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PLANE-LIKE MINIMIZERS FOR

A NON-LOCAL GINZBURG-LANDAU-TYPE ENERGY

IN A PERIODIC MEDIUM

by Matteo Cozzi & Enrico Valdinoci

Abstract. — We consider a non-local phase transition equation set in a periodic medium and we
construct solutions whose interface stays in a slab of prescribed direction and universal width.
The solutions constructed also enjoy a local minimality property with respect to a suitable
non-local energy functional.

Résumé (Minimiseurs proches d’un plan pour une énergie non locale de type Ginzburg-Landau
dans un milieu périodique)

Nous considérons une équation de transition de phase non locale dans un milieu périodique
et nous construisons des solutions dont l’interface se trouve dans un domaine de direction
prescrite et de largeur universelle. Les solutions construites jouissent aussi d’une propriété de
minimalité locale par rapport à une certaine fonctionnelle d’énergie non locale.
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1. Introduction

The goal of this paper is to construct solutions of a scalar, fractional Ginzburg-
Landau (or Allen-Cahn) equation in a periodic medium, whose interface stays in a
prescribed slab and whose energy is minimal among compact perturbations.

The simplest case that we have in mind is the non-local equation

(1.1) (−∆)su(x) = Q(x)
(
u(x)− u3(x)

)
,

in which s ∈ (0, 1) is a fractional parameter and Q is a smooth function, bounded and
bounded away from zero, and such that

(1.2) Q(x+ k) = Q(x) for every k ∈ Zn.

The operator (−∆)s in (1.1) is a fractional power of the Laplacian, see e.g. [Sil06,
DNPV12] for an introduction to this topic.

In the framework of equation (1.1), the solution u : Rn → [−1, 1] represents a state
parameter in a model of phase coexistence (the two “pure phases” being represented
by −1 and +1). The presence of a fractional exponent s ∈ (0, 1) is motivated by
models which try to take into account long-range particle interactions (as a matter of
fact, these models may produce either a local or non-local tension effect, depending
on the value of s, see [SV12, SV14]; see also [PSV13] for the variational analysis of
the different scales of energy that are involved in the model).

We also recall that equations of this type naturally occur in other areas of applied
mathematics, such as the Peierls-Nabarro model for crystal dislocations when s = 1/2,
and for generalizations of this model when s ∈ (0, 1) (see e.g. [Nab97, DPV15,
DFV14]). Related problems also arise in models for diffusion of biological species
(see e.g. [Fri12]).

The periodicity condition in (1.2) takes into account a possible geometric (or crys-
talline) structure of the medium in which the phase transition takes place.

The level sets of the solution u have particular physical importance, since they
correspond, at a large scale, to the interface between the two phases of system. The
question that we address in this paper is then to find solutions of (1.1) whose level
sets lie in any given strip of universal size. The direction of this strip will be arbitrary
and the size of the strip is bounded independently of the direction.

In addition to this geometric constraint on the level sets of the solution, we will
also prescribe an energy condition. Namely, equation (1.1) is variational. Though
the associated energy functional diverges (i.e., nontrivial solutions have infinite total
energy in the whole of the space), it is possible to “localize” the non-local energy
density in any fixed domain of interest and require that the solution has a minimal
property with respect to any perturbation supported in this domain.

The existence of minimal solutions of phase transition equations whose level sets are
confined in a strip goes back to [Val04], where equation (1.1) was taken into account
for s = 1 and it is strictly related to the construction, performed in [CdlL01], of mini-
mal surfaces which stay at a bounded distance from a plane (see also [Hed32, AB06]).
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Non-local plane-like minimizers in a periodic medium 339

Furthermore, these types of results may be seen as the analogue in partial differen-
tial equations (or pseudo-differential equations) of the classical Aubry-Mather theory
for dynamical systems, see [Mat90] (a more detailed discussion about the existence
literature will follow).

As a matter of fact, we will consider here a more general equation than (1.1). In-
deed, we will deal with operators that are more general than the fractional Laplacian,
which can be also spatially heterogeneous and periodic, and also with more general
forcing terms, which may possess different growths from the pure phases other than
the classical quadratic growth.

The details of the mathematical framework in which we work are the following.
For n > 2, we consider the formal energy functional

(1.3) E (u) :=
1

2

∫
Rn

∫
Rn
|u(x)− u(y)|2K(x, y) dxdy +

∫
Rn
W (x, u(x)) dx.

The term K : Rn × Rn → [0,+∞] is supposed to be a measurable and symmetric
function, comparable to the kernel of the fractional Laplacian. That is,

(K1) K(x, y) = K(y, x) for a.e. x, y ∈ Rn,

and(1)

(K2)
λχ[0,1](|x− y|)
|x− y|n+2s

6 K(x, y) 6
Λ

|x− y|n+2s
for a.e. x, y ∈ Rn,

for some Λ > λ > 0 and s ∈ (0, 1).
The mappingW is a double-well potential, with zeros in−1 and 1. More specifically,

we assume W : Rn × R→ [0,+∞) to be a bounded measurable function for which

(W1) W (x,±1) = 0 for a.e. x ∈ Rn,

and, for any θ ∈ [0, 1),

(W2) inf
x∈Rn
|r|6θ

W (x, r) > γ(θ),

where γ is a non-increasing positive function of the interval [0, 1). Moreover, we re-
quire W to be differentiable in the second component, with partial derivative locally
bounded in r ∈ R, uniformly in x ∈ Rn. Accordingly, we let

(W3) W (x, r), |Wr(x, r)| 6W ∗ for a.e. x ∈ Rn and any r ∈ [−1, 1],

for some W ∗ > 0.
Since we are interested in modeling a periodic environment, we require both K

and W to be periodic under integer translations. That is,

(K3) K(x+ k, y + k) = K(x, y) for a.e. x, y ∈ Rn and any k ∈ Zn,

(1)Although slightly more general requirements could be imposed on the growth of K for large
values of |x − y| — see e.g. hypothesis (1.3) in [Kas09] or (2.2b) in [Coz17] — we prefer to adopt
the more restrictive condition (K2) in order to simplify the exposition. Requirements (K1) and (K2)
nonetheless allow for a great variety of space-dependent, possibly truncated kernels. In particular,
we stress that no regularity is assumed on K.
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340 M. Cozzi & E. Valdinoci

and

(W4) W (x+ k, r) = W (x, r) for a.e. x ∈ Rn and any k ∈ Zn,

for any fixed r ∈ R.
The assumptions listed above allow us to comprise a very general class of kernels

and potentials.
As possible choices for K, we could indeed think of heterogeneous, isotropic kernels

of the type

K(x, y) =
a(x, y)

|x− y|n+2s
,

for a measurable a : Rn×Rn → [λ,Λ], or instead consider a translation invariant, but
anisotropic K, as given by

K(x, y) =
1

‖x− y‖n+2s
,

with ‖·‖ a measurable norm in Rn. Furthermore, one can combine both heterogeneity
and anisotropy to obtain, for instance, kernels of the form

K(x, y) =
1〈

A(x, y)(x− y), (x− y)
〉(n+2s)/2

,

where A is a symmetric, uniformly elliptic n× n matrix with bounded entries.
Of course, the functions a and A should satisfy appropriate symmetry and peri-

odicity conditions, in order that hypotheses (K1) and (K3) could be fulfilled by the
resulting K’s. Also, such functions may exhibit a degenerate behavior when x and y
are far from each other (compare this with the left-hand side of (K2)).

Important examples of admissible potentials W are given by

(1.4) W (x, r) = Q(x)
∣∣1− r2

∣∣d or W (x, r) = Q(x) (1 + cosπr) ,

with d > 1 and Q a positive periodic function.(2)

By taking W (x, r) := Q(x)(1− r2)2 and K(x, y) := |x− y|−n−2s, one obtains that
the critical points of the energy functional satisfy the model equation in (1.1) (up to
normalization constants).

In the present work we look for minimizers of the functional E which connects the
two pure phases −1 and 1, which are the zeroes of the potential W . In particular,
given any vector ω ∈ Rn r {0}, we address the existence of minimizers for which,

(2)When comparing these assumptions with those usually found in the related literature on local
functionals, see e.g. [CC95, CC06] or [Val04], one realizes that the parameter d is assumed there
to range in the interval (0, 2]. This is due essentially to the fact that our proofs do not rely on the
density estimates established in those papers, but on some Hölder regularity results.

If on the one hand this enables us to consider extremely flat potentials near the zeroes −1 and 1,
which can be obtained by taking d > 2, on the other hand the Lipschitz continuity needed on W for
the regularity results to apply imposes the bound d > 1. This is due to the fact that our regularity
theory is really designed for solutions to integro-differential equations, instead of minimizers.

Note added in proof: see Section 7 for a discussion around the possibility of circumventing this
issue and considering the whole array of exponents d > 0.
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Non-local plane-like minimizers in a periodic medium 341

roughly speaking, most of the transition between the pure states occurs in a strip
orthogonal to ω and of universal width. Moreover, when ω is a rational vector, we
want our minimizers to exhibit some kind of periodic behavior, consistent with that
of the ambient space.

Note that we will often call a quantity universal if it depends at most on n, s, λ,
Λ, W ∗ and on the function γ introduced in (W2).

In order to formulate an exact statement, we introduce the following terminology.
For a given ω ∈ Qn r {0}, we consider in Rn the relation ∼ω defined by setting

(1.5) x ∼ω y if and only if y − x = k ∈ Zn, with ω · k = 0.

Notice that ∼ω is an equivalence relation and that the associated quotient space

R̃nω := Rn/ ∼ω,

is topologically the Cartesian product of an (n− 1)-dimensional torus and a line. We
say that a function u : Rn → R is periodic with respect to ∼ω, or simply ∼ω-periodic,
if u respects the equivalence relation ∼ω, i.e., if

u(x) = u(y) for any x, y ∈ Rn such that x ∼ω y.

When no confusion may arise, we will indicate the relation ∼ω just by ∼ and the
resulting quotient space by R̃n.

To specify the notion of minimizers that we take into consideration, we need to
introduce an appropriate localized energy functional. Given a set Ω ⊆ Rn and a
function u : Rn → R, we define the total energy E of u in Ω as

(1.6) E (u; Ω) :=
1

2

∫∫
CΩ

|u(x)− u(y)|2K(x, y) dxdy +

∫
Ω

W (x, u(x)) dx,

where

(1.7)
CΩ := (Rn × Rn) r ((Rn r Ω)× (Rn r Ω))

= (Ω× Ω) ∪ (Ω× (Rn r Ω)) ∪ ((Rn r Ω)× Ω) .

Notice that when Ω is the whole space Rn, the energy (1.6) coincides with that
anticipated in (1.3).

Sometimes, a more flexible notation for this functional will turn out to be useful.
To this end, recalling our symmetry assumption (K1) on K, we will refer to E (u; Ω)

as the sum of the kinetic part(3)

K (u; Ω,Ω) + 2K (u; Ω,Rn r Ω),

(3)We stress that the name kinetic does not hint at actual physical motivations. In fact, in the
applications K is typically used to describe non-local interactions and elastic forces. However, we
adopt this slight abuse of terminology in conformity with the classical jargon used for local Dirichlet
energies in particle mechanics. It is of course an interesting problem to study also more general
types of kinetic energies, such as the ones which lead to quasilinear fractional equations, having an
integrability growth different than quadratic, see e.g. [DCKP16, BL17] and the references therein.
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342 M. Cozzi & E. Valdinoci

with
K (u;U, V ) :=

1

2

∫
U

∫
V

|u(x)− u(y)|2K(x, y) dxdy,

for any U, V ⊆ Rn, and the potential part

P(u; Ω) :=

∫
Ω

W (x, u(x)) dx.

With this in hand, the notion of minimization inside a bounded set is described by
the following

Definition 1.1. — Let Ω be a bounded subset of Rn. A function u is said to be a local
minimizer of E in Ω if E (u; Ω) < +∞ and

(1.8) E (u; Ω) 6 E (v; Ω),

for any v which coincides with u in Rn r Ω.

For simplicity, in Definition 1.1 and throughout the paper we assume every set and
every function to be measurable, even if it is not explicitly stated.

Remark 1.2. — We point out that a minimizer u on Ω is also a minimizer on every
subset of Ω. Though not obvious, this property is easily justified as follows.

Let Ω′ ⊂ Ω be measurable sets and v be a function coinciding with u outside Ω′.
Recalling the notation introduced in (1.7), it is immediate to check that CΩ′ ⊂ CΩ

and

CΩ r CΩ′ = ((Ω r Ω′)× (Ω r Ω′)) ∪ ((Ω r Ω′)× (Rn r Ω)) ∪ ((Rn r Ω)× (Ω r Ω′)) .

Therefore, it follows that the integrands of the kinetic parts of E (u; Ω) and E (v; Ω)

coincide on CΩ r CΩ′ . Since also the respective arguments of the potential terms are
equal on Ω r Ω′, by (1.8) we conclude that

E (u; Ω′) = E (u; Ω)− 1

2

∫∫
CΩrCΩ′

|u(x)− u(y)|2K(x, y) dxdy −P(u; Ω r Ω′)

6 E (v; Ω)− 1

2

∫∫
CΩrCΩ′

|v(x)− v(y)|2K(x, y) dxdy −P(v; Ω r Ω′)

= E (v; Ω′).

Thus, u is a minimizer on Ω′.

Up to now we only discussed about local minimizers. Since we plan to construct
functions which exhibit minimizing properties on the full space, we need to be precise
on how we mean to extend Definition 1.1 to the whole of Rn (where the total energy
functional may be divergent).

Definition 1.3. — A function u is said to be a class A minimizer of the functional E

if it is a minimizer of E in Ω, for any bounded set Ω ⊂ Rn.

Now that all the main ingredients have been introduced, we are ready to state
formally the main result of the paper.
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Non-local plane-like minimizers in a periodic medium 343

Theorem 1.4. — Let n > 2 and s ∈ (0, 1). Assume that the kernel K and the poten-
tial W satisfy (K1), (K2), (K3) and (W1), (W2), (W3), (W4), respectively. For any
fixed θ ∈ (0, 1), there is a constant M0 > 0, depending only on θ and on universal
quantities, such that, given any ω ∈ Rn r {0}, there exists a class A minimizer uω of
the energy E for which the level set {|uω| < θ} is contained in the strip{

x ∈ Rn :
ω

|ω|
· x ∈ [0,M0]

}
.

Moreover,
– if ω ∈ Qn r {0}, then uω is periodic with respect to ∼ω, while
– if ω ∈ Rn r Qn, then uω is the uniform limit on compact subsets of Rn of a

sequence of periodic class A minimizers.

We remark that Theorem 1.4 is new even in the model case in which W (x, r) :=

Q(x)(1−r2)2 andK(x, y) := |x−y|−n−2s. In this case, Theorem 1.4 provides solutions
of equation (1.1) (up to normalizing constants).

In the local case — which formally corresponds to taking s = 1 and can be effec-
tively realized by replacing our kinetic term with the Dirichlet-type energy

(1.9)
∫
〈A(x)∇u(x),∇u(x)〉 dx,

where A is a bounded, uniformly elliptic matrix — the result contained in Theo-
rem 1.4 was proved by the second author in [Val04]. After this, several generaliza-
tions were obtained, extending such result in many directions. See, for instance, [PV05,
NV07, dlLV07, BV08] and [Dáv13]. We also mention the pioneering work [CdlL01] of
Caffarelli and de la Llave, where the two authors proved the existence of plane-like
minimal surfaces with respect to periodic metrics of Rn.

We stress that, if we restrict to the case given by K(x, y) := (1 − s)|x − y|−n−2s,
it can be proved that Theorem 1.4 is stable as s approaches 1. As a consequence, by
taking this limit one may deduce from it [Val04, Th. 8.1], at least for the model case
of A equal to the identity matrix in (1.9). We refer the interested reader to Section 6
for a rigorous presentation of these arguments.

The proof of Theorem 1.4 makes use of a geometric and variational technique
developed in [CdlL01] and [Val04], suitably adapted in order to deal with non-local
interactions. For a given rational direction ω ∈ Qn r {0} and a fixed strip

SMω := {x ∈ Rn : ω · x ∈ [0,M ]} ,

with M > 0, one takes advantage of the identifications of the quotient space R̃n

to gain the compactness needed to obtain a minimizer uMω with respect to periodic
perturbations supported inside SMω . By construction, this minimizer is such that its
interface {|uMω | < θ} is contained in the strip SMω .

