian isometry, see Proposition 2.4. Of a separate interest is the
fact that the Riemannian structures can be chosen independently of F . Together
with Wolf’s study of nilpotent Riemannian Lie groups, Theorem 1.2 and the other
statements now follow.

We also show that if M is a group equipped with a left-invariant distance, then its
isometries are affine if and only if its isometry group G splits as semi-direct product

G = M o Stab1(G),

where Stab1(G) is the set of isometries fixing the identity element 1 ofM . We provide
the simple proof in Lemma 3.2.

Acknowledgement. — The authors thank M. Jablonski, A. Ottazzi, P. Petersen, and
the referee for helpful discussions. In particular, Remark 3.3 is due to the referee.

2. Regularity of isometries

2.1. Lie group structure of isometry groups. — The first aim of this section is to
show that the isometry group of a metric Lie group is a Lie group. Such a fact is
a consequence of the solution of the Hilbert’s fifth problem by Montgomery–Zippin,
together with the observation that the isometry group is locally compact. This latter
property follows by Ascoli–Arzelà Theorem.

We stress that a metric Lie group (M,d) may not be boundedly compact. Namely,
the closed balls Bd(1M , r) := {p ∈ M : d(p, 1M ) 6 r} with respect to d may not be
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476 V. Kivioja & E. Le Donne

compact. For example, this is the case for the distance min{dE , 1} on R, where dE
denotes the Euclidean distance.

Remark 2.1. — If (M,d) is a connected metric Lie group, then there exists a distance ρ
such that (M,ρ) is a metric Lie group that is boundedly compact and Isom(M,d) ⊆
Isom(M,ρ). Indeed, since the topology induced by d is the manifold topology, then
there exists some r0 > 0 such that Bd(1M , r0) is compact. Then we can consider the
distance

ρ(p, q) := inf
{∑k

i=1 d(pi−1, pi) : k ∈ N, pi ∈M, p0 = p, pk = q, d(pi−1, pi) 6 r0

}
.

Once can check that (M,ρ) is a metric Lie group, for all r > 0 the set Bρ(1M , r) is
compact, and Isom(M,d) ⊆ Isom(M,ρ).

Let us clarify now why the isometry group of a connected metric Lie group is locally
compact, which was not justified in [LO16]. With the terminology of Remark 2.1
the stabilizer S of 1 in Isom(M,d) is a closed subgroup of the stabilizer Sρ of 1 in
Isom(M,ρ). Furthermore, for any r > 0 and f ∈ Sρ we have that f(Bρ(1, r)) =

Bρ(1, r), which is compact. Hence, the maps from S restricted to B(1, r) form an
equi-uniformly continuous and pointwise precompact family. Ascoli–Arzelà Theorem
implies that Sρ is compact, being also closed in C0(M,M). Consequently, S is compact
and because M is locally compact, then also Isom(G, d) is locally compact. At this
point we are allowed to use the theory of locally compact groups after Gleason–
Montgomery–Zippin [MZ74]. In fact, the argument in [LO16, Prop. 4.5] concludes the
proof of the following result.

Proposition 2.2. — Let M be a metric Lie group with isometry group G. Assume
that M is connected.

(1) The stabilizers of the action GyM are compact.
(2) The topological group G is a Lie group (finite dimensional and with finitely

many connected components) acting analytically on M .

Remark 2.3. — The assumption ofM being connected in Proposition 2.2 is necessary.
Indeed, one can take as a counterexample the group Z with the discrete distance.

2.2. Proof of smoothness. — With the use of Proposition 2.2, we give the proof
of the analyticity of isometries (Theorem 1.1). We remark that in the Riemannian
setting the classical result of Myers and Steenrod gives smoothness of isometries, see
[MS39], and more generally [CL16]. However, the following proof is different in spirit
and, nonetheless, it will imply (see Proposition 2.4) that such metric isometries are
Riemannian isometries for some Riemannian structures.

Proof of Theorem 1.1. — Let F : M1 →M2 be an isometry between metric Lie groups.
Without loss of generality we may assume that F (1M1

) = 1M2
and that both M1

and M2 are connected, since left translations are analytic isometries and connected
components of identity elements are open. By Proposition 2.2, for i ∈ {1, 2}, the space
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Gi := Isom(Mi) is a Lie group. The map CF : G1 → G2 defined as I 7→ F ◦ I ◦ F−1

is a group isomorphism that is continuous, see [Are46, Th. 4]. Hence, the map CF is
analytic, see [Hel01, p. 117, Th. 2.6].