With the aid of some geometrical arguments, one then shows that uMω becomes a
class A minimizer for E , provided M/|ω| is larger than some universal parameter M0.

J.É.P. — M., 2017, tome 4



344 M. Cozzi & E. Valdinoci

The fact that the thresholdM0 is universal and that, in particular, it does not depend
on the fixed direction ω is of key importance here and it allows, as a byproduct, to
obtain the result for an irrational vector ω ∈ RnrQn, by taking the limit of rational
directions.

We remark that the non-local character of the energy E introduces several chal-
lenging difficulties into the above scheme.

First of all, the way the compactness is used to construct the minimizer uMω is
somehow not as straightforward as in the local case.

To have a glimpse of this difference, consider that in [Val04] the candidate uMω is
by definition a minimizer with respect to ∼-periodic perturbations occurring in SMω .
That is, one really considers the energy E driven by (1.9) as defined on the cylin-
der R̃n viewed as a manifold and obtain uMω as the absolute minimizer of E within a
particular class of functions defined on R̃n. However, since the restriction of the local
kinetic term (1.9) to a fundamental domain of R̃n only sees what happens inside that
domain, it is clear that one is allowed in the local case to identify periodic perturba-
tions and perturbations which are compactly supported inside R̃n. As a result, uMω is
automatically a local minimizer for E in the strip SMω .

As it is, this technique cannot work in the non-local setting. Indeed, let u be
any ∼-periodic function and ϕ be compactly supported in a fixed fundamental re-
gion D of R̃n: if we denote by ϕ̃ the ∼-periodic extension of ϕ|D to Rn, then the two
quantities E (u+ ϕ;D) and E (u+ ϕ̃;D), as defined in (1.6), are not equal in general.

In order to overcome this difficulty, we introduce an appropriate auxiliary func-
tional Fω that is used to define the periodic minimizer uMω . Then, it happens that uMω
is a local minimizer for the original energy E , since Fω couples with E in a favorable
way.

An additional difficulty comes from the different asymptotic properties of the
energy in terms of the fractional parameter s. As a matter of fact, the thresh-
old s = 1/2 distinguishes the local and non-local behavior of the functional at a large
scale (see [SV12, SV14]) and it reflects into the finiteness or infiniteness of the energy
of the one-dimensional transition layer. In our setting, this feature implies that not
all the kernels K satisfying (K2) can be dealt with at the same time. More precisely,
when s 6 1/2 the behavior at infinity dictated by (K2) causes infinite contributions
coming from far. For this reason, at least at a first glance, it may seem necessary to
restrict the class of admissible kernels by imposing some additional requirements on
the decay of K at infinity. However, we will be able to remove this limitation by an
appropriate limit procedure. Namely, we will first assume a fast decay property of
the kernel to obtain the existence of a class A minimizer, but the estimates obtained
will be independent of this additional assumption. Consequently, we will be able to
extend the result to general kernels by treating them as limits of truncated ones.

Finally, we want to point out a possibly interesting difference between the proof
displayed here and that of e.g. [CdlL01] and [Val04]. In the existing literature, the
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Non-local plane-like minimizers in a periodic medium 345

technique that is typically adopted to show that uMω is a class A minimizer relies on
the so-called energy and density estimates.

These estimates respectively deal with the growth of the energy E of a local
minimizer u inside large balls and the fractions of such balls occupied by a fixed
level set of u. The latter, in particular, is a powerful tool first introduced by Caffarelli
and Córdoba in [CC95] to study the uniform convergence of the level sets of a family
of scaled minimizers.

Although such density estimates have been established in [SV14] in a non-local
setting very close to ours, for some technical reasons we decided not to incorporate
them into our argument (roughly speaking, the periodic setting is not immediately
compatible with large balls in Euclidean spaces). In their place, we take advantage of
some C0,α bounds satisfied by local minimizers of E , along with a suitable version of
the energy estimates.

The above mentioned Hölder continuity result is essentially the regularity theory
for bounded weak solutions to integro-differential equations developed by Kassmann
in [Kas09, Kas11]. On the other hand, energy estimates for minimizers of non-local
energies have been independently obtained in [CC14] and [SV14] (in different settings).
Since both these two results were set in a slightly different framework than ours, we
provide their proofs in full details in Sections 2 and 3, respectively.

The paper is organized as follows. Sections 2 and 3 are devoted to the Hölder
regularity of the minimizers and the energy estimates. We stress that in these two
sections bothK andW are subjected to slightly more general requirements than those
listed in the introduction (the statements of the results proved in these sections will
contain the precise hypotheses needed for their proofs).

Section 4 is occupied by the main construction leading to the proof of Theorem 1.4.
For the reader’s ease, this section is in turn divided into seven short subsections. In
each of these subsections, we will consider, respectively:

– the minimization arguments by compactness,
– the notion of minimal minimizer (i.e., the pointwise infimum of all the possible

minimizers, which satisfy additional geometric and functional features),
– the doubling property (roughly, doubling the period does not change the minimal

minimizer),
– the notion of minimization under compact perturbations,
– the Birkhoff property (namely, the level sets of the minimal minimizers are or-

dered by integer translations),
– the passage from constrained to unconstrained minimization (for large strips, we

show that the constraint is irrelevant),
– the passage from rational to irrational slopes.

The argument displayed in Section 4 only works under an additional assumption on
the decay rate of the kernelK at infinity. In the subsequent Section 5 we will show that
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346 M. Cozzi & E. Valdinoci

this hypothesis can be in fact removed by a limit procedure. The proof of Theorem 1.4
will therefore be completed.

In Section 6 we discuss about the stability of Theorem 1.4 in some particular cases,
as the fractional order s of the kinetic term goes to 1.

We conclude this paper with two appendices which contain some auxiliary material
needed for the technical steps in the proofs of our main results.

Acknowledgements. — The authors are indebted to Professor Ovidiu Savin for offering
several valuable insights and Professor Hans Triebel for some keen comments on a
previous version of the paper.

2. Regularity of the minimizers

In this introductory section we show that the local minimizers of E are Hölder
continuous functions. In order to do this, we prove a general regularity result for
bounded solutions to non-local equations driven by measurable kernels comparable to
that of the fractional Laplacian.

In this regard, we stress that the main result of this section — namely, Theorem 2.1
— is stated in a broader setting, in comparison with the rest of the paper. The
periodicity of the medium does not play any role here and it is therefore not assumed.

We point out that, while we do not obtain uniform estimates as s→ 1−, our result
is still independent of s, as long as s is far from 0 and 1.

Let 0 < s < 1 and Ω be a bounded open set of Rn. Let K be a measurable kernel
satisfying (K1) and (K2). We now introduce the space of solutions X(Ω). Given a
measurable function u : Rn → R, we say that u ∈ X(Ω) if and only if

u|Ω ∈ L2(Ω) and (x, y) 7−→ (u(x)− u(y))
√
K(x, y) ∈ L2(CΩ).

It is not difficult to see that (K2) implies that Hs(Rn) ⊂ X(Ω) ⊆ Hs(Ω). We also
denote byX0(Ω) the subspace ofX(Ω) made up by the functions which vanish a.e. out-
side Ω. Then X0(Ω′) ⊆ X0(Ω) ⊂ Hs(Rn), if Ω′ ⊆ Ω. We refer the reader to [SV13, §5],
where some useful properties of these spaces are discussed.

We consider the non-local Dirichlet form

(2.1) DK(u, ϕ) =

∫
Rn

∫
Rn

(u(x)− u(y)) (ϕ(x)− ϕ(y))K(x, y) dxdy.

Observe that DK is well-defined for instance when u ∈ X(Ω) and ϕ ∈ X0(Ω).
Let now f ∈ L2(Ω). We say that u ∈ X(Ω) is a supersolution of the equation

(2.2) DK(u, ·) = f in Ω,

if

(2.3) DK(u, ϕ) > 〈f, ϕ〉L2(Rn) for any non-negative ϕ ∈ X0(Ω).
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Analogously, one defines subsolutions of (2.2) by reverting the inequality in (2.3) and,
as well, solutions by asking (2.3) to be an identity and neglecting the sign assumption
on ϕ. It is almost immediate to check that a function u is a solution of (2.2) if and
only if it is at the same time a super- and a subsolution.

The main result of the section is given by the following

Theorem 2.1. — Let Ω be a bounded open set of Rn, with n > 2, and s0 ∈ (0, 1/2) be
a fixed parameter. Let s ∈ [s0, 1 − s0] and K be a measurable kernel satisfying (K1)
and (K2). If f ∈ L∞(Ω) and u ∈ X(Ω) ∩ L∞(Rn) is a solution of (2.2) in Ω, then
there exists an exponent α ∈ (0, 1), only depending on n, s0, λ and Λ, such that

u ∈ C0,α
loc (Ω).

In particular, there exists a number R0 > 0, depending only on n, s0, λ and Λ, such
that, for any point x0 ∈ Ω and any radius 0 < R 6 R0 for which BR(x0) ⊂ Ω, it holds

(2.4) osc
Br(x0)

u 6 16
( r
R

)α [
‖u‖L∞(Rn) + ‖f‖L∞(BR(x0))

]
,

for any 0 < r < R.

Theorem 2.1 is an extension to non-local equations of the classical De Giorgi-
Nash-Moser regularity theory. In recent years a great number of papers dealt with
interior Hölder estimates for solutions of elliptic integro-differential equations, as for
instance [Sil06, CS09, Kas09] and [Kas11]. See also the recent [DK15], which contains
related and very interesting regularity results, especially for the case of homogeneous
equations. In our setting, we need estimates for equations with general right-hand
sides, which apparently are not formally stated nor proved in the literature (although
they can be deduced using the techniques of e.g. [Kas09] and [DK15]). Following the
arguments of these papers, we provide here below a fully detailed and self-contained
proof of these estimates.

Before advancing to the arguments that lead to Theorem 2.1, we point out how
the regularity of the minimizers of E can be recovered from it.

Corollary 2.2. — Fix s0 ∈ (0, 1/2) and let s ∈ [s0, 1 − s0]. Let u be a bounded
local minimizer of E in a bounded open subset Ω of Rn. Then, u ∈ C0,α

loc (Ω), for
some α ∈ (0, 1). The exponent α only depends on n, s0, λ and Λ, while the C0,α norm
of u on any Ω′ b Ω may also depend on ‖u‖L∞(Rn), ‖Wr(·, u)‖L∞(Ω) and dist (Ω′, ∂Ω).

Proof. — Let u be a bounded local minimizer of E in Ω. By taking the first varia-
tion of E , it is easy to see that u is a solution of the Euler-Lagrange equation (2.2)
in Ω, with f = Wr(·, u). Notice that u ∈ X(Ω), since E (u; Ω) is finite. Moreover,
being u ∈ L∞(Rn) and Wr locally bounded, we obtain that f is also a bounded
function in Ω. Thence, Theorem 2.1 applies and yields the C0,α regularity of u. The
quantitative estimate of the Hölder norm of u on compact subsets of Ω follows by
applying (2.4) along with a standard covering argument. �
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The remaining part of the section is devoted to the proof of Theorem 2.1, which is
based on the Moser’s iteration technique and some arguments in [Kas09, Kas11].

We begin with a lemma dealing with non-negative supersolutions of (2.2).

Lemma 2.3. — Let f ∈ L∞(B1) and u ∈ X(B1) be a non-negative supersolution
of (2.2) in B1. Suppose that

(2.5) u(x) > ‖f‖L∞(B1) + δ for a.e. x ∈ B1,

for some δ > 0. Then,

(2.6)
(
−
∫
B1/2

u(x)p? dx

)1/p?

6 C?

(
−
∫
B1/2

u(x)−p? dx

)−1/p?

,

for some constant C? > 0 and exponent p? ∈ (0, 1) which depend only on n, s0, λ
and Λ.

Proof. — We plan to show that log u ∈ BMO(B1/2). To this end, we claim that there
exists a constant c1 > 0, depending only on n, s0, λ and Λ, such that

(2.7) [log u]Hs(Br(z)) 6 c1r
−s+n/2,

holds true for any z ∈ B1/2 and r > 0 for which Br(z) ⊆ B1/2.
In order to prove (2.7), we take a cut-off function η ∈ C∞c (Rn) satisfying 0 6 η 6 1

in Rn, supp(η) = B3r/2(z), η = 1 in Br(z) and |∇η| 6 4r−1 in Rn. We test formula-
tion (2.3) with ϕ := η2u−1. Note that ϕ > 0 and ϕ ∈ X0(B1) thanks to the definition
of η and condition (2.5). Recalling (K1), inequality (2.3) becomes

(2.8)
∫
B3r/2(z)

f(x)η2(x)

u(x)
dx

6
∫
B2r(z)

∫
B2r(z)

(u(x)− u(y))
(η2(x)

u(x)
− η2(y)

u(y)

)
K(x, y) dxdy

+ 2

∫
B2r(z)

η2(y)

u(y)

(∫
RnrB2r(z)

(
u(y)− u(x)

)
K(x, y) dx

)
dy

=: I1 + 2I2.

For any x, y ∈ B2r(z) we compute

(u(x)− u(y))
(η2(x)

u(x)
− η2(y)

u(y)

)
= η2(x) + η2(y)− η2(x)u(y)

u(x)
− η2(y)u(x)

u(y)

= |η(x)− η(y)|2 − |η(y)u(x)− η(x)u(y)|2

u(x)u(y)
.

Hence, using (K2) together with the numerical inequality

(log a− log b)
2 6

(a− b)2

ab
,
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that holds for any a, b > 0, we get(4)

I1 =

∫
B2r(z)

∫
B2r(z)

[
|η(x)− η(y)|2 − |η(y)u(x)− η(x)u(y)|2

u(x)u(y)

]
K(x, y) dxdy

6
16Λ

r2

∫
B2r(z)

∫
B2r(z)

dxdy

|x− y|n−2+2s
− λ

∫
Br(z)

∫
Br(z)

|u(x)− u(y)|2

u(x)u(y)

dxdy

|x− y|n+2s

(2.9)
6 2n+4nα2

nΛrn−2

∫ 4r

0

ρ1−2s dρ− λ
∫
Br(z)

∫
Br(z)

|log u(x)− log u(y)|2

|x− y|n+2s
dxdy

6
2n+7nα2

nΛ

s0
rn−2s − λ[log u]2Hs(Br(z)).

On the other hand, by the non-negativity of u and again (K2) we estimate

(2.10)

I2 =

∫
B3r/2(z)

η2(y)

u(y)

(∫
RnrB2r(z)

(u(y)− u(x))K(x, y) dx

)
dy

6 Λ

∫
B3r/2(z)

η2(y)

(∫
RnrB2r(z)

|x− y|−n−2s dx

)
dy

6
23n+1nα2

nΛ

s0
rn−2s.

Finally, using (2.5) we have∫
B3r/2(z)

f(x)η2(x)

u(x)
dx > −

∫
B3r/2(z)

|f(x)|
u(x)

dx > −
‖f‖L∞(B1)|B3r/2|
‖f‖L∞(B1) + δ

> −2nαnr
n−2s,

since r < 1. Claim (2.7) then follows by combining this last equation with (2.8), (2.9)
and (2.10).

We are now ready to show that log u ∈ BMO(B1/2). For a bounded Ω ⊂ Rn

and v ∈ L1(Ω), write

(v)Ω :=
1

|Ω|

∫
Ω

v(x) dx.

Applying both Hölder’s and fractional Poincaré’s inequality, from (2.7) we obtain

‖ log u− (log u)Br(z)‖L1(Br(z)) 6 |Br|1/2‖ log u− (log u)Br(z)‖L2(Br(z))

6 c2r
s+n/2 [log u]Hs(Br(z))

6 c3r
n,

for some c2, c3 > 0 which may depend on n, s0, λ and Λ. Since the above inequality
holds for any Br(z) ⊆ B1/2, we conclude that log u ∈ BMO(B1/2).

Estimate (2.6) then follows by the John-Nirenberg embedding in one of its equiva-
lent forms (see, for instance, Theorem 6.25 of [GM12]). Observe that the exponent p?
given by such result is of the form of a dimensional constant divided by the BMO(B1/2)

(4)Throughout the paper, the symbol αn is used to denote the volume of the unit ball of Rn.
That is, αn := |B1| = πn/2/Γ((n+ 2)/2). Accordingly, the (n − 1)-dimensional Hausdorff measure
of the sphere ∂B1 is then given by Hn−1(∂B1) = nαn.
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semi-norm of log u. This norm being bounded from above by c3 and since we are free
to make p? smaller if necessary, it turns out that we can choose p? ∈ (0, 1) to depend
only on n, s0, λ and Λ. �

Next is the step of the proof in which the iterative argument really comes into play.

Lemma 2.4. — Let f ∈ L∞(B1) and u ∈ X(B1) be a supersolution of (2.2) in B1.
Assume that u satisfies (2.5), for some δ > 0. Then, for any p0 > 0,

(2.11) inf
B1/4

u > c]

(
−
∫
B1/2

u(x)−p0 dx

)−1/p0

,

for some constant c] > 0 which may depend on n, s0, λ, Λ and p0.

Proof. — Fix θ ∈ (0, 1). We claim that, for any r ∈ (0, 1/2] and p > 1, it holds

(2.12)
∫
Bθr

∫
Bθr

∣∣u(x)(−p+1)/2 − u(y)(−p+1)/2
∣∣2

|x− y|n+2s
dxdy6 c1

p2

(1− θ)2r2s

∫
Br

u(x)−p+1 dx,

for some constant c1 > 0 depending on n, s0, λ and Λ.
To prove (2.12), consider a cut-off η ∈ C∞c (Rn) such that 0 6 η 6 1 in Rn,

supp(η) = Br, η = 1 in Bθr and |∇η| 6 2(1− θ)−1r−1 in Rn, and plug ϕ := ηp+1u−p

into (2.3). Inequality (2.12) then follows by arguing as in Lemma 3.5 of [Kas09] and
noticing that, by (2.5),∫

Br

f(x)η(x)p+1

u(x)p
dx > −

∫
Br

|f(x)|u(x)−p+1

u(x)
dx > −r−2s

∫
Br

u(x)−p+1 dx,

where we also used the fact that r < 1.
By using (2.12) in combination with the fractional Sobolev inequality, we then

deduce

(2.13)
(
−
∫
Bθr

u(x)n(−p+1)/(n−2s) dx

)(n−2s)/n

6 c2
p2

(1− θ)2θn
−
∫
Br

u(x)−p+1 dx,

for some c2 > 1 which depends only on n, s0, λ and Λ.
We are now in position to run the iterative scheme, which is based on the funda-

mental estimate (2.13). For any k ∈ N ∪ {0}, define

rk :=
1 + 2−k

4
, pk :=

( n

n− 2s

)k
p0 and Φk :=

(
−
∫
Brk

u(x)−pk dx

)1/pk

,

so that
θk :=

rk+1

rk
=

1 + 2−k−1

1 + 2−k
∈ [3/4, 1) .

We apply (2.13) with r = rk, θ = θk and p = 1 + pk, to get

(2.14) Φk+1 6 qkΦk,

for any k ∈ N ∪ {0}, where

qk :=

[
c2

(1 + pk)2

(1− θk)2θnk

]1/pk

.
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From (2.14) it then follows that

(2.15) Φk 6 Φ0

k−1∏
j=0

qj .

Now we observe that

1− θk =
2−k − 2−k−1

1 + 2−k
=

1

2k+1 + 2
>

1

2k+2
.

Therefore, recalling that θk > 3/4,
1

(1− θk)2θnk
6 22(k+2) (4/3)

n 6 22k+n+4,

and hence

log qk 6
1

pk
log
[
c2(1 + pk)222k+n+4

]
6

1

pk
log

[
c3

( 2n

n− 2s

)2k
]
6 c4

(n− 2s0

n

)k
k,

for some c3, c4 > 0 that may also depend on p0. This implies that the product of
the qj ’s converges, as k → +∞. Thence, (2.11) follows from (2.15), since

lim inf
k→+∞

Φk > lim
k→+∞

|Brk |−1/pk‖u−1‖Lpk (B1/4) = sup
B1/4

u−1 =
(

inf
B1/4

u
)−1

. �

By putting together Lemmata 2.3 and 2.4, we easily obtain the following weak
Harnack inequality.

Corollary 2.5. — Let r ∈ (0, 1] and f ∈ L∞(Br). Assume that u ∈ X(Br)∩L∞(Rn)

is a non-negative supersolution of (2.2) in Br. Then,

(2.16) inf
Br/4

u+ r2s‖f‖L∞(Br) > c?

(
−
∫
Br/2

u(x)p?
)1/p?

,

for some c? ∈ (0, 1) depending only on n, s0, λ and Λ.

Proof. — Assume for the moment r = 1. Let then δ > 0 be a small parameter and
define uδ := u + ‖f‖L∞(B1) + δ. Note that uδ is still a non-negative supersolution
of (2.2) in B1 and that it satisfies (2.5). Thus, we are free to apply Lemmata 2.3
and 2.4 to uδ and obtain that

inf
B1/4

u+ ‖f‖L∞(B1) + δ >
c]
C?

(
−
∫
B1/2

u(x)p? dx

)1/p?

.

Letting δ → 0+ we obtain (2.16) when r = 1. For a general radius r 6 1 the result
follows by a simple scaling argument. �

With the aid of Corollary 2.5, we can prove the following proposition, which will be
the fundamental step in the conclusive inductive argument. In the literature, results
of this kind are often known as growth lemmata.
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Proposition 2.6. — There exist γ ∈ (0, 2s0) and η ∈ (0, 1), depending only on n, s0, λ
and Λ, such that for any r ∈ (0, 1], f ∈ L∞(Br) and u ∈ X(Br) ∩ L∞(Rn) superso-
lution of (2.3) in Br, for which

(2.17) u(x) > 0 for a.e. x ∈ B2r,

(2.18)
∣∣{x ∈ Br/2 : u(x) > 1

}∣∣ > 1

2
|Br/2|,

and

(2.19) u(x) > −2 (8|x|/2r)γ + 2 for a.e. x ∈ Rn rB2r,

hold true, then

(2.20) inf
Br/4

u+ r2s‖f‖L∞(Br) > η.

Proof. — Write u = u+ − u−. Using (K1) and (2.17), it is easy to see that u+ is a
supersolution of

DK(u+, ·) = f̃ in Br,

where

f̃(x) := f(x)− 2

∫
RnrB2r

u−(y)K(x, y) dy.

Applying Corollary 2.5 we get that

inf
Br/4

u+ + r2s‖f̃‖L∞(Br) > c?

(
−
∫
Br/2

u+(x)p?
)1/p?

.

Using then hypotheses (2.17) and (2.18), this yields

(2.21)

inf
Br/4

u+ r2s‖f̃‖L∞(Br) > c?

(
−
∫
Br/2∩{u>1}

u(x)p?
)1/p?

> c?

(∣∣{x ∈ Br/2 : u(x) > 1
}∣∣

|Br/2|

)1/p?

> c?2
−1/p? =: 2η.

Now we turn our attention to the L∞ norm of f̃ . First, we notice that (2.19) implies
that

u−(x) 6 2 (8|x|/2r)γ − 2 for a.e. x ∈ Rn rB2r,

as the right-hand side of (2.19) is negative. Moreover, given x ∈ Br and y ∈ RnrB2r,
it holds

|y − x| > |y| − |x| > |y| − |y|/2 = |y|/2.
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Consequently, recalling (K2) we compute∫
RnrB2r

u−(y)K(x, y) dy 6 Λ

∫
RnrB2r

2 (8|y|/2r)γ − 2

|x− y|n+2s
dy

6 2n+2s+1Λ

[
(4/r)

γ
∫
RnrB2r

|y|γ−n−2s dy −
∫
RnrB2r

|y|−n−2s dy

]
= 2n+1nαnΛ

[ 8γ

2s− γ
− 1

2s

]
r−2s,

if γ < 2s0. Notice that the term in brackets on the last line of the above formula
converges to 0 as γ → 0+, uniformly in s > s0. Therefore, we can find γ > 0, in
dependence of n, s0, λ and Λ, such that

‖f̃‖L∞(Br) 6 ‖f‖L∞(Br) + r−2sη.

Inequality (2.20) then follows by combining this with (2.21). �

We are now ready to move to the actual

Proof of Theorem 2.1. — We focus on the proof of (2.4), as the Hölder continuity
of u inside Ω would then easily follow. Furthermore, we may assume without loss of
generality x0 to be the origin.

Set

(2.22) R0 := (η/4)
1/2s0 < 1,

with η as in Proposition 2.6, and take R ∈ (0, R0]. We claim that there exist a
constant α ∈ (0, 1), depending only on n, s, λ and Λ, a non-decreasing sequence {mj}
and a non-increasing sequence {Mj} of real numbers such that for any j ∈ N ∪ {0}

(2.23)
mj 6 u(x) 6Mj for a.e. x ∈ B8−jR,

Mj −mj = 8−jαL,

with

(2.24) L := 2‖u‖L∞(Rn) + ‖f‖L∞(BR).

We prove this by induction. Set

m0 := −‖u‖L∞(Rn) and M0 := ‖u‖L∞(Rn) + ‖f‖L∞(BR).

With this choice, property (2.23) clearly holds true for j = 0. Then, for a fixed k ∈ N,
we assume to have constructed the two sequences {mj} and {Mj} up to j = k− 1 in
such a way that (2.23) is satisfied and show that we can also build mk and Mk. For
any x ∈ Rn, define

v(x) :=
2 · 8(k−1)α

L

(
u(x)− Mk−1 +mk−1

2

)
,

with

(2.25) α := min {γ, log (4/(4− η))/log 8} ,

J.É.P. — M., 2017, tome 4



354 M. Cozzi & E. Valdinoci

and γ, η as in Proposition 2.6. Since u is a solution of (2.2) in Ω, we deduce that v
satisfies

(2.26) DK(v, ·) =
2 · 8(k−1)α

L
f in B8−(k−1)R.

Moreover,

(2.27) |v(x)| 6 1 for a.e. x ∈ B8−(k−1)R.

Letting instead x ∈ Rn rB8−(k−1)R, there exists a unique ` ∈ N for which

8−(k−`)R 6 |x| < 8−(k−`−1)R.

Writing m−j := m0 and M−j := M0 for every j ∈ N, we compute

(2.28)

v(x) 6
2 · 8(k−1)α

L

(
Mk−`−1 −mk−`−1 +mk−`−1 −

Mk−1 +mk−1

2

)
6

2 · 8(k−1)α

L

(
Mk−`−1 −mk−`−1 −

Mk−1 −mk−1

2

)
6

2 · 8(k−1)α

L

(
8−(k−`−1)αL− 8−(k−1)αL

2

)
= 2 · 8`α − 1

6 2
(

8
|x|

8−(k−1)R

)α
− 1,

Analogously, one checks that

(2.29) v(x) > −2
(

8
|x|

8−(k−1)R

)α
+ 1,

for a.e. x ∈ Rn rB8−(k−1)R.
We distinguish between the two mutually exclusive possibilities
(a)

∣∣{x ∈ B8−(k−1)R/4 : v(x) 6 0
}∣∣ > 1

2 |B8−(k−1)R/4|, and
(b)

∣∣{x ∈ B8−(k−1)R/4 : v(x) 6 0
}∣∣ < 1

2 |B8−(k−1)R/4|.
In case (a), set ũ := 1− v. From (2.26) we deduce in particular that

DK(ũ, ·) = −2 · 8(k−1)α

L
f in B8−(k−1)R/2.

In view of (2.27) and (2.28) we apply Proposition 2.6 to ũ, with r = 8−(k−1)R/2, and
obtain that

inf
B

8−(k−1)R/8

ũ+
(8−(k−1)R

2

)2s ∥∥∥− 2 · 8(k−1)α

L
f
∥∥∥
L∞(B

8−(k−1)R/2
)
> η,

from which, by (2.24) and (2.22), it follows

sup
B

8−kR

v 6 1− η +
(8−(k−1)R

2

)2s ∥∥∥− 2 · 8(k−1)α

L
f
∥∥∥
L∞(B

8−(k−1)R/2
)

6 1− η + 2 · 8−(2s0−α)(k−1)R2s0
0

‖f‖L∞(BR)

L

6 1− η

2
.
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Note that we took advantage of the fact that α 6 γ < 2s0, by (2.25). If we translate
this estimate back to u, applying (2.25) once again we finally get

sup
B

8−kR

u 6
(

1− η

2

) L

2 · 8(k−1)α
+
Mk−1 +mk−1

2

=
(

1− η

2

)Mk−1 −mk−1

2
+
Mk−1 +mk−1

2
= mk−1 + ((4− η)/4) (Mk−1 −mk−1)

6 mk−1 + 8−kαL.

Accordingly, (2.23) is satisfied by setting mk := mk−1 and Mk := mk−1 + 8−kαL.
If on the other hand (b) holds we define ũ := 1 + v. With a completely analogous

argument using (2.29) in place of (2.28), we end up estimating

inf
B

8−kR

u >Mk−1 − 8−kαL,

so that (2.23) again follows with mk := Mk−1 − 8−kαL and Mk := Mk−1.
The proof of the theorem is therefore complete, as the bound in (2.4) is an imme-

diate consequence of claim (2.23). �

3. An energy estimate

We include here a result which addresses the growth of the energy E of local
minimizers inside large balls. We point out that, as in Section 2, this estimate is set
in a general framework. In particular, the periodicity of K and W encoded in (K3)
and (W4) is not significant here. Writing

(3.1) Ψs(R) :=


R1−2s if s ∈ (0, 1/2)

logR if s = 1/2

1 if s ∈ (1/2, 1),

we can state the following

Proposition 3.1. — Let n ∈ N, s ∈ (0, 1), x0 ∈ Rn and R > 3. Assume that K
and W satisfy(5) (K1), (K2) and (W1), (W3), respectively. If u : Rn → [−1, 1] is a
local minimizer of E in BR+2(x0), then

(3.2) E (u;BR(x0)) 6 CRn−1Ψs(R),

for some constant C > 0 which depends on n, s, Λ and W ∗.

The above proposition will play an important role later in Subsection 4.6, as it will
imply that the interface region of a minimizer cannot be too wide.

Estimate (3.2) has first been proved in [CC14] and [SV14] for the fractional Lapla-
cian. While in the first paper the authors use the harmonic extension of u to Rn+1

+

to prove (3.2), in the latter work the result is obtained by explicitly computing the

(5)We observe that, at this level, only the boundedness of W encoded in (W3) is relevant here.
Thus, no assumption on the derivativeWr is necessary. See in particular the proof of Proposition 3.1.
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energy E of a suitable competitor of u. It turns out that this strategy is flexible
enough to be adapted to our framework and the proof of Proposition 3.1 is actually
an appropriate and careful modification of that of [SV14, Th. 1.3].

Before heading to the proof of Proposition 3.1, we first need the following auxiliary
result that will be also widely used in the following Section 4.

Lemma 3.2. — Let U, V be two measurable subsets of Rn and u, v ∈ Hs
loc(Rn). Then,

(3.3) K (min{u, v};U, V ) + K (max{u, v};U, V ) 6 K (u;U, V ) + K (v;U, V ),

and

(3.4) P(min{u, v};U) + P(max{u, v};U) = P(u;U) + P(v;V ).

Proof. — Since the derivation of identity (3.4) is quite straightforward, we focus
on (3.3) only.

We write for simplicity m := min{u, v} andM := max{u, v}. Observe that we may
assume the right-hand side of (3.3) to be finite, the result being otherwise obvious.
In order to show (3.3), we actually prove the stronger pointwise relation

(3.5) |m(x)−m(y)|2 + |M(x)−M(y)|2 6 |u(x)− u(y)|2 + |v(x)− v(y)|2,

for a.e. x, y ∈ Rn.
Let then x and y be two fixed points in Rn. In order to check that (3.5) is true, we

consider separately the two possibilities
(i) u(x) 6 v(x) and u(y) 6 v(y), or u(x) > v(x) and u(y) > v(y);
(ii) u(x) 6 v(x) and u(y) > v(y), or u(x) > v(x) and u(y) 6 v(y).
In the first situation it is immediate to see that (3.5) holds as an identity. Suppose

then that point (ii) occurs. If this is the case, we compute

|m(x)−m(y)|2 + |M(x)−M(y)|2

= |u(x)− v(y)|2 + |v(x)− u(y)|2

= |u(x)− u(y)|2 + |v(x)− v(y)|2 + 2 (u(x)− v(x)) (u(y)− v(y))

6 |u(x)− u(y)|2 + |v(x)− v(y)|2,

which is (3.5). The proof of the lemma is thus complete. �

Proof of Proposition 3.1. — Without loss of generality, we assume x0 to be the origin.
In the course of the proof we will denote as c any positive constant which depends at
most on n, s, Λ and W ∗.