Consider also the inclusion ι : M1 → G1, m 7→ Lm, which is analytic being a
continuous homomorphism, and the orbit map σ : G2 → M2, I 7→ I(1M2

), which is
analytic since the action is analytic (Proposition 2.2). We deduce that σ ◦ CF ◦ ι is
analytic. We claim that this map is F . Indeed, for any m ∈M1 it holds

(σ ◦ CF ◦ ι)(m) = σ(F ◦ Lm ◦ F−1) = (F ◦ Lm ◦ F−1)(1M2
) = F (m). �

2.3. Isometries as Riemannian isometries. — We show next that isometries between
metric Lie groups are actually Riemannian isometries for some left-invariant struc-
tures. Let us point out that whenM is a Lie group and g is a left-invariant Riemannian
metric tensor on g, then one has an induced Riemannian distance dg and, by the the-
orem of Myers and Steenrod [MS39], the group Isom(M,dg) of distance-preserving
bijections coincides with the group Isom(M, g) of tensor-preserving diffeomorphisms.
In what follows we shall write (M, g) to denote the metric Lie group (M,dg).

Proposition 2.4. — If (M1, d1) and (M2, d2) are connected metric Lie groups, then
there exist left-invariant Riemannian metrics g1 and g2 on M1 and M2, respec-
tively, such that Isom(Mi, di) ⊆ Isom(Mi, gi) for i ∈ {1, 2} and for all isometries
F : (M1, d1)→ (M2, d2) the map F : (M1, g1)→ (M2, g2) is a Riemannian isometry.

Let us first deal with the case (M1, d1) = (M2, d2).

Lemma 2.5. — If (M,d) is a connected metric Lie group, then there is a Riemannian
metric g such that Isom(M,d) ⊆ Isom(M, g).

Proof of Lemma 2.5. — Fix a scalar product 〈〈· , ·〉〉 on the tangent space T1M at the
identity 1 of M . From Proposition 2.2, the stabilizer S of 1 in Isom(M,d) is compact
and acts smoothly on M . Let µS be the probability Haar measure on S. Consider for
v, w ∈ T1M

〈v, w〉 :=

∫
S

〈〈dFv,dFw〉〉 dµS(F ).

Then 〈· , ·〉 defines an S-invariant scalar product on T1M , and one can take g as the
left-invariant Riemannian metric that coincides with 〈· , ·〉 at the identity. �

Proof of Proposition 2.4. — By Lemma 2.5 let g2 be a Riemannian metric onM2 with

(2.6) Isom(M2, d2) ⊆ Isom(M2, g2).

Fix F : (M1, d1)→ (M2, d2) an isometry. By Theorem 1.1 the map F is smooth, and
we may define a Riemannian metric on M1 by g1 := F ∗g2. There are two things
to check: (a) Isom(M1, d1) ⊆ Isom(M1, g1), which in particular gives that g1 is left-
invariant and (b) every isometry H : (M1, d1)→ (M2, d2) is an isometry of Riemann-
ian manifolds.

For part (a), since by construction F is also a Riemannian isometry, the map
I 7→ F ◦ I ◦ F−1 is a bijection between Isom(M1, d1) and Isom(M2, d2) and between
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478 V. Kivioja & E. Le Donne

Isom(M1, g1) and Isom(M2, g2). Therefore the inclusion (2.6) implies the inclusion
Isom(M1, d1) ⊆ Isom(M1, g1).

For part (b), sinceH◦F−1 ∈ Isom(M2, d2) ⊆ Isom(M2, g2), then (H◦F−1)∗g2 = g2.
Consequently, we get H∗g2 = F ∗(H ◦ F−1)∗g2 = g1. �

3. Affine decomposition

3.1. Preliminary lemmas. — Given a group M we denote by ML the group of left
translations on M . The following two results make sense in the settings of groups
equipped with left-invariant distances. We call such groups metric groups.

Lemma 3.1. — LetM1 andM2 be metric groups. Suppose F : M1 →M2 is an isometry
and F ◦ML

1 ◦ F−1 = ML
2 . Then F is affine.

Proof. — Up to precomposing with a translation, we assume that F (1M1
) = 1M2

.
So we want to prove that F is an isomorphism. The map CF : Isom(M1)→ Isom(M2),
I 7→ F ◦ I ◦ F−1, is an isomorphism and by assumption it gives an isomorphism
betweenML

1 andML
2 . We claim that F is the same isomorphism when identifyingMi

with ML
i . Namely, we want to show that for all m ∈ M1 we have LF (m) = CF (Lm).