Let ψ be the radially symmetric function defined by

ψ(x) := 2 min {(|x| −R− 1)+, 1} − 1 =


−1 if x ∈ BR+1

2|x| − 2R− 1 if x ∈ BR+2 rBR+1

1 if x ∈ Rn rBR+2.

We claim that ψ satisfies (3.2) in BR+2, that is

(3.6) E (ψ;BR+2) 6 cRn−1Ψs(R).
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Indeed, let x ∈ BR+2 and set d(x) := max{R− |x|, 1}. It is easy to see that

|ψ(x)− ψ(y)| 6 2

{
d(x)−1|x− y| if |x− y| < d(x)

1 if |x− y| > d(x).

Consequently, applying (K2) we compute∫
Rn
|ψ(x)− ψ(y)|2K(x, y) dy 6 4ωn−1Λ

[
d(x)−2

∫ d(x)

0

ρ1−2s dρ+

∫ +∞

d(x)

ρ−1−2s dρ

]
6 cd(x)−2s.

Furthermore, using polar coordinates we get

(3.7)
∫
BR+2

d(x)−2s dx =

∫
BR−1

dx

(R− |x|)2s +

∫
BR+2rBR−1

dx 6 cRn−1Ψs(R).

Hence, ∫
BR+2

∫
Rn
|ψ(x)− ψ(y)|2K(x, y) dxdy 6 cRn−1Ψs(R).

Since by (W3) and (W1) we also have

P(ψ,BR+2) =

∫
BR+2

W (x, ψ(x)) dx 6W ∗
∫
BR+2rBR+1

dx 6 cRn−1,

it is clear that estimate (3.6) follows.
Now, set v := min{u, ψ} and w := max{u, ψ}. By the definition of ψ and the fact

that −1 6 u 6 1, we observe that

(3.8) u = v in Rn rBR+2,

and

(3.9) u = w in BR+1.

By virtue of (3.9),

(3.10) K (u;BR, BR) = K (w;BR, BR) and P(u;BR) = P(w;BR).

On the other hand, we claim that

(3.11) K (u;BR,Rn rBR) 6 K (w;BR,Rn rBR) + cRn−1Ψs(R).

Indeed, using (K2), (3.9) and the fact that |u|, |ψ| 6 1 a.e. in Rn, we compute

K (u;BR,Rn rBR)−K (w;BR,Rn rBR)

=
1

2

∫
BR

(∫
RnrBR+1

[
|u(x)− u(y)|2 − |u(x)− w(y)|2

]
K(x, y) dy

)
dx

6 2Λ

∫
BR

(∫
RnrBR+1

|x− y|−n−2s dy

)
dx 6 c

∫
BR

d(x)−2s dx,

and claim (3.11) then follows from (3.7). Accordingly, by (3.11) and (3.10) we obtain
that

(3.12) E (u;BR) 6 E (w;BR) + cRn−1Ψs(R).
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We now take advantage of the minimality of u and (3.8) to deduce

E (u;BR+2) 6 E (v;BR+2).

Then, from this and Lemma 3.2 it follows immediately that

(3.13) E (w;BR) 6 E (w;BR+2) 6 E (ψ;BR+2).

Note that the first inequality above is true as a consequence of the inclusion CBR ⊂
CBR+2

(see Remark 1.2). By applying in sequence (3.12), (3.13) and (3.6), we finally
get (3.2). �

4. Proof of Theorem 1.4 for rapidly decaying kernels

The present section contains the proof of Theorem 1.4 under the additional as-
sumption that K satisfies

(K4) K(x, y) 6
Γ

|x− y|n+β
for a.e. x, y ∈ Rn such that |x− y| > R, with β > 1,

for some constants Γ, R > 0. We stress that this hypothesis is merely technical and
in fact it will be removed later in Section 5. However, we need the fast decay of the
kernel K at infinity — ensured by the fact that β > 1 — in order to perform a
delicate construction at some point (roughly speaking, the decay assumed in (K4) is
needed to ensure the existence of a competitor with finite energy in the large, but the
geometric estimates will be independent of the quantities in (K4) and this will allow
us to perform a limit procedure). Hence, we assume (K4) to hold in the whole section.
Notice that if s > 1/2, then (K4) is automatically fulfilled in view of (K2).

The argument leading to the proof of Theorem 1.4 is long and articulated. There-
fore, we divide the section into several subsections which we hope will make the
reading easier.

We first deal with the case of a rational direction ω. Under this assumption, we can
take advantage of the equivalence relation ∼ω defined in (1.5) to build the minimizer.
This construction occupies Subsections 4.1-4.6.

Irrational directions — i.e., ω ∈ Rn rQn — are then treated in Subsection 4.7 as
limiting cases.

For simplicity of exposition, we restrict ourselves to consider θ = 9/10. The general
case is in no way different. Of course, the choice 9/10 is made in order to represent a
value of θ close to 1.

4.1. Minimization with respect to periodic perturbations. — Let ω ∈ Qn r {0}
be fixed. Given a measurable function u : Rn → R, we say that u ∈ L2

loc(R̃n) if
u ∈ L2

loc(Rn) and u is periodic with respect to ∼. Given A < B, let

AA,Bω :=
{
u ∈ L2

loc(R̃n) : u(x) > 9/10 if ω · x 6 A and u(x) 6 −9/10 if ω · x > B
}
,
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be the set of admissible functions. We introduce the auxiliary functional

(4.1.1)
Fω(u) := K (u; R̃n,Rn) + P(u; R̃n)

=
1

2

∫
R̃n

∫
Rn
|u(x)− u(y)|2K(x, y) dxdy +

∫
R̃n
W (x, u(x)) dx.

Note that in the integrals above, R̃n stands for any fundamental domain of the rela-
tion ∼. In the following, we will often identify quotients with any of their respective
fundamental domains.

The aim of this subsection is to prove the existence of an absolute minimizer of Fω

within the class AA,Bω , that is a function u ∈ AA,Bω such that Fω(u) 6 Fω(v), for
any v ∈ AA,Bω . Such minimizers are the building blocks of our construction, as will
become clear in the sequel.

As a first step toward this goal, we show that Fω is not identically infinite on AA,Bω .

Lemma 4.1.1. — Let u ∈ AA,Bω be defined by setting u(x) := µ(ω · x), where µ is the
piecewise linear function given by

µ(t) :=


1 if t 6 A

1− 2

B −A
(t−A) if A < t 6 B

−1 if t > B.

Then, Fω(u) < +∞.

Proof. — Since W (x, ·) vanishes at ±1, for a.e. x ∈ Rn, it is clear that the potential
term of Fω evaluated at u is finite. Thus, we only need to estimate the kinetic term.
To do this, by (K2) and (K4), it is in turn sufficient to show that

(4.1.2)
∫
R̃n

(∫
BR(x)

|u(x)− u(y)|2

|x− y|n+2s
dy +

∫
RnrBR(x)

|u(x)− u(y)|2

|x− y|n+β
dy

)
dx < +∞.

Notice that, up to an affine transformation, we may take ω = en. Moreover, we assume
for simplicity that A = 0 and B = 1. In this setting, we have R̃n = [0, 1]n−1 ×R and,
consequently, (4.1.2) is equivalent to

(4.1.3) I :=

∫
[0,1]n−1×R

(∫
BR(x)

|u(x)− u(y)|2

|x− y|n+2s
dy

)
dx < +∞,

and

(4.1.4) J :=

∫
[0,1]n−1×R

(∫
RnrBR(x)

|u(x)− u(y)|2

|x− y|n+β
dy

)
dx < +∞.

By the definition of u, it is clear that

I =

∫
[0,1]n−1×[−R,R+1]

(∫
BR(x)

|u(x)− u(y)|2

|x− y|n+2s
dy

)
dx.

Then, we take advantage of u being Lipschitz to compute, using polar coordinates,

I 6 4

∫
[0,1]n−1×[−R,R+1]

(∫
BR(x)

dy

|x− y|n+2s−2

)
dx =

2nαn
1− s

(2R+ 1)R
2−2s

,

which implies (4.1.3).
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On the other hand, to prove (4.1.4) we first write J = J1 + J2 + J3, where

J1 :=

∫
[0,1]n−1×[2,+∞)

(∫
RnrBR(x)

|u(x)− u(y)|2

|x− y|n+β
dy

)
dx,

J2 :=

∫
[0,1]n−1×(−∞,−1]

(∫
RnrBR(x)

|u(x)− u(y)|2

|x− y|n+β
dy

)
dx,

J3 :=

∫
[0,1]n−1×[−1,2]

(∫
RnrBR(x)

|u(x)− u(y)|2

|x− y|n+β
dy

)
dx.

Using the definition of u, we observe that

J1 6
∫

[0,1]n−1×[2,+∞)

(∫
Rn−1×(−∞,1]

| − 1− µ(yn)|2

|x− y|n+β
dy

)
dx

6 4

∫
[0,1]n−1×[2,+∞)

(∫
Rn−1×(−∞,1]

dy

|x− y|n+β

)
dx.

Making the substitution z′ := (y′ − x′)/|xn − yn|, we have∫
Rn−1×(−∞,1]

dy

|x− y|n+β
=

∫ 1

−∞
|xn − yn|−n−β

[∫
Rn−1

(
1 +

|x′ − y′|2

|xn − yn|2
)−(n+β)/2

dy′
]
dyn

=

∫ 1

−∞
|xn − yn|−1−β

[∫
Rn−1

(
1 + |z′|2

)−(n+β)/2
dz′
]
dyn

=
Ξ

β
(xn − 1)−β ,

where we denoted with Ξ the finite quantity∫
Rn−1

(
1 + |z′|2

)−(n+β)/2
dz′.

Accordingly,

J1 6
4Ξ

β

∫ +∞

2

(xn − 1)−βdxn =
4Ξ

(β − 1)β
,

since β > 1. Similarly, one checks that J2 is finite too. The computation of J3 is
simpler. By taking advantage of the fact that u is a bounded function and switching
to polar coordinates, we get

J3 6 4

∫
[0,1]n−1×[−1,2]

(∫
RnrBR(x)

dy

|x− y|n+β

)
dx =

12nαn
β

R
−β
.

Hence, (4.1.4) follows. �

We want to highlight how crucial condition (K4) has been in the proof of the above
lemma. Indeed, if the kernel K has a slower decay at infinity, the result is no longer
true. Lemma A.1 in Appendix A shows that, under this assumption, the functional Fω

is nowhere finite on the whole class of admissible functions AA,Bω .
We also point out that this is the only part of the section in which we need the

additional hypothesis (K4) and future computations will involve neither β, nor R,
nor Γ.
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With the aid of the finiteness result yielded by Lemma 4.1.1, we can now prove the
existence of minimizers.

Proposition 4.1.2. — There exists an absolute minimizer of the functional Fω within
the class AA,Bω .

Proof. — Our argumentation follows the lines of the standard Direct Method of the
Calculus of Variations.

By Lemma 4.1.1 and the fact that Fω is non-negative, we know that

m := inf
{
Fω(u) : u ∈ AA,Bω

}
∈ [0,+∞).

Let then {uj}j∈N ⊆ AA,Bω be a minimizing sequence. Observe that we may assume
without loss of generality that

(4.1.5) |uj | 6 1 a.e. in Rn,

as this restriction only makes the energy Fω decrease. Moreover, we fix an integer
k > max{−A,B} and consider the Lipschitz domains

Ωk := R̃n ∩ {x ∈ Rn : |ω · x| 6 k} .

By (4.1.5) and (K2) we have

[uj ]
2
Hs(Ωk) 6

∫
Ωk

(∫
B1(x)

|uj(x)− uj(y)|2

|x− y|n+2s
dy

)
dx+ 4

∫
Ωk

(∫
RnrB1(x)

dy

|x− y|n+2s

)
dx

6
2

λ
Fω(uj) +

2nαn|Ωk|
s

,

so that {uj} is bounded in Hs(Ωk), uniformly in j. By the compact embedding
of Hs(Ωk) into L2(Ωk) (see e.g. Theorem 7.1 of [DNPV12]), we then deduce that
a subsequence of {uj} converges to some function u in L2(Ωk) and, thus, a.e. in Ωk.
Using a diagonal argument (on j and k), we may indeed find a subsequence {u∗j}
of {uj} which converges to u a.e. in R̃n. Furthermore, we may identify the u∗j ’s and u
with their ∼-periodic extensions to Rn and thus obtain that such convergence is a.e.
in the whole space Rn. Accordingly, u ∈ AA,Bω and an application of Fatou’s lemma
shows that Fω(u) = m. This concludes the proof. �

4.2. The minimal minimizer. — Denote by MA,B
ω the set composed by the absolute

minimizers of Fω in AA,Bω , i.e.,

MA,B
ω :=

{
u ∈ AA,Bω : Fω(u) 6 Fω(v) for any v ∈ AA,Bω

}
.

Clearly,MA,B
ω is not empty, as shown by Proposition 4.1.2. Here below we introduce

a particular element of the classMA,B
ω , that will turn out to be of central interest in

the remainder of the paper.
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Definition 4.2.1. — We define the minimal minimizer uA,Bω as the infimum ofMA,B
ω

as a subset of the partially ordered set (AA,Bω ,6). More specifically, uA,Bω is the unique
function of AA,Bω for which

(4.2.1) uA,Bω 6 u in Rn for every u ∈MA,B
ω

and

(4.2.2) if v ∈ AA,Bω is s.t. v 6 u in Rn for every u ∈MA,B
ω , then v 6 uA,Bω in Rn.

Of course, the existence of the minimal minimizer is far from being established.
The aim of the subsection is to prove that such function is in fact well-defined and
that it belongs toMA,B

ω itself.
In order to construct uA,Bω we first need to show that the setMA,B

ω is closed with
respect to the operation of taking the minimum between two of its elements. To do
this, we actually prove a stronger fact, which will be needed, in its full generality, only
later in Subsection 4.5.

Lemma 4.2.2. — Let A 6 A′ and B 6 B′, with A < B and A′ < B′. If u ∈ MA,B
ω

and v ∈MA′,B′

ω , then min{u, v} ∈ MA,B
ω .

Proof. — First, notice that min{u, v} ∈ AA,Bω and max{u, v} ∈ AA′,B′ω . Moreover,
employing Lemma 3.2 we deduce

Fω(min{u, v}) + Fω(max{u, v}) 6 Fω(u) + Fω(v).

Taking advantage of this inequality, together with the fact that v ∈MA′,B′

ω , we get

Fω(min{u, v}) + Fω(max{u, v}) 6 Fω(u) + Fω(max{u, v}),

which in turn implies that

Fω(min{u, v}) 6 Fω(u).

Consequently, min{u, v} ∈ MA,B
ω . �

By choosing A = A′ and B = B′, we obtain the desired

Corollary 4.2.3. — Let u, v ∈MA,B
ω . Then, min{u, v} ∈ MA,B

ω .

Now that we know that the minimum between two — and, consequently, any finite
number of — minimizers is still a minimizer, we can show that also the infimum over
a countable family of elements ofMA,B

ω belongs toMA,B
ω .

Lemma 4.2.4. — Let {uj}j∈N be a sequence of elements ofMA,B
ω . Then

inf
j∈N

uj ∈MA,B
ω .

Proof. — Write u∗ := infj∈N uj . We define inductively the auxiliary sequence

vj :=

{
u1 if j = 1

min{vj−1, uj} if j > 2.
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By Corollary 4.2.3, we know that {vj} ⊆ MA,B
ω . Moreover, vj converges to u∗ a.e.

in Rn. An application of Fatou’s lemma then yields that u∗ ∈ AA,Bω and

Fω(u∗) 6 lim
j→+∞

Fω(vj) = Fω(vk),

for any k ∈ N. Therefore, u∗ ∈MA,B
ω . �

Finally, we are in position to prove the main result of the present subsection.

Proposition 4.2.5. — The minimal minimizer uA,Bω , as given by Definition 4.2.1,
exists and belongs toMA,B

ω .

Proof. — The set MA,B
ω is separable with respect to convergence a.e., i.e., there

exists a sequence {uj}j∈N ⊆ MA,B
ω such that for any u ∈ MA,B

ω we may pick a
subsequence {ujk} which converges to u a.e. in Rn. A rigorous proof of this fact can
be found in Proposition B.2 of Appendix B. Set

uA,Bω := inf
j∈N

uj .

By Lemma 4.2.4, we already know that uA,Bω ∈ MA,B
ω . We claim that uA,Bω is the

minimal minimizer, i.e., that satisfies the properties (4.2.1) and (4.2.2) listed in Defi-
nition 4.2.1.

Take u ∈MA,B
ω and let {ujk} be a subsequence of {uj} converging to u a.e. in Rn.

By definition, uA,Bω 6 ujk in Rn, for any k ∈ N. Hence, taking the limit as k → +∞,
condition (4.2.1) follows.

Now we turn our attention to (4.2.2) and we assume that there exists v ∈ AA,Bω

such that v 6 u, for any u ∈MM
ω . Then, in particular, we have v 6 uj , for any j ∈ N

which implies v 6 uA,Bω . Thus, (4.2.2) follows and the proof of the proposition is
complete. �

4.3. The doubling property. — An important feature of the minimal minimizer is
the so-called doubling property (or no-symmetry-breaking property). Namely, we prove
in this subsection that uA,Bω is still the minimal minimizer with respect to functions
having periodicity multiple of ∼. In order to formulate precisely this result, we need
a few more notation.

Let z1, . . . , zn−1 ∈ Zn denote some vectors spanning the (n−1)-dimensional lattice
induced by ∼. Thus, any k ∈ Zn such that ω · k = 0 may be written as

k =

n−1∑
i=1

µizi,

for some µ1, . . . , µn−1 ∈ Z. For a fixed m ∈ Nn−1, we introduce the equivalence
relation ∼m, defined by setting

x ∼m y if and only if x− y =

n−1∑
i=1

µimizi, for some µ1, . . . , µn−1 ∈ Z.
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Also, set R̃nm := Rn/ ∼m and denote by L2
loc(R̃nm) the space of ∼m-periodic functions

which belong to L2
loc(Rn). Note that R̃nm contains exactly m1 · · · · ·mn−1 copies of R̃n.

Indeed, the relation ∼m is weaker than ∼ and L2
loc(R̃n) ⊆ L2

loc(R̃nm). We consider the
space of admissible functions

AA,Bω,m :=
{
u ∈ L2

loc(R̃nm) : u(x) > 9/10 if ω · x 6 A and u(x) 6 −9/10 if ω · x > B
}
,

related to this new equivalence relation, together with the set of absolute minimizers

MA,B
ω,m :=

{
u ∈ AA,Bω,m : Fω,m(u) 6 Fω,m(v) for any v ∈ AA,Bω,m

}
,

of the functional

Fω,m(u) := K (u; R̃nm,Rn) + P(u; R̃nm)

=
1

2

∫
R̃nm

∫
Rn
|u(x)− u(y)|2K(x, y) dxdy +

∫
R̃nm

W (x, u(x)) dx.

We indicate with uA,Bω,m the minimal minimizer of the class MA,B
ω,m. Of course, its

existence is granted by the same arguments of Subsection 4.2.
Finally, given a function u : Rn → R and a vector z ∈ Rn, we denote the translation

of u in the direction z as

(4.3.1) τzu(x) := u(x− z) for any x ∈ Rn.

After this preliminary work, we can now prove that the minimal minimizer in a
class of larger period coincides with the one in a class of smaller period:

Proposition 4.3.1. — For any m ∈ Nn−1, it holds uA,Bω,m = uA,Bω .

Proof. — For simplicity of exposition we restrict ourselves to the case in whichm1 = 2

and mi = 1, for every i = 2, . . . , n − 1. The approach in the general case would be
analogous, but much heavier in notation.

We begin by showing that uA,Bω,m 6 uA,Bω . Notice that the inequality follows if we
prove that uA,Bω ∈MA,B

ω,m. To see this, we consider the translation τz1uA,Bω,m of uA,Bω,m in
the doubled direction z1. Clearly, τz1uA,Bω,m ∈MA,B

ω,m. Then, we define

ûA,Bω,m := min
{
uA,Bω,m, τz1u

A,B
ω,m

}
.

Observe that ûA,Bω,m is ∼-periodic and hence belongs to AA,Bω . Then,

Fω,m(uA,Bω ) = 2Fω(uA,Bω ) 6 2Fω(ûA,Bω,m) = Fω,m(ûA,Bω,m) 6 Fω,m(uA,Bω,m),

where the last inequality follows by Lemma 3.2, arguing as in the proof of
Lemma 4.2.2. Accordingly, we deduce that uA,Bω ∈ MA,B

ω,m and so uA,Bω,m 6 uA,Bω ,
since uA,Bω,m is the minimal minimizer ofMA,B

ω,m.
On the other hand, being ûA,Bω,m ∈MA,B

ω,m and uA,Bω ∈ AA,Bω,m, we have

Fω(ûA,Bω,m) =
1

2
Fω,m(ûA,Bω,m) 6

1

2
Fω,m(uA,Bω ) = Fω(uA,Bω ),

which implies that ûA,Bω,m ∈ MA,B
ω . Consequently, uA,Bω 6 ûA,Bω,m 6 uA,Bω,m, and the

proposition is therefore proved. �
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4.4. Minimization with respect to compact perturbations. — In the previous sub-
sections we have been concerned with functionals of the type Fω,m. We proved that
absolute minimizers for such functionals exist in particular classes of ∼m-periodic
functions. Since our ultimate goal is the construction of class A minimizers for the
energy E , we now need to show that the elements ofMA,B

ω are also minimizers of E

with respect to compact perturbations occurring within the strip

(4.4.1) SA,Bω := {x ∈ Rn : ω · x ∈ [A,B]} .

In what follows, it will also be useful to introduce the quotient

(4.4.2) S̃A,Bω,m := SA,Bω / ∼m .

The first result of the subsection addresses a general relationship intervening be-
tween the two functionals E and Fω,m.

Lemma 4.4.1. — Let u ∈ AA,Bω,m be a bounded function with finite Fω,m energy. Given
an open set Ω compactly contained in S̃A,Bω,m ,(6) let v be another bounded function such
that u = v outside Ω and set ϕ := v − u. Denoting with ṽ and ϕ̃ the ∼m-periodic
extensions to Rn of v|R̃nm and ϕ|R̃nm , respectively, it then holds

(4.4.3) E (v; R̃nm)− E (u; R̃nm)

= Fω,m(ṽ)−Fω,m(u) +

∫
R̃nm

∫
RnrR̃nm

ϕ̃(x)ϕ̃(y)K(x, y) dxdy.

In particular, if u ∈MA,B
ω,m, then

(4.4.4) E (v; R̃nm)− E (u; R̃nm) >
∫
R̃nm

∫
RnrR̃nm

ϕ̃(x)ϕ̃(y)K(x, y) dxdy.

Note that the integral written on the right-hand sides of (4.4.3) and (4.4.4) is finite,
since ϕ is compactly supported on S̃A,Bω,m and bounded. For a justification of this fact,
see Lemma A.2 in Appendix A.

Proof of Lemma 4.4.1. — For the sake of simplicity, we restrict ourselves to consider
m = (1, . . . , 1), the general case being completely analogous. Moreover, it is enough
to prove formula (4.4.3), as (4.4.4) then easily follows by noticing that ṽ ∈ AA,Bω,m.

Recalling definition (1.3), we first inspect the term K (v; R̃n,Rn r R̃n). To this
end, let x ∈ R̃n and y ∈ Rn r R̃n. We compute

|v(x)− v(y)|2 = |u(x) + ϕ(x)− u(y)|2

= |u(x) + ϕ̃(x)− u(y)− ϕ̃(y)|2 + 2ϕ̃(y) (u(x) + ϕ̃(x)− u(y))− ϕ̃(y)2

= |ṽ(x)− ṽ(y)|2 + |u(x)− u(y)|2 − |u(x)− u(y)− ϕ̃(y)|2 + 2ϕ̃(x)ϕ̃(y),

(6)We stress that here Ω is meant to be compactly contained in a fundamental domain of S̃A,B
ω,m ,

and not only in the quotient set itself. The difference is that we do not allow Ω to touch the lateral
boundary of the domain.
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and thus

(4.4.5) K (v; R̃n,Rn r R̃n) = K (ṽ, R̃n,Rn r R̃n) + K (u; R̃n,Rn r R̃n)

− 1

2

∫
R̃n

(∫
RnrR̃n

|u(x)− u(y)− ϕ̃(y)|2K(x, y) dy

)
dx

+

∫
R̃n

∫
RnrR̃n

ϕ̃(x)ϕ̃(y)K(x, y) dxdy.

Notice now that
Rn r R̃n =

⋃
k∈Znr{0}
ω·k=0

(
R̃n + k

)
,

so that we may write the integral on the second line of (4.4.5) as∑
k∈Znr{0}
ω·k=0

∫
R̃n

(∫
R̃n+k

|u(x)− u(y)− ϕ̃(y)|2K(x, y) dy

)
dx.

By changing variables as w := x− k, z := y− k, recalling (K3) and taking advantage
of the periodicity of u and ϕ̃, we find that∫

R̃n

(∫
R̃n+k

|u(x)− u(y)− ϕ̃(y)|2K(x, y) dy

)
dx

=

∫
R̃n−k

(∫
R̃n
|u(w)− u(z)− ϕ̃(z)|2K(w, z) dz

)
dw

=

∫
R̃n−k

(∫
R̃n
|v(w)− v(z)|2K(w, z) dz

)
dw.

By summing up on k this identity, (4.4.5) becomes

(4.4.6) K (v; R̃n,Rn r R̃n) = K (ṽ, R̃n,Rn r R̃n) + K (u; R̃n,Rn r R̃n)

−K (v;Rn r R̃n, R̃n) +

∫
R̃n

∫
RnrR̃n

ϕ̃(x)ϕ̃(y)K(x, y) dxdy.

The thesis then follows by noticing that

K (v; R̃n, R̃n) = K (ṽ; R̃n, R̃n) and P(v; R̃n) = P(ṽ; R̃n),

and recalling the definitions of E and Fω. �

With this in hand, we may state the following proposition, where we prove that
the absolute minimizers of Fω,m in the class AA,Bω,m also minimizes E with respect to
compact perturbations occurring inside S̃A,Bω,m .

Proposition 4.4.2. — Let u ∈MA,B
ω,m. Then, u is a local minimizer of E in every open

set Ω compactly contained in S̃A,Bω,m , that is

(4.4.7) E (u; Ω) 6 E (v; Ω),

for any v which coincides with u outside Ω.
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Proof. — First of all, we assume without loss of generality that E (v; Ω) < +∞
and |v| 6 1 a.e. in Rn. Set ϕ := v − u and observe that ϕ is supported on Ω.
We will show that inequality (4.4.7) holds on the larger region R̃nm, in place of Ω, i.e.,

(4.4.8) E (u; R̃nm) 6 E (v; R̃nm).

This will imply (4.4.7), in light of Remark 1.2.
To prove (4.4.8), we first notice that if ϕ is either non-negative or non-positive,

then (4.4.8) follows as a direct consequence of inequality (4.4.4). On the other hand,
if ϕ is sign-changing, we consider the minimum and the maximum between u and u+ϕ.
Recalling Lemma 3.2 it is immediate to see that

E (min{u, u+ ϕ}; R̃nm) + E (max{u, u+ ϕ}; R̃nm) 6 E (u; R̃nm) + E (u+ ϕ; R̃nm).

Moreover, since it holds

min{u, u+ ϕ} = u− ϕ− and max{u, u+ ϕ} = u+ ϕ+,

we may apply (4.4.4) and get

2 E (u; R̃nm) 6 E (u− ϕ−; R̃nm) + E (u+ ϕ+; R̃nm)

= E (min{u, u+ ϕ}; R̃nm) + E (max{u, u+ ϕ}; R̃nm)

6 E (u; R̃nm) + E (u+ ϕ; R̃nm).

This leads to (4.4.8). �

From this proposition and the results of Subsection 4.3, we immediately deduce
the following

Corollary 4.4.3. — The minimal minimizer uA,Bω is a local minimizer of E in every
bounded open set Ω compactly contained in the strip SA,Bω .

Proof. — Given Ω, we take m ∈ Nn−1 large enough in order to have Ω b S̃A,Bω,m . In
view of Proposition 4.3.1, uA,Bω is the minimal minimizer with respect toMA,B

ω,m. But
then, by Proposition 4.4.2, uA,Bω is a local minimizer of E in Ω. �

4.5. The Birkhoff property. — In this subsection we introduce an interesting geo-
metric feature shared by the level sets of the minimal minimizer: the Birkhoff property
(also known in the literature as “non-self-intersection property”). Namely, the level
sets of the minimal minimizers are ordered under translations.

In order to give a formal definition of this property, the following notation will be
useful.

Similarly to what we did in (4.3.1) for functions, we consider the translation of a
set E ⊆ Rn with respect to a vector z ∈ Rn

(4.5.1) τzE := E + z = {x+ z : x ∈ E} .

Notice that, with this notation, the translation of a sublevel set then is given by

(4.5.2) τz{u < θ} = {τzu < θ},

and analogously for the superlevel sets.
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Definition 4.5.1. — Let E be a subset of Rn. We say that E has the Birkhoff property
with respect to a vector $ ∈ Rn if:

– it holds τkE ⊆ E, for any k ∈ Zn such that $ · k 6 0, and
– it holds τkE ⊇ E, for any k ∈ Zn such that $ · k > 0.

Before exploring the connection between the minimal minimizer and the Birkhoff
property, we present a proposition which addresses Birkhoff sets from an abstract
point of view and displays a rigidity feature of those of such sets that have fat interior.

Proposition 4.5.2. — Let E ⊆ Rn be a set satisfying the Birkhoff property with respect
to a vector $ ∈ Rn r {0}. If E contains a ball of radius

√
n, then it also contains a

half-space which includes the center of the ball, has delimiting hyperplane orthogonal
to $ and is such that $ points outside of it.

Proof. — Let B√n(x0) be the ball of radius
√
n and center x0 contained in E. By the

Birkhoff property, it holds⋃
k∈Zn
$·k60

τkB√n(x0) ⊆
⋃

k∈Zn
$·k60

τkE ⊆ E.

The thesis now follows by observing that the set on the left-hand side above contains
the half-space {$ · (x− x0) < ε}, for some ε > 0. �

Now we show that the level sets of the minimal minimizer are Birkhoff sets. Re-
calling the relation between translations and level sets established in (4.5.2), we have

Proposition 4.5.3. — Let θ ∈ R. Then, the superlevel set
{
uA,Bω > θ

}
has the Birkhoff

property with respect to ω. Explicitly,
–
{
τku

A,B
ω > θ

}
⊆
{
uA,Bω > θ

}
, for any k ∈ Zn such that ω · k 6 0, and

–
{
τku

A,B
ω > θ

}
⊇
{
uA,Bω > θ

}
, for any k ∈ Zn such that ω · k > 0.

Analogously, the sublevel set {uA,Bω < θ} has the Birkhoff property with respect to −ω.
The same statements still hold if we replace strict level sets with broad ones.

Proof. — Let v := min{uA,Bω , τku
A,B
ω } and observe that τkuA,Bω is the minimal min-

imizer with respect to the strip τkSA,Bω = SA+ω·k,B+ω·k
ω . If ω · k 6 0 then by

Lemma 4.2.2 it follows that v ∈ MA+ω·k,B+ω·k
ω . Thus, τkuA,Bω 6 v 6 uA,Bω and

hence {
τku

A,B
ω > θ

}
⊆
{
uA,Bω > θ

}
.

On the other hand, if ω · k > 0 then v ∈MA,B
ω and therefore{

uA,Bω < θ
}
⊆
{
τku

A,B
ω < θ

}
.