By assumption, for every m1 ∈M1 there exists m2 ∈M2 such that Lm2
= CF (Lm1

).
Evaluating at 1M2

, we get

m2 = Lm2
(1M2

) = CF (Lm1
)(1M2

) = F (Lm1
(F−1(1M2

))) = F (m1). �

With the next result we clarify that the condition of self-isometries being affine
is equivalent to left translations being a normal subgroup of the group of isometries.
Equivalently, we have a semi-direct product decomposition of the isometry group.
Namely, given a metric group M and denoting by G the isometry group and by
Stab1(G) the stabilizer of the identity element, M has affine isometries if and only if
G = ML o Stab1(G). We denote by Aff(M) the group of affine maps from M to M
and by Aut(M) the group of automorphisms of M .

Lemma 3.2. — Let M be a metric group with isometry group G. Then the following
are equivalent:

(a) ML C G, i.e., F ◦ML ◦ F−1 = ML, for all F ∈ G;
(b) G < Aff(M);
(c) Stab1(G) < Aut(M);
(d) G = ML o Stab1(G);
(e) G = ML o (G ∩Aut(M)).

Proof. — Property (a) implies (b) by Lemma 3.1. Regarding the fact that (b) im-
plies (a), consider a map F ∈ G, which we know to be of the form F = τ ◦ Φ with
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Isometries of nilpotent metric groups 479

τ ∈ML and Φ ∈ Aut(M). For all p ∈M we get

F ◦ Lp ◦ F−1 = (τ ◦ Φ) ◦ Lp ◦ (τ ◦ Φ)−1

= τ ◦ Φ ◦ Lp ◦ Φ−1 ◦ τ−1

= τ ◦ LΦ(p) ◦ Φ ◦ Φ−1 ◦ τ−1

= τ ◦ LΦ(p) ◦ τ−1 ∈ML,

which gives ML C G.
The equivalence of (b) with (c) is trivial. The equivalence of (a) with (d) follows

from the factsML ·Stab1(G) = G andML∩Stab1(G) = {id}. Finally, (e) implies (d),
and (e) is implied by (d) together with (c). �

Remark 3.3. — As said in the introduction, Theorem 1.2 is essentially due to Wolf in
the Riemannian setting. Indeed, in [Wol63, p. 278, Th. 4.2] he proved the semi-direct
product decomposition of the isometry group of a Riemannian nilpotent Lie group,
which is equivalent to self-isometries being affine, as in the lemma above. To conclude
that an isometry F : N1 → N2 between Riemannian nilpotent Lie groups is affine, one
considers the self-isometry of the product N1×N2 given by (n,m) 7→ (F−1(m), F (n)).
Also, one can check that the proof of [Wil82, Th. 3] gives the same result.

3.2. Theorem 1.2 from Proposition 2.4. — For every Riemannian nilpotent Lie
group Wolf proved a characterization of the group inside its isometry group. In fact,
he described the nilpotent group as the nilradical of its isometry group. We shall
give the same characterization in the general setting. We introduce some terminology
inspired by [Wol63, Wil82, GW88].

Definition 3.4 (Nilradical condition). — Let g be a Lie algebra. The nilradical of g,
denoted by nil(g), is the largest nilpotent ideal of g. We say that a connected metric
Lie group N with isometry group Isom(N) satisfies the nilradical condition if it holds

(3.5) Lie(NL) = nil(Lie(Isom(N))).

Clearly, a metric Lie group N can satisfy the nilradical condition only if it is
nilpotent. The nilradical of a Lie algebra g can also be defined as the sum of all
nilpotent ideals of g, see [HN12, Def. 5.2.10].

Remark 3.6. — The nilradical condition is satisfied by Riemannian nilpotent Lie
groups, where the distance is induced by a left-invariant metric tensor. Such a result
was proved by Wolf [Wol63, p. 278, Th. 4.2], see also [Wil82, p. 341 Th. 2]. Actu-
ally, Wolf proved the stronger statement that such a group N is a maximal con-
nected nilpotent subgroup inside Isom(N), which implies the nilradical condition since
NL C Isom(N). Clearly, there may be several maximal connected nilpotent subgroups
inside Isom(N).

The nilradical condition is an algebraic characterization of the Lie algebra of a
nilpotent metric Lie group inside the Lie algebra of its isometry group. Hence, by
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480 V. Kivioja & E. Le Donne

Lemma 3.1 it is clear that if two connected metric Lie groups N1 and N2 satisfy
the nilradical condition (3.5), then any isometry F : N1 → N2 is affine. Indeed, the
map I 7→ F ◦ I ◦ F−1 induces a Lie algebra isomorphism between Lie(Isom(N1)) and
Lie(Isom(N2)), and therefore, since the exponential map is surjective, one concludes
that the map sends NL

1 to NL
2 .