The conclusion for the sublevel set {uA,Bω 6 θ} follows observing that a set E ⊆ Rn

is Birkhoff with respect to a vector $ ∈ Rn if and only if Rn r E is Birkhoff with
respect to −$.

Finally, by writing {
uA,Bω < θ

}
=
⋃
k∈N

{
uA,Bω 6 θ − 1/k

}
,
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and noticing that the union of a family of sets that are Birkhoff with respect to a mu-
tual vector is itself Birkhoff with respect to the same vector, we deduce that {uA,Bω < θ}
has the Birkhoff property with respect to −ω. In a similar way one checks that the
superlevel set {uA,Bω > θ} is Birkhoff with respect to ω. �

4.6. Unconstrained and class A minimization. — From now on we mainly restrict
our attention to strips of the form

SMω := S0,M
ω = {x ∈ Rn : ω · x ∈ [0,M ]} .

We simply write AMω for the space A0,M
ω of admissible functions,MM

ω for the absolute
minimizers and uMω for the minimal minimizer. We also assume M > 10|ω|, in order
to avoid degeneracies caused by too narrow strips.

The main purpose of this subsection is to show that the minimal minimizer uMω
becomes unconstrained for large, universal values of M/|ω|. By unconstrained we
mean that uMω no longer feels the boundary data prescribed outside the strip SMω and
gains additional minimizing properties in the whole space Rn. Of course, we will be
more precise on this later in Proposition 4.6.3.

We begin by adapting the results of Sections 2 and 3 to the minimal minimizer uMω .
Recall that uMω is a local minimizer for E inside the strip SMω , thanks to Corol-
lary 4.4.3.

In view of Corollary 2.2, we deduce that there exist universal quantities α ∈ (0, 1)

and C1 > 1 for which

(4.6.1) ‖uMω ‖C0,α(S) 6 C1,

for any open set S b SMω such that dist
(
S, ∂SMω

)
> 1.

On the other hand, Proposition 3.1 tells that, given x0 ∈ SMω and R > 3 in such a
way that BR+2(x0) b SMω , it holds

(4.6.2) E (uMω ;BR(x0)) 6 C2R
n−1Ψs(R),

for a universal constant C2 > 0. Recall that Ψs(R) was defined in (3.1).
Now that (4.6.1) and (4.6.2) are established, we may proceed to the core proposition

of the present subsection.

Proposition 4.6.1. — There exists a universal M0 > 0 such that if M > M0|ω|,
then the superlevel set {uMω > −9/10} is at least at distance 1 from the upper con-
straint {ω · x = M} delimiting SMω .

Proof. — In the course of this proof we will often indicate balls and cubes without
any explicit mention of their center. Thus, B will be for instance used to denote a
ball not necessarily centered at the origin, in contrast with the notation adopted in
the rest of the paper.

We claim that

(4.6.3)
there exists a universal constant M0 > 8n such that, for any M >M0|ω|,
we can find a ball B√n(z) b SMω , for some z ∈ SMω , on which
either uMω > 9/10 or uMω 6 −9/10.
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Let M > 8n|ω| be given and suppose that for any ball B̃ of radius
√
n compactly

contained in SMω , there exists a point x̃ ∈ B̃ such that |uMω (x̃)| < 9/10. If we show
that M/|ω| is less or equal to a universal value M0, claim (4.6.3) would then be true.

Let k > 2 be the only integer for which

(4.6.4) k 6
M

4n|ω|
< k + 1.

Take a point x0 ∈ SMω lying on the hyperplane {ω · x = M/2} and consider the
ball B = Bnk(x0). By (4.6.4), we have that B b SMω , with

(4.6.5) dist
(
B, ∂SMω

)
=

M

2|ω|
− nk > nk > 4.

Consequently, we may apply the bound in (4.6.1) to deduce that

(4.6.6) ‖uMω ‖C0,α(B) 6 C1.

Let now Q be a cube of sides 2
√
nk, centered at x0. Of course, Q ⊂ B. It is easy to

see thatQmay be partitioned (up to a negligible set) into a collection {Qj}k
n

j=1 of cubes
with sides of length 2

√
n, parallel to those of Q. Moreover, we denote with Bj ⊂ Qj

the ball of radius
√
n having the same center of Qj . See Figure 4.1.

Figure 4.1. The partition of the cube Q into the subcubes Qj ’s and
the concentric balls Bj ’s.

In view of our starting assumption, for any j=1, . . . , kn there exists a point x̃j ∈ Bj
at which |uMω (x̃j)| < 9/10. We claim that

(4.6.7) |uMω | < 99/100 in Br0(x̃j),

for some universal radius r0 ∈ (0, 1). Indeed, setting r0 := (9/(100C1))
1/α, by (4.6.6)

we get
|uMω (x)| 6 |uMω (x̃j)|+ C1|x− x̃j |α <

9

10
+ C1r

α
0 =

99

100
,

for any x ∈ Br0(x̃j). Hence, (4.6.7) is established. Furthermore, since x̃j ∈ Bj ⊂ Qj ,
we have

(4.6.8) |Br0(x̃j) ∩Qj | >
1

2n
|Br0(x̃j)| =

αn
2n

rn0 .
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By combining (4.6.7) and (4.6.8), recalling (W2) we compute

P
(
uMω ;B

)
>P

(
uMω ;Q

)
=

kn∑
j=1

P
(
uMω ;Qj

)
>

kn∑
j=1

P
(
uMω ;Br0(x̃j) ∩Qj

)
=

kn∑
j=1

∫
Br0 (x̃j)∩Qj

W
(
x, uMω (x)

)
dx

> γ

(
99

100

) kn∑
j=1

|Br0(x̃j) ∩Qj | >
αn
2n
rn0 γ

(
99

100

)
kn

=: C3k
n,

with C3 > 0 universal. On the other hand, (4.6.2) implies that

P(uMω ;B) 6 E (uMω ;B) 6 C2 (nk)
n−1

Ψs (nk) 6 C4k
n−1Ψs(k),

for some universal C4 > 0. Note that the energy estimate (4.6.2) may be applied to
the ball B thanks to (4.6.5). Comparing the last two inequalities and recalling (3.1),
we find out that k cannot be greater than a universal constant. By (4.6.4), the same
holds true for the quotient M/|ω| and hence (4.6.3) follows.

Now, we want to rule out the possibility of uMω being greater or equal to 9/10

on B√n(z), thus showing that uMω 6 −9/10 in B√n(z). By contradiction, assume that

(4.6.9) uMω > 9/10 in B√n(z).

In view of Proposition 4.5.3 the set
{
uMω > 9/10

}
has the Birkhoff property with re-

spect to ω. Hence, thanks to (4.6.9) and Proposition 4.5.2, this superlevel set contains
the half-space Π− := {ω · (x− z) < 0}. Since B√n(z) ⊂ SMω , we then deduce that the
distance of ∂Π− from the lower constraint {ω · x = 0} is at least 1. Accordingly, if we
assume without loss of generality that ω1 > 0, then the translation τ−e1uMω belongs
to AMω (recall definition (4.3.1)). But then, the periodicity assumptions (K3)-(W4)
imply that Fω(τ−e1u

M
ω ) = Fω(uMω ) and thus τ−e1uMω ∈MM

ω . Being uMω the minimal
minimizer, we conclude that

uMω (x+ e1) = τ−e1u
M
ω (x) > uMω (x) for a.e. x ∈ Rn.

By iterating this inequality we then find that

uMω (x+ `e1) > uMω (x) > 9/10 for a.e. x ∈ Π− and any ` ∈ N,

i.e., uMω > 9/10 a.e. in Rn, in contradiction with the fact that, by construction,
uMω 6 −9/10 in {ω · x >M}.

As a result, uMω 6 −9/10 on the ball B√n(z). The proof then finishes by applying
once again Propositions 4.5.3 and 4.5.2 to the sublevel set

{
uMω 6 −9/10

}
. �

Corollary 4.6.2. — If M >M0|ω|, then uMω = uM+a
ω , for any a > 0.

Proof. — FixM >M0|ω| and a ∈ [0, 1]. By applying Proposition 4.6.1 to the minimal
minimizer uM+a

ω , we find that uM+a
ω 6 −9/10 a.e. in the half-space {ω·x >M}. Hence,

uM+a
ω ∈ AMω and Fω(uMω ) 6 Fω(uM+a

ω ), by the minimization properties of uMω . On
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the other hand, clearly uMω ∈ AM+a
ω , so that we also have Fω(uM+a

ω ) 6 Fω(uMω ).
Thus, both uMω and uM+a

ω belong toMM
ω ∩MM+a

ω and, consequently, they define the
same function.

By iteration, the arguments extends to any a > 0. �

This corollary essentially tells that when M/|ω| is greater than the universal con-
stant M0 found in Proposition 4.6.1, then the upper constraint {ω · x = M} becomes
immaterial for the minimal minimizer uMω , which starts attaining values below the
threshold −9/10 well before touching that constraint.

The next result shows that a similar behavior also occurs with the lower con-
straint {ω · x = 0}, thus proving that the minimal minimizer is unconstrained. Re-
calling the notation introduced right above Lemma 4.2.2, we state the following

Proposition 4.6.3. — If M > M0|ω|, then uMω is unconstrained, that is uMω ∈
M−a,M+a

ω , for any a > 0.

Proof. — Let k ∈ Zn be such that ω · k > a. Given v ∈ A−a,M+a
ω , we consider its

translation τkv ∈ AM+a+ω·k
ω . By Corollary 4.6.2, it then holds Fω(uMω ) 6 Fω(τkv).

The thesis then follows, as Fω(v) = Fω(τkv) by (K3)-(W4). �

To conclude the subsection, we combine the previous proposition with the results
of Subsection 4.4 and obtain that uMω is indeed a class A minimizer.

Theorem 4.6.4. — IfM >M0|ω|, then uMω is a class A minimizer of the functional E .

Proof. — Let Ω be any given bounded subset of Rn. Take a > 0 and m ∈ Zn−1

large enough to have Ω compactly contained in the quotient S̃−a,M+a
ω,m (recall no-

tation (4.4.2)). By virtue of Proposition 4.3.1 we know that u−a,M+a
ω is the mini-

mal minimizer of the class M−a,M+a
ω,m . On the other hand, Proposition 4.6.3 yields

Fω(uMω ) = Fω(u−a,M+a
ω ). Recalling the terminology introduced in Subsection 4.3,

we then have

Fω,m(uMω ) = cmFω(uMω ) = cmFω(u−a,M+a
ω ) = Fω,m(u−a,M+a

ω ),

with cm =
∏n−1
i=1 mi. Hence, uMω ∈ M−a,M+a

ω,m and Proposition 4.4.2 implies that uMω
is a local minimizer of E in Ω. �

4.7. The case of irrational directions. — Here we finish the proof of Theorem 1.4
for kernels satisfying hypothesis (K4), by extending the results obtained in the pre-
vious subsections to irrational vectors ω. This task is accomplished by means of an
approximation argument, whose most technical steps are inspired by [BV08, §7].

Fix ω ∈ Rn r Qn and consider a sequence {ωj}j∈N ⊂ Qn r {0} converging to ω.
Denote with uj the class A minimizer corresponding to ωj , given by our construction.
We recall that uj ∈ Hs

loc(Rn) ∩ L∞(Rn), with |uj | 6 1 in Rn, and that

(4.7.1) {x ∈ Rn : |uj(x)| 6 9/10} ⊆
{
x ∈ Rn :

ωj
|ωj |
· x ∈ [0,M0]

}
,
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for any j ∈ N. Moreover, by Corollary 2.2, the uj ’s are uniformly bounded in C0,α(Rn),
for some universal α ∈ (0, 1). Hence, by Arzelà-Ascoli Theorem there exists a subse-
quence of {uj} — which, without loss of generality, we will assume to be {uj} itself
— converging to some continuous function u, uniformly on compact subsets of Rn.

Of course, |u| 6 1 in Rn. Also, (4.7.1) passes to the limit, so that the same inclusion
holds with u and ω replacing uj and ωj . In order to finish the proof of Theorem 1.4
we therefore only need to show that u is a class A minimizer of E . To do this,
let R > 1 be a fixed number: we claim that u is a local minimizer of E in BR, that
is E (u;BR) < +∞ and

(4.7.2) E (u;BR) 6 E (u+ ϕ;BR) for any ϕ supported inside BR.

Observe that, going back to Remark 1.2, this implies that u is a class A minimizer.
To see that (4.7.2) is true, we first apply Proposition 3.1 to uj and obtain that

(4.7.3) E (uj ;BR+1) 6 CR,

for some constant CR > 0 independent of j. Furthermore, by Fatou’s lemma, we know
that

(4.7.4) E (u;BR+τ ) 6 lim inf
j→+∞

E (uj ;BR+τ ),

for any τ ∈ [0, 1], and thus, in particular,

(4.7.5) E (u;BR) 6 E (u;BR+1) 6 CR < +∞.

Recall that E (u; ·) is monotone non-decreasing with respect to set inclusion.
Now, we deal with the limit on the right-hand side of (4.7.4). Let {εj}j∈N be the

sequence of positive real numbers given by

(4.7.6) εj := ‖uj − u‖L∞(BR+1).

Clearly, εj converges to 0 and we may also assume εj 6 1/2 for any j. Take
ηj ∈ C∞c (Rn) to be a cut-off function satisfying 0 6 ηj 6 1 in Rn, ηj = 1 in
BR, supp(ηj) ⊆ BR+εj and |∇ηj | 6 2/εj in Rn. Let ϕ be as in (4.7.2) and sup-
pose without loss of generality that ϕ ∈ L∞(Rn). We are also allowed to assume
E (u + ϕ;BR) < +∞, formula (4.7.2) being trivially satisfied otherwise. As a con-
sequence of this, (4.7.5), (K2) and the boundedness of u and ϕ, we have that
ϕ ∈ Hs(BR+1). We define v := u+ ϕ and

vj := ηju+ (1− ηj)uj + ϕ in Rn.

Notice that vj = v in BR and vj = uj in RnrBR+εj . Accordingly, vj is an admissible
competitor for uj in BR+εj and thus

(4.7.7) E (uj ;BR+εj ) 6 E (vj ;BR+εj ),

in view of the minimizing property of uj . Furthermore, vj converges to v uniformly
on compact subsets of Rn and, in particular,

‖vj − v‖L∞(BR+1) 6 ‖uj − u‖L∞(BR+1) = εj .

J.É.P. — M., 2017, tome 4



374 M. Cozzi & E. Valdinoci

Fix a number δ ∈ (0, 1) and take j big enough to have εj < δ/2. We address the
right-hand side of (4.7.7). Concerning its kinetic part, we decompose the domain of
integration CBR+εj

as

(4.7.8) CBR+εj
= Dδ ∪ Ej,δ ∪ Fj,δ,

where, up to sets of measure zero,

Dδ := (BR ×BR) ∪
(
BR × (BR+δ rBR)

)
∪
(

(BR+δ rBR)×BR
)
,

Ej,δ :=
(
CBR+εj

∩ (BR+δ ×BR+δ)
)
rDδ,

Fj,δ := CBR+εj
r (BR+δ ×BR+δ) .

See Figure 4.2. Also set

Fδ := CBR r (BR+δ ×BR+δ) ,

and observe that, analogously to (4.7.8), it holds

(4.7.9) CBR = Dδ ∪ Fδ.

Figure 4.2. The decomposition of the region CBR+εj
as given by

(4.7.8). The set Dδ is rendered in the ‘brick’ texture, Ej,δ in the
‘honeycomb’ one and the ‘diagonal crosshatch’ is used to denote Fj,δ.

First, we deal with the tail term of E , which corresponds to Fj,δ. Note that Fj,δ
may be written as the union of BR+εj × (Rn rBR+δ) and (Rn rBR+δ) × BR+εj .
By (K1), it is clearly enough to study what happens inside the first set of this union.
Given x ∈ BR+εj and y ∈ Rn rBR+δ, we have

|vj(x)− vj(y)| = |vj(x)− uj(y)| 6 3 + |ϕ(x)|.

Moreover, |x| 6 R+ εj 6 [(R+ δ/2)/(R+ δ)]|y| and thus

|x− y| > |y| − |x| > δ

2(R+ δ)
|y|.

J.É.P. — M., 2017, tome 4



Non-local plane-like minimizers in a periodic medium 375

Using (K2), for any x ∈ BR+1 and y ∈ Rn rBR+δ we get

|vj(x)− vj(y)|2K(x, y)χBR+εj
(x) 6 C

1 + |ϕ(x)|2

|y|n+2s
∈ L1(BR+1 × (Rn rBR+δ)),

for some constant C > 0 independent of j. Recalling that vj converges pointwise to v
in Rn, by the Dominated Convergence Theorem we conclude that

(4.7.10) lim
j→+∞

∫∫
Fj,δ

|vj(x)− vj(y)|2K(x, y) dxdy

=

∫∫
Fδ

|v(x)− v(y)|2K(x, y) dxdy.

Now, we focus on Ej,δ. By the triangle inequality, for any x, y ∈ BR+1 we write

|vj(x)− vj(y)| 6 |ηj(x)− ηj(y)| |u(x)− uj(x)|+ |ηj(y)| |u(x)− u(y)|
+ |1− ηj(y)| |uj(x)− uj(y)|+ |ϕ(x)− ϕ(y)|

6 εj |ηj(x)− ηj(y)|+ |u(x)− u(y)|+ |uj(x)− uj(y)|+ |ϕ(x)− ϕ(y)| ,

where we also used (4.7.6) and that |ηj | 6 1. Hence, taking advantage of (K2) and
the regularity of ηj ,

(4.7.11)
[∫∫

Ej,δ

|vj(x)− vj(y)|2K(x, y) dxdy

]1/2

6

[
4Λ

∫∫
Ej,δ

dxdy

|x− y|n−2+2s

]1/2

+

[∫∫
Ej,δ

|u(x)− u(y)|2K(x, y) dxdy

]1/2

+

[∫∫
Ej,δ

|uj(x)− uj(y)|2K(x, y) dxdy

]1/2

+

[∫∫
Ej,δ

|ϕ(x)− ϕ(y)|2K(x, y) dxdy

]1/2

.

Note that the arguments of the first, second and fourth integrals on the right-hand
side above are integrable on the set BR+1 ×BR+1, which contains Ej,δ. Thus, by the
absolute continuity of the Lebesgue measure in Rn×Rn, it follows that those integrals
go to zero, as j → +∞ (observe in this regard that |Ej,δ| → 0). Moreover, in view
of (4.7.3), we conclude that

(4.7.12)
∫∫

Ej,δ

|vj(x)− vj(y)|2K(x, y) dxdy

6
∫∫

Ej,δ

|uj(x)− uj(y)|2K(x, y) dxdy + 2ρj ,

for some sequence {ρj} of positive real numbers such that

(4.7.13) lim
j→+∞

ρj = 0.

We are left with the term involving Dδ. We recall that vj = v in BR, so that

(4.7.14)
∫
BR

∫
BR

|vj(x)− vj(y)|2K(x, y) dxdy =

∫
BR

∫
BR

|v(x)− v(y)|2K(x, y) dxdy.
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Therefore, we just need to examine the complement Dδ r (BR ×BR) and thus, by
symmetry, the region BR × (BR+δ rBR) only. Letting x ∈ BR and y ∈ BR+δ rBR,
by (4.7.6) we have

|vj(x)− vj(y)| = |v(x)− vj(y)| 6 |v(x)− v(y)|+ |1− ηj(y)| |u(y)− uj(y)|
= |v(x)− v(y)|+ |ηj(x)− ηj(y)| |u(y)− uj(y)|
6 |v(x)− v(y)|+ εj |ηj(x)− ηj(y)| .

Then, by the definition of ηj and (K2) we get

(4.7.15)
[∫

BR

∫
BR+δrBR

|vj(x)− vj(y)|2K(x, y) dxdy

]1/2

6

[∫
BR

∫
BR+δrBR

|v(x)− v(y)|2K(x, y) dxdy

]1/2

+

[∫
BR

∫
BR+δrBR

4Λ dxdy

|x− y|n−2+2s

]1/2

6

[∫
BR

∫
BR+δrBR

|v(x)− v(y)|2K(x, y) dxdy

]1/2

+ C |BR+δ rBR|1/2 ,

for some constant C > 0 independent of j and δ. Recalling (4.7.14), we may thence
conclude that there exists a function r : (0, 1)→ (0,+∞) for which

(4.7.16) lim
δ→0+

r(δ) = 0,

and

(4.7.17)
∫∫

Dδ

|vj(x)− vj(y)|2K(x, y) dxdy

6
∫∫

Dδ

|v(x)− v(y)|2K(x, y) dxdy + 2r(δ),

for any j big enough.
Observe now that for the potential term of E we may simply estimate

P(vj ;BR+εj ) 6P(v;BR) +W ∗
∣∣BR+εj rBR

∣∣ .
Taking advantage of decomposition (4.7.8) on both sides of (4.7.7) and using inequal-
ities (4.7.12), (4.7.17), we write
1

2

∫∫
Dδ∪Ej,δ∪Fj,δ

|uj(x)− uj(y)|2K(x, y) dxdy + P(uj ;BR+εj )

= E (uj ;BR+εj ) 6 E (vj ;BR+εj )

6
1

2

∫∫
Dδ

|v(x)− v(y)|2K(x, y) dxdy +
1

2

∫∫
Ej,δ

|uj(x)− uj(y)|2K(x, y) dxdy

+
1

2

∫∫
Fj,δ

|vj(x)− vj(y)|2K(x, y) dxdy

+ P(v;BR) +W ∗
∣∣BR+εj rBR

∣∣+ r(δ) + ρj ,
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which in turn simplifies to

1

2

∫∫
Dδ∪Fj,δ

|uj(x)− uj(y)|2K(x, y) dxdy + P(uj ;BR+εj )

6
1

2

∫∫
Dδ

|v(x)− v(y)|2K(x, y) dxdy +
1

2

∫∫
Fj,δ

|vj(x)− vj(y)|2K(x, y) dxdy

+ P(v;BR) +W ∗
∣∣BR+εj rBR

∣∣+ r(δ) + ρj .

If we exploit the fact that CBR ⊂ Dδ ∪ Fj,δ and recall (4.7.9), (4.7.10), (4.7.13), by
taking the limit in j in the previous formula we find

lim sup
j→+∞

E (uj ;BR) 6 E (v;BR) + r(δ).

Putting together this last inequality with (4.7.4), we finally obtain

E (u;BR) 6 E (v;BR) + r(δ).

Then, (4.7.2) follows from the arbitrariness of δ and (4.7.16). We conclude that u is
a class A minimizer of E .

5. Proof of Theorem 1.4 for general kernels

In this section we complete the proof of Theorem 1.4, by extending the results of
Section 4 to kernels which do not necessarily satisfy condition (K4). This can be done
in consequence of the fact that none of the estimates established there involve any
of the parameters appearing in (K4). This enables us to perform a limit argument
analogous to that of Subsection 4.7.

Let K be a kernel satisfying (K1), (K2) and (K3) only. Given any monotone in-
creasing sequence {Rj}j∈N ⊂ [2,+∞) which diverges to +∞, we set

Kj(x, y) := K(x, y)χ[0,Rj ](|x− y|) for any x, y ∈ Rn.

Notice that the new truncated kernelKj still satisfies hypotheses (K1), (K2) and (K3).
Moreover, Kj clearly fulfills the additional requirement (K4) with R = Rj .

Let Ej be the energy functional (1.6) corresponding to Kj . For a fixed direction
ω ∈ Rn r {0}, let uj be the plane-like class A minimizer for Ej directed along ω.
The existence of such minimizers is a consequence of Section 4, as Kj verifies (K4).
It holds

(5.1) {x ∈ Rn : |uj(x)| 6 9/10} ⊆
{
x ∈ Rn :

ω

|ω|
· x ∈ [0,M0]

}
,

for a universal value M0 > 0. Furthermore, |uj | 6 1 in Rn and, in view of Corol-
lary 2.2, ‖uj‖C0,α(Rn) 6 C, for some α ∈ (0, 1] and C > 0. We highlight the fact that
we can choose M0, α and C to be independent of j, since each Kj satisfies (K2) with
the same structural constants. Accordingly, by Arzelà-Ascoli Theorem {uj} converges,
up to a subsequence, to a continuous function u, uniformly on compact subset of Rn.
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Observe that u satisfies (5.1). Also, if ω is rational then each uj is ∼-periodic and,
consequently, so is u. To prove that u is a class A minimizer, fix R > 1 and consider
a perturbation ϕ, with supp(ϕ) b BR. We know that

Ej(uj ;BR) 6 Ej(uj + ϕ;BR) for any j ∈ N.

On the one hand, a simple application of Fatou’s lemma implies that

E (u;BR) 6 lim inf
j→+∞

Ej(uj ;BR).

On the other hand, following the strategy presented in Subsection 4.7 it is not hard
to see that we also have

lim sup
j→+∞

Ej(uj ;BR) 6 E (u+ ϕ;BR).

It follows that u is a class A minimizer of E and the proof of Theorem 1.4 is therefore
complete.

6. Stability of Theorem 1.4 as s approaches 1

In this brief section we discuss what happens when we take the limit as s → 1−

in Theorem 1.4. Since (at least for some choices of K) the energy in (1.3) becomes
closer and closer to a local gradient functional, as s approaches 1, one expects to
recover the result of [Val04] in the limit. While this is certainly true, the rigorous
computation supporting this intuition is not completely trivial. We include it here in
for the reader’s convenience.

We restrict ourselves to consider the simpler case determined by the family of
kernels

Ks(x, y) :=
1− s

|x− y|n+2s
.

Corresponding to these choices, we have the energy functionals

(6.1) Es(u; Ω) :=
1

2

∫∫
CΩ

|u(x)− u(y)|2Ks(x, y) dxdy +

∫
Ω

W (x, u(x)) dx,

defined for any measurable set Ω ⊂ Rn and with CΩ as in (1.7).
As s→ 1−, we expect (see e.g. [BBM01]) the energy Es to converge in some sense

to the local functional

(6.2) E (u; Ω) :=
C?
2

∫
Ω

|∇u(x)|2 dx+

∫
Ω

W (x, u(x)) dx,

for some dimensional constant(7) C? > 0. Notice in particular the factor 1−s appearing
in the definition of Ks, that corrects the energy and prevents its blow-up, as s→ 1.

In the following, we show how [Val04, Th. 8.1] for the energy defined in (6.2) can
be recovered from Theorem 1.4 here, applied to the family of functionals Es of (6.1).

Note that in [Val04, Th. 8.1] the author proves the existence of plane-like minimizers
for a far more general class of Ginzburg-Landau-type functionals than those comprised

(7)To be precise, C? is the constant denoted with K in [BBM01, Cor. 2] and with K2,N in [Pon04,
Formula (3)], up to a multiplicative dimensional constant. Its value is C? := 1

2

∫
∂B1
|e1·σ|2 dHn−1(σ).
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by (6.2), by allowing for instance the presence of a non-homogeneous gradient term
such as (1.9). Although we believe it would be very interesting to investigate how such
larger class of local functionals can be approximated by non-local ones, this goes well
beyond the scopes of the present section, in which we aim to give just a glimpse of
how our result compares with that of [Val04]. However, we stress that the generality
covered by (6.1) and (6.2) still is rather wide and meaningful in relation to plane-like
minimizers which are not one-dimensional, due to the presence of the space-dependent
potential W .

We are now ready to state and prove the following result.

Theorem 6.1. — Let n > 2 and assume that W satisfies (W1), (W2), (W3), (W4).
Fix any value θ ∈ (0, 1) and any direction ω ∈ Rn r {0}. For any s ∈ (0, 1), let us be
the plane-like class A minimizer of the energy Es, associated with θ and ω, as given
by Theorem 1.4. Then, there exists an increasing sequence {sk}k∈N converging to 1,
such that usk converges in C1

loc(Rn) to some function u : Rn → [−1, 1], as k → +∞.
Furthermore, u is a class A minimizer(8) of E satisfying

(6.3)
{
x ∈ Rn : |u(x)| < θ

}
⊂
{
x ∈ Rn :

ω

|ω|
· x ∈ [0,M0]

}
,

for some constant M0 > 0 that depends only on n, W ∗, the function γ and θ.

Theorem 6.1 yields the convergence of the plane-like minimizers of Es to those of E

and establishes, as a byproduct of Theorem 1.4, the existence of the latter. In this
way, the main result of [Val04] holds as a consequence of Theorem 1.4.

Before heading to the proof of Theorem 6.1, we first address the validity of the
following auxiliary result.

Lemma 6.2. — Let Ω b Ω′ be bounded open subsets of Rn, with Ω having Lipschitz
boundary. Let {sk}k∈N ⊂ (1/4, 1) be a sequence converging to 1 and {wk}k∈N be a
sequence of functions, bounded in L∞(Rn) ∩ C0,1(Ω′). Then,

lim
k→+∞

∫
Ω

∫
RnrΩ

|wk(x)− wk(y)|2Ksk(x, y) dxdy = 0.

Proof. — Let ε > 0 be a small number to be chosen later. In what follows, we in-
dicate with c any positive constant that does neither depend on k nor on ε. By our
assumptions on {wk}, we have that

|wk(x)−wk(y)| 6 c
[
|x− y|χ[0,ε)(|x− y|) + χ[ε,+∞)(|x− y|)

]
for any x ∈ Ω, y ∈ Rn,

provided ε is sufficiently small. By this, we compute

(6.4)
∫

Ω

∫
RnrΩ

|wk(x)− wk(y)|2Ksk(x, y) dxdy 6 c(1− sk) (Iε + Jε) ,

(8)Of course, the notions of local and class A minimizer of the functional E defined in (6.2) are very
classical and indeed quite similar to those introduced in Definitions 1.1 and 1.3 for non-local energies.
For us, a class A minimizer of E is a function u for which E (u; Ω) < +∞ and E (u; Ω) 6 E (v; Ω) for
any v that coincides with u outside of Ω, for any bounded set Ω ⊂ Rn.

J.É.P. — M., 2017, tome 4



380 M. Cozzi & E. Valdinoci

where

Iε :=

∫
Ω

(∫
Bε(x)rΩ

dy

|x− y|n−2+2sk

)
dx,

and Jε :=

∫
Ω

(∫
RnrBε(x)

dy

|x− y|n+2sk

)
dx.

By noticing that

x ∈ Ω, y ∈ Bε(x) r Ω implies that x ∈ Ωε :=
{
x ∈ Ω : dist(x, ∂Ω) < ε

}
,

and changing variables appropriately, we estimate the first integral as follows:

Iε 6
∫

Ωε

(∫
Bε

dz

|z|n−2+2sk

)
dx 6 c

ε3−2sk

1− sk
.

Note that we took advantage of the Lipschitzianity of ∂Ω to deduce the last inequality.
In a similar (and easier) way, we also obtain

Jε 6 c ε
−2sk .

By combining these last two inequalities with (6.4), we get∫
Ω

∫
RnrΩ

|wk(x)− wk(y)|2Ksk(x, y) dxdy 6 c
(

1 +
1− sk
ε3

)
ε3−2sk .

Select now ε = εk := 3
√

1− sk. By plugging this in the last formula, we end up with∫
Ω

∫
RnrΩ

|wk(x)− wk(y)|2Ksk(x, y) dxdy 6 c(1− sk)1− 2
3 sk 6 c 3

√
1− sk,

and the thesis readily follows. �

With the aid of Lemma 6.2, we can now prove the main result of the present
section.

Proof of Theorem 6.1. — First, we observe that, by the regularity theory for the frac-
tional Laplacian (see e.g. [CS11, Th. 6.1]), the minimizers us belong to C1,α(Rn),
with α > 0 independent of s, and actually form a bounded family in that space, for,
say, s > 3/4. Note that the result of [CS11] holds in principle for viscosity solutions.
But this notion is indeed equivalent to bounded weak solutions, when dealing with
bounded, continuous right-hand sides (see [SV14]; see also [DCKP14] for related re-
sults based on Moser’s iteration). In our case, the us’s are bounded weak solutions of
equations with right-hand sides given byWr(·, us), which are bounded and continuous,
since the us’s are, thanks to Theorem 2.1.