We also mention that the work of Wolf, together with the work of Gordon and
Wilson, is one of the initial steps in the study of (Riemannian) nilmanifolds, solv-
manifolds, and homogeneous Ricci solitons, see [GW88, Jab15a, Jab15b].

Proof of Theorem 1.2. — Let F : (N1, d1) → (N2, d2) be an isometry between two
nilpotent connected metric Lie groups. By Proposition 2.4 for i ∈ {1, 2} there exist
left-invariant metric tensors gi on Ni such that F : (N1, g1)→ (N2, g2) is a Riemann-
ian isometry. By Remark 3.3, the map F is affine. In particular, we have (1.2.i).

Because of Lemma 3.2 we also deduce that the isometry group of a nilpotent
connected metric Lie group N has the semi-direct product decomposition (1.2.ii).
Regarding (1.2.iii), given such a group N we use again Proposition 2.4 and have
that N ⊆ Isom(N) ⊆ Isom(N, g), for some left-invariant metric tensor g on N .
By Remark 3.6, the group NL is a maximal connected nilpotent subgroup inside
Isom(N, g), thus also inside Isom(N). Since from (1.2.ii) we have NL C Isom(N),
Lie(NL) is an ideal of Lie(Isom(N)). Thus, by the maximality of N , we deduce the
nilradical condition (3.5). �

4. Examples for the sharpness of the assumptions

In this section we provide several examples to illustrate the sharpness of the as-
sumptions in Theorem 1.2. Namely, we show that if one of the groups is not assumed
connected and nilpotent then there may be isometries that are not affine.

Regarding the connectedness assumption, there are examples of Abelian metric Lie
groups with finitely many components for which some isometries are not affine. One of
the simplest examples is the subgroup of C consisting of the four points {1, i,−1,−i}
equipped with the discrete distance. Here every permutation is an isometry. However,
any automorphism needs to fix −1, since it is the only point of order 2.

Regarding the nilpotent assumption, there are both compact and non-compact
examples. We remark that in any group equipped with a bi-invariant distance the
involution is an isometry. Consequently, every compact group admits a distance for
which the involution is an isometry. Such a map is a group isomorphism only if the
group is Abelian. Nonetheless, we point out the following fact which is a consequence
of the work of Baum–Browder and Ochiai–Takahashi, see [BB65, OT76] and also
[Sch68, HK85].

Corollary 4.1. — Let G1, G2 be connected compact simple metric Lie groups.
If F : G1 → G2 is an isometry, then G1 and G2 are isomorphic as Lie groups. If,
moreover, G1, G2 are the same metric Lie group and F is homotopic to the identity
map via isometries, then F is affine.
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Isometries of nilpotent metric groups 481

We point out that there exist examples of pairs of metric Lie groups that are
isomorphic as Lie groups and are isometric, but are not isomorphic as metric Lie
groups: an example is the rototranslation group (see below) with different Euclidean
distances.

Other interesting results for isometries between compact groups can be found in
[Oze77] and [Gor80].

The conclusion of Corollary 4.1 may not hold for arbitrary connected metric Lie
groups. In fact, we recall the following example, due to Milnor [Mil76, Cor. 4.8], of a
group that is solvable and isometric to the Euclidean 3-space. Let G be the universal
cover of the group of orientation-preserving isometries of the Euclidean plane, which
is also called the rototranslation group. Such a group admits coordinates making it
diffeomorphic to R3 with the productxy

z

 ·
x′y′
z′

 =

cos z − sin z 0

sin z cos z 0

0 0 1

x′y′
z′

 +

xy
z

 .
In these coordinates, the Euclidean metric is left-invariant. On the one hand, one
can check that the isometries that are also automorphisms of G form a 1-dimensional
space. On the other hand, the isometries fixing the identity element and homotopic to
the identity map form a group isomorphic to SO(3). Hence, we conclude that not all
such isometries are affine. Moreover, this group gives an example of a non-nilpotent
metric Lie group isometric (but not isomorphic) to a nilpotent connected metric Lie
group, namely the Euclidean 3-space.

Notice that also the Riemannian metric with orthonormal frame ∂x, ∂y, 2∂z gives
a left-invariant structure on G, which is isometric to the previous one, but there is
no isometric automorphism between the two structures. Hence, these spaces are not
isomorphic as metric Lie groups.

A further study of metric Lie groups isometric to nilpotent metric Lie groups can be
found in [CKL+]. In the simply connected case, such groups are exactly the solvable
groups of type R.

We finally recall another example. The unit disc in the plane admits a group
structure that makes the hyperbolic distance left-invariant. In this metric Lie group
not all isometries are affine.
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