By Arzelà-Ascoli Theorem, then there exists a sequence {sk}k∈N increasing to 1,
such that usk converge in C1

loc(Rn) to some differentiable function u. Observe that u
satisfies (6.3). To see this, it is sufficient to notice that the us’s satisfy an analogous
inclusion, withM0 independent of s, for s close to 1. But this is true, as one can check
by inspecting the proof of Theorem 1.4, when applied to the functionals Es (observe in
particular that the constants C1 and C2 appearing in (4.6.1) and (4.6.2), respectively,
may be chosen independently of s).
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To conclude the proof, we are therefore only left to show that u is a class A
minimizer of the energy E given by (6.2). To this end, let R > 4 and v be a function
coinciding with u outside of the ball BR. We need to prove that

(6.5) E (u;BR) 6 E (v;BR).

By standard density results in Sobolev spaces, we may suppose without loss of gen-
erality that v ∈ C1(BR). In view of the regularity of u and v, we also have that v ∈
C0,1(Rn)

To deduce (6.5), we modify v outside a ball containing BR in order to obtain
a sequence of functions coinciding with the usk ’s there and be in position to take
advantage of the minimizing properties of each usk . The technical details of this
construction are presented here below.

For a fixed δ ∈ (0, 1), we consider a radially symmetric and non-increasing cut-off
function η = ηδ ∈ C∞(Rn), with supp(η) ⊂ BR+δ, η = 1 in BR and |∇δ| 6 2/δ.
We set

vs,δ := ηv + (1− η)us.

Note that vs,δ ∈ C0,1(Rn), with Lipschitz constant bounded uniformly in s (but not
in δ). A straightforward computation shows that it holds in particular

(6.6) |vs,δ(x)− vs,δ(y)| 6 c?
(

1 +
|us(y)− v(y)|

δ

)
|x− y|,

for some constant c? > 0 independent of both s and δ.
Thanks to the results of [BBM01, §3] or [Pon04, Th. 1.2], we have that

E (u;BR) 6 E (u;BR+δ) 6 lim inf
k→+∞

Esk(usk ;BR+δ).

As us is a class A minimizer for Es and vs,δ coincides with us outside of BR+δ, we
then obtain that

E (u;BR) 6 lim inf
k→+∞

Esk(vsk,δ;BR+δ).

Finally, as vs,δ coincides with v inside BR, using [BBM01, Cor. 2] we conclude that

(6.7) E (u;BR) 6 E (v;BR) + Rδ,

where

Rδ := lim sup
k→+∞

Rk,δ,

with Rk,δ :=

∫
BR+δ

∫
RnrBR

|vsk,δ(x)− vsk,δ(y)|2Ksk(x, y) dxdy.

To deduce the validity of (6.5) from (6.7), we therefore only need to prove that the
remainder term Rδ goes to zero, as δ → 0+. To do this, we write Rk,δ = R

(1)
k,δ + R

(2)
k,δ ,

where

R
(1)
k,δ :=

∫
BR+δ

∫
RnrBR+δ

|vsk,δ(x)− vsk,δ(y)|2Ksk(x, y) dxdy,

and R
(2)
k,δ :=

∫
BR+δ

∫
BR+δrBR

|vsk,δ(x)− vsk,δ(y)|2Ksk(x, y) dxdy.
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In view of Lemma 6.2 and the fact that the vs,δ’s are bounded in C0,1(Rn) uniformly
in s, we know that

lim
k→+∞

R
(1)
k,δ = 0,

for any δ > 0. Hence, to conclude that Rδ → 0, we just need to inspect the contribu-
tions coming from R

(2)
k,δ . Indeed, we claim that, for any δ ∈ (0, 1/2),

(6.8) lim sup
k→+∞

R
(2)
k,δ 6 Cδ,

for some constant C > 0 independent of δ. Note that if we establish this, then (6.5)
would follow.

In order to check (6.8), we take kδ ∈ N sufficiently large to have

‖usk − u‖L∞(BR+1) 6 δ for any k > kδ.

By this, (6.6) and the fact that v = u outside of BR, for k > kδ we compute

R
(2)
k,δ 6 c

2
?

∫
BR+δ

(∫
BR+δrBR

(
1 +
|usk(y)− u(y)|

δ

)2

|x− y|2Ksk(x, y) dy

)
dx

6 4c2?(1− sk)

∫
BR+δrBR

(∫
BR+1

dx

|x− y|n−2+2sk

)
dy

6 4c2?|BR+δ rBR|(1− sk)

∫
B2R+2

dz

|z|n−2+2sk

6 Cδ,

for some C > 0 independent of k and δ. This clearly implies (6.8) and the proof of
Theorem 6.1 is thence complete. �

7. Note added in proof. Weakening of some structural assumptions

As a consequence of the results obtained in [Coz16] by the first author,(9) some of
the hypotheses listed in the introduction can be slightly relaxed. Indeed, the differ-
entiability of the potential W is no longer needed for the proof of the main result of
this paper.

More specifically, Theorem 1.4 continues to hold if we replace assumption (W3)
with the following weaker requirement:

(W3′)
the map [−1, 1] 3 r 7−→W (x, r) is continuous for a.a. x ∈ Rn,

and W (x, r) 6W ∗ for a.a. x ∈ Rn and any r ∈ [−1, 1],

for some W ∗ > 0.
The reason for this is that the differentiability of W with respect to the r variable

and the uniform bound for its derivative provided by (W3) are only used in the proof
of Theorem 1.4 to apply the regularity theory contained in Section 2. Since we can now
deduce the Hölder continuity of the minimizers of the functional E defined in (1.3) by

(9)We emphasize that [Coz16] was not yet available at the time a previous, but finished, version
of the present manuscript was completed. We preferred to add this section, instead of altering the
core parts of the paper in the light of [Coz16], mainly to preserve the correct chronological timeline.
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taking advantage of [Coz16, Th. 2.4] — and therefore not using the Euler-Lagrange
equation associated to E —, the boundedness of the potential W granted by (W3′)
is sufficient.

In consequence of this improvement, the whole range of exponents d > 0 is now
admissible in the first example of (1.4).

We stress that other generalizations of the model considered here could be ad-
dressed.

For instance, one can take into account potentials W that are bounded, but not
even continuous, such as W (x, r) = Q(x)χ(−1,1)(r), with Q positive and periodic.
In the local setting, energies involving this potential term are used in the modeling
of jets of fluid, and have been studied for instance in [Val04, PV05]. Note that the
regularity theory for nonlocal functionals with discontinuous potentials is already
available, thanks to [Coz16]. However, Theorem 1.4 cannot be automatically extended
to these functionals, as the proof provided here makes use of the continuity of W .
Nevertheless, we do believe that, with appropriate modifications in the argument,
this difficulty could be circumvented.

Another interesting line of investigation is represented by the possibility of replac-
ing the Gagliardo-type seminorm in (1.3) with a more general non-quadratic interac-
tion term. The existence of plane-like minimizers for energies with Lp-type gradient
structure has been proved in [PV05]. For nonlocal functionals, we plan to address this
problem in a future work.

Moreover, under suitable additional assumptions, in the forthcoming paper [CV17]
we will improve the quantitative results of this paper by showing that the oscillations
of the interfaces with respect to the reference hyperplane are not only bounded, but
bounded explicitly by a universal constant times the periodicity scale of the medium.
This additional and quantitative geometric property will allow us to establish, in the
limit, the existence of planelike nonlocal minimal surfaces in a periodic structure.

Appendix A. Some auxiliary results

In this first appendix we enclose a couple of lemmata which cover some technical
aspects that we faced throughout the paper.

We begin with an observation on the necessity of hypothesis (K4) for the validity
of the computations of Section 4. We refer to Subsection 4.1, in particular, for the
notation employed in the statement.

Lemma A.1. — Assume that K is a measurable kernel satisfying

K(x, y) >
γ

|x− y|n+β
for a.e. x, y ∈ Rn such that |x− y| > R, with β ∈ (0, 1],

for some γ,R > 0. Then, given any two real numbers A < B, it holds

(A.1)
∫
{ω·x6A}

∫
R̃n∩{ω·x>B}

|u(x)− u(y)|2K(x, y) dxdy = +∞,

for any u ∈ AA,Bω . Consequently, Fω ≡ +∞ on AA,Bω .
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Proof. — Of course, we may take ω = en, A = 0 and B = 1. Then,

{ω · x 6 A} = Rn−1 × (−∞, 0] and R̃n ∩ {ω · x > B} = [0, 1]n−1 × [1,+∞).

Under these conditions, the left hand side of (A.1) is controlled from below by

I := γ

∫
[0,1]n−1×[1,+∞)

(∫
(Rn−1×(−∞,0])rBR(x)

|u(x)− u(y)|2

|x− y|n+β
dy

)
dx.

Since u ∈ A0,1
en , it follows that for any x, y ∈ Rn such that xn > 1 and yn 6 0,

|u(x)− u(y)| = u(y)− u(x) >
9

10
−
(
− 9

10

)
=

9

5
> 1.

Hence,

I > γ
∫

[0,1]n−1×[R+1,+∞)

(∫
Rn−1×(−∞,0]

dy

|x− y|n+β

)
dx.

Arguing as in the proof of Lemma (4.1.1), it is easy to check that∫
Rn−1×(−∞,0]

dy

|x− y|n+β
= cx−βn ,

for some constant c > 0 independent of x. Accordingly,

I > cγ
∫ +∞

R+1

x−βn dxn = +∞,

since β 6 1. The thesis then follows. �

Next is a lemma that ensures the finiteness of the integral appearing on the right-
hand side of (4.4.3), in Subsection 4.4.

Lemma A.2. — Let ϕ ∈ L∞(Rn) have support compactly contained in S̃A,Bω,m , in the
sense of footnote 6 at page 365. Denote with ϕ̃ the ∼m-periodic extension to Rn

of ϕ|R̃nm . Then, the integral

(A.2)
∫
R̃nm

∫
RnrR̃nm

|ϕ̃(x)||ϕ̃(y)|
|x− y|n+2s

dxdy,

is finite.

Proof. — Assume for simplicity that ω = en and m = (1, . . . , 1). With these choices,
we identify R̃n with its fundamental region Q′1/2 × R.

We split the domain of integration of (A.2) as

R̃n ×
(
Rn r R̃n

)
=
(
R̃n ×D1

)
∪
(
R̃n ×D2

)
,

with
D1 :=

(
Q′√

n−1
rQ′1/2

)
× R and D2 :=

(
Rn−1 rQ′√

n−1

)
× R.

We first deal with the integral involving the region D1. In view of the hypothesis
on the support of ϕ, we have

dist
(
supp(ϕ),D1

)
> δ,
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for some δ > 0. Therefore, we estimate∫
R̃n

∫
D1

|ϕ̃(x)||ϕ̃(y)|
|x− y|n+2s

dxdy 6 ‖ϕ‖2L∞(Rn)

∫
supp(ϕ)

∫
D1∩{xn∈[A,B]}

dxdy

|x− y|n+2s

6 ‖ϕ‖2L∞(Rn)δ
−n−2s

[
2
√
n− 1

]n−1
(B −A)2,

where we also used the fact that supp(ϕ) is contained in the strip Rn−1 × [A,B].
On the other hand, if x ∈ R̃n and y ∈ D2, then |x′| 6

√
n− 1/2 and |y′| >

√
n− 1.

Hence,

|x− y| > |x′ − y′| > |y′| − |x′| > |y
′|

2
,

and thus∫
R̃n

∫
D2

|ϕ̃(x)||ϕ̃(y)|
|x− y|n+2s

dxdy 6 2n+2s‖ϕ‖2L∞(Rn)(B −A)2

∫
Rn−1rB′√

n−1

dy′

|y′|n+2s

6 cn‖ϕ‖2L∞(Rn)(B −A)2,

for some dimensional constant cn > 0. This concludes the proof. �

Appendix B. A remark on separability in Lploc spaces

We discuss here some separability properties of the subsets of the space Lploc(Rn) of
locally p-summable functions, for 1 6 p < +∞. While the literature on the standard
Lebesgue spaces Lp(Rn) is large and exhaustive, Lploc(Rn) classes are somehow rarely
considered as functional spaces. As we have not been able to find precise references
for the few facts about Lploc(Rn) that we took advantage of in Proposition 4.2.5, we
provide directly here a proof of such results.

First, with the aid of the following proposition, we endow Lploc(Rn) with a separable
metric made up on the exhaustion of balls

⋃
k∈NBk of Rn.

Proposition B.1. — Let 1 6 p < +∞ and define

d(u, v) :=

+∞∑
`=1

1

2`
‖u− v‖Lp(B`)

1 + ‖u− v‖Lp(B`)
,

for any u, v ∈ Lploc(Rn). Then, (Lploc(Rn), d) is a separable metric space.

Proof. — It is straightforward to check that d is a metric. Thus, we only focus on the
proof of the separability.

Since Lp(Rn) is separable, we may select a sequence {uj}j∈N which is dense in
this space. We claim that {uj} is dense in (Lploc(Rn), d), too. For a general function
v ∈ Lploc(Rn) and any k ∈ N, write

vk :=

{
v in Bk
0 in Rn rBk.

Thus, vk ∈ Lp(Rn). Fix now u ∈ Lploc(Rn). For any k ∈ N, let ujk be such that

‖u− ujk‖Lp(Bk) 6 ‖uk − ujk‖Lp(Rn) 6 2−k.
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Of course, such ujk exists in view of the density of {uj} in Lp(Rn). Moreover, we can
choose {jk} to be increasing in k, so that {ujk} is a subsequence of {uj}. For any k,
we then have

d(ujk , u) =

k∑
`=1

1

2`
‖ujk − u‖Lp(B`)

1 + ‖ujk − u‖Lp(B`)
+

+∞∑
`=k+1

1

2`
‖ujk − u‖Lp(B`)

1 + ‖ujk − u‖Lp(B`)

6 ‖ujk − u‖Lp(Bk)

k∑
`=1

1

2`
+

+∞∑
`=k+1

1

2`

6
1

2k−1
,

and hence d(ujk , u)→ 0 as k → +∞. It follows that {uj} is dense in (Lploc(Rn), d). �

Now that we have established this property, we can proceed to the kind of separa-
bility we are most interested in.

Proposition B.2. — Let 1 6 p < +∞. Then, any subset X of Lploc(Rn) is separable
with respect to pointwise a.e. convergence. That is, there exists a sequence {uj}j∈N⊆X
such that, for any u ∈ X, a subsequence {ujk} of {uj} converges to u a.e. in Rn.

Proof. — First of all, we point out that if vj → v in (Lploc(Rn), d), then vj also
converges to v in Lp(Bk), for any k ∈ N. Indeed,

1

2k
‖vj − v‖Lp(Bk)

1 + ‖vj − v‖Lp(Bk)
6 d(vj , v) −→ 0,

as j → +∞ and thence the claim follows by noticing that, given a sequence of non-
negative real numbers {aj}j∈N and a ∈ [0,+∞),

aj −→ a if and only if aj
1 + aj

−→ a

1 + a
,

as j → +∞.
After this preliminary observation, we can now head to the actual proof of the

proposition. Note that, since it is a subset of Lploc(Rn), X is itself a separable metric
space with respect to d. This follows by applying Proposition B.1 and, for instance,
Proposition 3.25 of [Bre11]. Let then {uj}j∈N ⊆ X be a dense sequence. Fixed an
element u ∈ X, by the initial remark we know that there exists a subsequence {vj}
of {uj} such that vj → u in Lp(Bk), for any k ∈ N.

We perform a diagonal argument in order to extract a further subsequence {v∗j }
from {vj} which converges to u a.e. in Rn.

Since {vj} converges to u in Lp(B1), we may select a subsequence {v1
j } from {vj}

which converges to u a.e. in B1. Then, {v1
j } still converges to u in Lp(B2), as it

is a subsequence of {vj}, and hence there exists another subsequence {v2
j } of {v1

j }
converging to u a.e. in B2. We keep extracting nested subsequences and obtain, for
any k, a subsequence {vkj } ⊆ {vk−1

j } converging to u a.e. in Bk. Set v∗j := vjj for
any j ∈ N. This new sequence {v∗j } is eventually a subsequence of each of the previous
sequences. Thus, it converges to u a.e. in Bk, for any k ∈ N, that is a.e. in Rn. �
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